用户名: 密码: 验证码:
CGP37157对心肌细胞钙循环影响的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     目前线粒体钠钙交换体特异性阻断剂CGP37157对心肌细胞肌浆网钙释放、钙回摄的影响缺乏研究。因此,本实验旨在探讨CGP37157对心肌细胞钙循环的影响。
     方法:
     (1)心室肌组织ATP含量的测定:32只雄性SD大鼠随机分组,每组8只。以含60μmol/L Ca~(2+)台氏液(对照组)和含有CGP37157的台氏液(实验组)灌流心肌组织,分别灌流15min、30min、60min。灌流结束后,用剪刀剪取左心室少许心肌组织,采用ATP检测试剂盒(ATP Assay Kit)测定其中ATP的含量;
     (2)心肌细胞形态学观察:分组及心肌组织的灌流方法同(1),灌流结束后,用剪刀剪取左心室少许心肌组织,用于透射电子显微镜的制样及观察;
     (3)心肌组织cAMP含量的测定:分组及心肌组织灌流方法同(1),灌流结束后,用剪刀剪取左心室少许心肌组织,应用双抗体夹心酶标免疫分析法测定标本中大鼠环磷酸腺苷(cAMP)水平;
     (4)静息期心肌细胞钙循环的测定:SD大鼠,每组10只,共两组。采用常规酶解法分离心肌细胞,Fluo-3/AM负载心肌细胞,用激光扫描共聚焦显微镜观察;
     (5)收缩期心肌细胞钙瞬变的测定:SD大鼠,每组10只,共两组。采用常规酶解法分离心肌细胞,Fluo-3/AM负载心肌细胞,用全细胞膜片钳-激光扫描共聚焦显微镜联机技术同步记录系统记录各组大鼠心肌细胞L-型钙电流(ICa,L)和胞浆内钙瞬变(即钙诱导钙瞬变),对照组不灌流CGP37157,实验组灌流CGP37157(10μmol/L);
     (6)统计学分析:利用SPSS11.5统计软件进行数据处理,所有数据以均数±标准差( (X|—)±SD)表示,两组间均数的比较采用t检验,率的比较采用x~2检验。P<0.05为差异有统计学意义。
     结果:
     (1)透射电子显微镜形态学观察:CGP37157引起心肌细胞线粒体结构异常,表现为不同程度的线粒体嵴溶解,并且作用时间越长,线粒体受损伤越重;
     (2)心室肌组织中ATP含量的比较:对照组、15min、30min、60min各组测得的ATP的浓度依次是1.23±0.02μM/L、0.75±0.01μM/L、0.44±0.02μM/L、0.17±0.01μM/L,各实验组较对照组ATP含量显著减少(n=10, P<0.05);60min组较30minATP含量显著减少(0.17±0.01μM/L VS 0.44±0.02μM/L, n=8, P<0.01);
     (3)心肌组织中cAMP含量的比较:CGP37157引起心肌组织cAMP的含量增加,对照组15min、30min、60min各组测得的cAMP的含量分别为791±35pMol/g、1101±55pMol/g、1525±40pMol/g、2017±60pMol/g;60min组较对照组cAMP含量显著增加(n=8,P<0.05);(4)对静息期肌浆网钙循环的影响:钙释放速率实验组(5.02±0.015)比对照组显著增强(1.01±0.006,n=10,P<0.01);钙存储实验组(20.2±0.8)比对照组显著减小(0.3±0.3, n=10, P<0.01);钙回摄速率实验组(1.08±0.15)与对照组没有差异(0.99±0.09,n=10,P>0.05);(5)收缩期心肌细胞的钙瞬变:ICa,L的电流密度实验组(2.02±0.16pA/pF)比对照组显著减少(0.69±0.07pA/pF, n=10, P<0.01);实验组(45.5±5.2)大鼠CICR过程中钙释放的幅度显著低于对照组(23.2±4.8,n=10,P<0.01)。
     结论:
     CGP37157导致心肌细胞钙循环的异常,原因可能为其导致线粒体受损和PKA通路异常。具体如下:
     (1)CGP37157导致线粒体的损伤,表现为其结构受损和ATP合成下降。
     (2)CGP37157介导的线粒体损伤导致静息期心肌细胞钙循环异常,表现为促进肌浆网钙泄漏,但不影响其钙回摄。
     (3)CGP37157导致cAMP增加,导致PKA激活增强,可能导致静息期肌浆网钙泄漏。
     (4)CGP37157导致收缩期心肌细胞I_(Ca,L)电流密度减小,进而导致其钙瞬变幅度减小。
Object:
     Because of less research on the cardiac sarcoplasmic reticulum calcium cycle produced by CGP37157, as specific mitochondrial Sodium-Calcium exchanger (mNCX), it is employed to investigate its influence on ventricular myocyte calcium cycling.
     Methods:
     (1)The measurement of cardiac ATP content: 32 SD rats were randomly divided into four groups. After perfusing heart with 60μmol/L calcium Tyrode's solution(control group) and CGP37157-Tyrode's solution(experiment group), a few cardiac tissue is chosen to measure the ATP content in different groups with ATP Assay Kit.(2)Morphological observation: the former steps like rats groups and perfusion follows (1), then a ventricular tissue is taken away and used as transmission electron microscope(TEM) experiments.(3)The measurement of cAMP content: the former steps like rats groups and perfusion follows (1), a few ventricular tissue is used to measure cAMP content in different groups with enzyme linked immunoassay(ELISA) cAMP Kit.(4)Recording diastolic calcium cycling in ventricular myocytes: 20 SD rats were equally and randomly divided into two groups, and isolated ventricular myocytes with collagenase. After incubating myocytes with Fluo-3/AM, Laser scanning confocal microscope(LSCM) is employed to record the calcium transient. (5)Recording calcium transient in systolic ventricular myocytes: the former steps like rats groups and isolation follows (4), after incubation with Fluo-3/AM, whole cell patch-LSCM system chronically records L-type calcium current(ICa,L) and cytosolic calcium transient. (6)statistic analysis: SPSS11.5 is employed and all the data are presented as mean±SEM, and t-test and x~2 test was used for the statistical analysis. P-values of <0.05 were considered significant.
     Results:
     (1)Morphological observation with TEM: CGP37157 caused structural changes in ventricular myocytes, leading to the lysis of mitochondrial cristae and the injury was more serious after longer perfusion. (2)ATP content in ventricular tissue: after perfusion with CGP37157, ATP content significantly decreased(0.75±0.01μM/L、0.44±0.02μM/L、0.17±0.01μM/L VS 1.23±0.02μM/L, n=8, P<0.05); 60min group greatly decreased than 30min (0.17±0.01μM/L VS 0.44±0.02μM/L, n=8, P<0.01); (3)cAMP content in ventricular tissue:CGP37157 leads cAMP content increased, the content as follows: 791±35pMol/g、1101±55pMol/g、1525±40pMol/g、2017±60pMol/g; 60 min group cAMP increased significantly(n=8, P<0.05); (4)Diastolic calcium cycling in ventricular myocytes:calcium efflux was significantly increased in experiment group and control group(5.02±0.015 VS 1.01±0.006, n=10, P<0.01); calcium influx was not changed(1.08±0.15VS 0.99±0.09,n=10,P>0.05); calcium storage was decreased(20.2±0.8 VS 0.3±0.3, n=10, P<0.01 ); (5)Systolic calcium cycling in ventricular myocytes: ICa,L was significantly decreased in experiment group than in control group(2.02±0.16pA/pF VS 0.69±0.07pA/pF, n=10, P<0.01); the amplitude of calcium transient was significantly decreased (45.5±5.2 VS 23.2±4.8,n=10,P<0.01 );
     Conclusions:
     CGP37157 caused abnormal ventricular calcium cycling, which may due to mitochondrial injury and is associated with abnormal PKA signal pathway.
     (1) CGP37157 caused mitochondrial injury, with damaged structure and decreased ATP production;
     (2) CGP37157-mediated mitochondrial injury caused abnormal diastolic calcium cycling, along with increased calcium efflux;
     (3) CGP37157 leads increased cAMP in ventricular myocytes, and then activated PKA activity, it might lead to systolic calcium leak;
     (4) CGP37157 caused decreased current density of ICa,L, and thus leaded to lower calcium transient amplitude.
引文
[1] Campbell AK. In: Intracellular Calcium: Its Universal Role as Regulator, edited by Gutfreund H. London: Wiley, 1983,
    [2] Carafoli E, and Klee C.. Calcium as a Cellular Regulator. Oxford, UK: Oxford Univ. Press, 1999
    [3] Huxley AF. In: Mineral Metabolism, edited by Comman CL, and Bronner F. New York: Academic, 1961
    [4] Wang SQ, Song LS, Lakatta EG. Ca2+ signaling between single L-type Ca2+ channels and ryanodine receptors in heart cells. J.Nature, 2001,410: 592–596.
    [5] Beuckelmann DJ.Contributions of Ca2+-in?ux via the L-type Ca2+-current and Ca2+-release from the sarcoplasmic reticulum to [Ca2+]i-transients in human myocytes. Basic Res Cardiol. 1997,92:105–10.
    [6] Hiroyuki Nakayama, Xiongwen Chen, Christopher P. Baines, Raisa Klevitsky, Xiaoying Zhang, Hongyu Zhang, Naser Jaleel, Balvin H.L. Chua, Timothy E. Hewett, Jeffrey Robbins, Steven R. Houser and Jeffery D. Molkentin. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure.J. J Clin Invest. 2007,117(9): 2431–2444.
    [7] Misu, H., Takamura, T., Matsuzawa, N., Shimizu, A., Ota, T., Sakurai, M., Ando, H., Arai, K., Yamashita T., Honda, M., and Kaneko, S. Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes. J.Diabetologia.2007,50: 268–277.
    [8] Christoph Maack, Sonia Cortassa, Miguel A. Aon, Anand N. Ganesan, Ting Liu and Brian O’Rourke. Elevated Cytosolic Na+ Decreases Mitochondrial Ca2+ Uptake During Excitation-Contraction Coupling and Impairs Energetic Adaptation in Cardiac Myocytes.J. Circ Res. 2006;99:172-182.
    [9]Damon Poburko, Chiu-Hsiang Liao, Cornelis van Breemen and Nicolas Demaurex. Mitochondrial Regulation of Sarcoplasmic Reticulum Ca2+ Content in Vascular Smooth Muscle Cells.J. Circ. Res,2009;104:104-112.
    [10] Brian O'Rourke, David A. Kass, Gordon F. Tomaselli, Stefan K??b, Richard Tunin, Eduardo Marbán. Mechanisms of Altered Excitation-Contraction Coupling in Canine Tachycardia-Induced Heart Failure.J.Circ Res.1999,84:562-570.
    [11] Srinivasa M. Srinivasula, Ramesh Hegde, Ayman Saleh, Pinaki Datta, Eric Shiozaki, Jijie Chai, Ryung-Ah Lee, Paul D. Robbins, Teresa Fernandes-Alnemri, Yigong Shi & Emad S. Alnemri.A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspaseactivity and apoptosis.J.Nature.2001,410(6 824), 112-116
    [12]王剑锋,刘艳,王永平,初海鹰,张利,程学英,赵华,金伟.基质金属蛋白酶9的表达在慢性酒精中毒性肌损伤中的作用.J.中华神经科杂志.2010,43 ( 3 ): 211-215.
    [13]王剑锋,齐珊珊,王永平,钟丽珍,张利.慢性酒精中毒性肌病线粒体损伤实验研.J.中风与神经疾病杂志.2010,27 (2):149-152.
    [14] Fei Sun, Xia Huo, Yujia Zhai, Aojin Wang, Jianxing Xu, Dan Su, Mark Bartlam, and Zihe Rao. Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex II.J.Cell.2005,121(7): 1043-1057.
    [15] Terrence G. Frey, Carmen A. Mannella. The internal structure of mitochondria.J. TIBS.2000,25 (7): 319-324.
    [16] Gy?rgy Hajnóczky, Gy?rgy Csordása, Sudipto Dasa, Cecilia Garcia-Pereza, Masao Saotomea, Soumya Sinha Roya and Muqing Yia. Mitochondrial calcium signalling and cell death: Approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis.J. Cell Calcium.2006,40(5-6): 553-560.
    [17] David A Cox, L Conforti, N Sperelakis. Selectivity of inhibition of Na+-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J. Cardiovasc.Pharmacol. 1993 ,21(4): 595.
    [18]王永平,王剑锋.线粒体和线粒体损伤的研究进展.J.神经疾病与精神卫生.2010,10(3):309-311.
    [19] Heath-Engel H M, Shore G C. Mitochondrial membrane dynamics, cristae remodelling and apoptosis. J. Biochim Biophys Acta, 2006,1763(5-6): 549-560.
    [20]史景泉,陈意生,卞修武.超微病理学.北京市朝阳区3号:化学工业出版社. 2005: 161-163.
    [21] Liu T, O'Rourke B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. J.Circ Res. 2008 Aug 1; 103(3):279-88.
    [22] Bers DM, Eisner DA, Valdivia HH. Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport.J. Circ Res, 2003;93: 487-490.
    [23]Jiang MT, Lokuta AJ, Farrell EF, Wolff MR, Haworth RA, Valdivia HH. Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure.J. Circ Res.2002;91:1015–1022.
    [24] Shimizu S, Ide T, Yanagida T, Yoshihide Tsujimoto. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c.J Biol Chem, 2000, 275(16): 12321-12325.
    [25]Damon Poburko, Chiu-Hsiang Liao, Cornelis van Breemen and Nicolas Demaurex. Mitochondrial Regulation of Sarcoplasmic Reticulum Ca2+ Content in Vascular Smooth Muscle Cells.J. Circ. Res,2009;104:104-112.
    [26]Valeriy Lukyanenko, Aristide Chikando, W.J. Lederer.Mitochondria in cardiomyocyte Ca2+ signaling. The International.J. Journal of Biochemistry & Cell Biology.2009,41(10):1957-1971.
    [27] Tytgat J. How to isolate cardiac myocytes.J.Cardiovasc Res,1994,28(2): 280-283.
    [28] Mitra R,Morad M.A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates.Am J Physiol,1985,249(5Pt2): H1056-1060.
    [29]曹春梅,张雄,陈莹莹.不同用途的心肌细胞的分离.浙江大学学报(医学版).2003,32(1):51-55.
    [30]Marks AR. Intracellular calcium-release channels: regulators of cell life and death.J. Am J Phys 1997;272: H597–H605.
    [31]A. Varro, N. Negretti, S.B. Hester, D.A. Eisner, An estimate of the calcium content of the sarcoplasmic reticulumin rat ventricularmyocyte.J.P?ugers Archiv. 1993;423: 158–160.
    [32] K.M. Dibb, H.K. Graham, L.A. Venetucci, D.A. Eisner, A.W. Trafford. Analysis of cellular calcium ?uxes in cardiac muscle to understand calcium homeostasis in the heart.J.Cell Calcium.2007,42: 503-512.
    [33]Cox DA, Conforti L, Sperelakis N, Matlib MA. Selectivity of inhibition of Na+-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-3715.J. Cardiovasc Pharmacol 1993; 21: 595–599.
    [34] Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling.J.Int J Biochem Cell Biol. 2009 Oct; 41(10): 1957-71.
    [35] Masafumi Yano, Kaoru Ono, Tomoko Ohkusa, Masae Suetsugu, BS; Masateru Kohno, Takayuki Hisaoka, Shigeki Kobayashi, Yuji Hisamatsu, Takeshi Yamamoto, Michihiro Kohno, Naoya Noguchi, Shin Takasawa, Hiroshi Okamoto, Masunori Matsuzaki. Altered Stoichiometry of FKBP12.6 Versus Ryanodine Receptor as a Cause of Abnormal Ca2+ Leak Through Ryanodine Receptor in Heart Failure.J.Circulation,2000,102:1231-2136.
    [36]Thommas R.Sharron, Donald M Bers.Integrated Ca2+ management in cardiac myocytes.J.Ann N Y Acad Sci,2004,1015:28-38.
    [37] Tim Seidler, Christopher M. Loughrey, Darya Zibrova, Sarah Kettlewell, Nils Teucher, Harald K?gler, Gerd Hasenfuss and Godfrey L. Smith. Overexpression of FK-506 Binding Protein 12.0 Modulates ExcitationContraction Coupling in Adult Rabbit Ventricular Cardiomyocytes.J. Circ. Res. 2007,101: 1020-1029.
    [38] Takeshi Yamamoto, Masafumi Yano, XiaoJuan Xu, Hitoshi Uchinoumi, Hiroki Tateishi, Mamoru Mochizuki, Tetsuro Oda, Shigeki Kobayashi, Noriaki Ikemoto, Masunori Matsuzaki. Identification of Target Domains of the Cardiac Ryanodine Receptor to Correct Channel Disorder in Failing Hearts.J.Circulation.2008,117:762-772.
    [39] Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. J.Cell. 2000,101: 365–376.
    [40] Ulrich Schmidt, Roger J. Hajjar, Catherine S. Kim, Djamel Lebeche, Angelia A. Doye, Judith K. Gwathmey.Human heart failure: cAMP stimulation of SR Ca2+-ATPase activity and phosphorylation level of phospholamban.J.Am J Physiol,1999,277:H474-480.
    [41]Valentina Lissandron, Manuela Zaccolo.Compartmentalized cAMP/PKA signalling regulates cardiac excitation-contraction coupling coupling.J.Journal of Muscle Research and Cell Motility,2006,27(5-7): 399-403.
    [42] Eisner DA, Kashimura T, O’Neill SC, Venetucci LA, Trafford AW.What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis.J.J Mol Cell Cardiol, 2009,46: 474–481.
    [43] Wei Wang, Xander H. T.Wehrens. Stress synchronizes calcium release and promotes SR calcium leak. J Physiol. 2010,588(3): 391-392.
    [44] Fatt P, Katz B.The electrical properties of crustacean muscle fibres.J.Physiol.1953,120:171-204.
    [45] Lehnart SE,Wehrens XH,Marks AR.Calstabin deficiency,ryanodine receptors and sudden cardiac death.J.Biochem Biophys Res Commun,2004,322(4) :1267-1279.
    [46] Lothar A. Blatter, Jens Kocksk?mper, Katherine A. Sheehan, Aleksey V. Zima, J?rg Hüser and Stephen L. Lipsius. Local calcium gradients during excitation–contraction coupling and alternans in atrial myocytes. J.J Physiol, 2003, 546(1): 19–31.
    [47] Hatem SN, Benardeau A, Rucker-Martin C, Marty I, De Chamisso P, Villaz M , Mercardier J-J.Different compartments of sarcoplasmic reticulum participate in the excitation-contraction coupling process in human atrial myocytes.J. Circ Res,1997, 80: 345–353.
    [48] Trafford AW, Diaz ME, Eisner DA. Coordinated control of cell Ca2+ loading and triggered release from the sarcoplasmic reticulum underlies the rapid inotropic response to increased L-type Ca2+ current.J.Circ Res 2001,88:195–201.
    [49] Jiang MT, Lokuta AJ, Farrell EF, Wolff MR, Haworth RA, Valdivia HH. Abnormal Ca2+ release, but normal ryanodine receptors, in canine and human heart failure.J. Circ Res, 2002,91: 1015–1022.
    [50] Thu le T, Ahn JR, Woo SH.Inhibition of L-type Ca2+ channel by mitochondrial Na+–Ca2+ exchange inhibitor CGP-37157 in rat atrial myocytes.J. Eur J Pharmacol. 2006 ,15;552(1-3): 15-9.
    [51] Lipp P, Egger M, Niggli E. Spatial characteristics of sarcoplasmic reticulum Ca2+ release events triggered by L-type Ca2+ current and Na+ current in guinea-pig cardiac myocytes.J. JPhysiol 2002,542: 383–393.
    [52] Xun Ai, Jerry W. Curran, Thomas R. Shannon, Donald M. Bers and Steven M. Pogwizd. Ca2+/Calmodulin–Dependent Protein Kinase Modulates Cardiac Ryanodine Receptor Phosphory- -lation and Sarcoplasmic Reticulum Ca2+ Leak in Heart Failure.J.Circ. Res,2005,97:1314-1322.
    [53] Nakamura R, Egashira K, Machida Y, Hayashidani S, Takeya M, Utsumi H, Tsutsui H, Takeshita A. Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation. Circulation. 2002,106: 362–367.
    [54] Chien KR, Ross J Jr, Hoshijima M. Calcium and heart failure: the cycle game.J.Nat Med. 2003,9: 508–509.
    [1]Hobbs RE.Guidelines for the diagnosis and management of heart failure. Am J Ther. 2004,11(6): 467-72.
    [2] Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS. Long-term trends in the incidence of and survival with heart failure.N Engl J Med. 2002,347(18):1397-402.
    [3] Faiez Zannad, Serge Briancon, Yves Juilliere, Paul-Michel Mertes, Jean-Pierre Villemot, Fran?ois Alla, Jean-Marc Virion, and the EPICAL Investigators. Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: the EPICAL study. J Am Coll Cardiol.1999; 33:734-742.
    [4] Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D'Agostino RB, Kannel WB, Murabito JM, Vasan RS, Benjamin EJ, Levy D; Framingham Heart Study. Lifetime risk for developing congestive heart failure:the Framingham Heart Study.Circulation. 2002,106(24):3068-72.
    [5] Adams KF Jr. New epidemiologic perspectives concerning mild-to-moderate heart failure. Am J Med. 2001 May 7;110 Suppl 7A:6S-13S.
    [6] Eisner DA, Choi HS, Diaz ME, O’Neill SC, Trafford AW. Integrative analysis of calcium cycling in cardiac muscle.Circ Res. 2000,87: 1087–94.
    [7] Bers DM. Cardiac excitation-contraction coupling.Nature. 2002;415:198–205.
    [8] MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003,4: 566–77.
    [9] Satoh H, Blatter LA and Bers DM. Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am J Physiol.199,272: H657-668.
    [10] Hermann HP, Pieske B, Schwarzmuller E, Keul J, Just H and Hasenfuss G. Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study. Lancet. 1999,353: 1321-1323.
    [11] Belevych A, Kubalova Z, Terentyev D, Hamlin RL, Carnes CA and Gyorke S. Enhanced ryanodine receptor-mediated calcium leak determines reduced sarcoplasmic reticulum calcium content in chronic canine heart failure.Biophys J.2007,93: 4083-4092.
    [12] Marx, S.O.,Reiken, S.,Hisamatsu, Y., Jayaraman, T., Burkhoff,D.,Rosemblit, N. & Marks, A. R. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor):defective regulation in failing hearts.Cell.2000,101, 365–376.
    [13] Yano M, Ono K, Ohkusa T, Suetsugu M, Kohno M, Hisaoka T, Kobayashi S, Hisamatsu Y, Yamamoto T, Kohno M, Noguchi N, Takasawa S, Okamoto H, Matsuzaki M. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca2+ leak through ryanodine receptor in heart failure.Circulation. 2000 ;102(17): 2131–2136.
    [14] Xu L, Mann G, Meissner G. Regulation of cardiac Ca2+ release channel (Ryanodinereceptor) by Ca2+ ,H+ ,Mg2+ , and adenine nucleotides under normal and simulated ischemic conditions. Circ Res.1996;79:1100–9.
    [15] P. James, M. Inui, M. Tada, M. Chiesi, E. Carafoli. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature.1989.342, 90-92.
    [16] Barnabas Gellen, María Fernández-Velasco, Fran?ois Briec, Laurent Vinet, Khai LeQuang, Patricia Rouet-Benzineb, Jean-Pierre Bénitah, Mylène Pezet, Gael Palais, Noémie Pellegrin, Andy Zhang, Romain Perrier, Brigitte Escoubet, Xavier Marniquet, Sylvain Richard, Fréderic Jaisser, Ana María Gómez, Flavien Charpentier, Jean-Jacques Mercadier. Conditional FKBP12.6 Overexpression in Mouse Cardiac Myocytes Prevents Triggered Ventricular Tachycardia Through Specific Alterations in Excitation- Contraction Coupling.Circulation.2008;117: 1778-1786.
    [17] Ilona Bodi, Gabor Mikala, Sheryl E. Koch, Shahab A. Akhter, and Arnold Schwartz. The L-type calcium channel in the heart: the beat goes on. J. Clin. Invest.2005,115:3306–3317.
    [18] Hasenfuss G, Schillinger W, Lehnart SE, Preuss M, Pieske B, Maier LS,Prestle J, Minami K, Just H. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failinghuman myocardium. Circulation.1999;99:641–648.
    [19] Berlin JR, Bassani JWM, Bers DM. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J.1994;67: 1775–87.
    [20] Trafford AW, Díaz ME, Eisner DA. A novel, rapid and reversible method to measure Ca2+ buffering and timecourse of total sarcoplasmic reticulum Ca2+ content in cardiac ventricular myocytes.P?ügers Arch.1999;437: 501–3.
    [21] Isenberg G, Han S, Schiefer A,Wendt-Gallitelli M. Changes inmitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res. 1993;27: 1800–9.
    [22] Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di LF, et al. Beat-to-beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J. 2001;20: 4998–5007.
    [23] Lahat, H., Pras, E., Olender, T., Avidan, N., Ben-Asher, E., Man, O., Levy-Nissenbaum, E., Khoury, A., Lorber, A., Goldman, B., Lancet D & Eldar M. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 2001,69 : 1378-1384.
    [24]Postma, A. V., Denjoy, I., Hoorntje, T. M., Lupoglazoff, J.-M., Da Costa, A., Sebillon, P., Mannens, M. M. A. M., Wilde, A. A. M. & Guicheney, P. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 2002,91: e21-e26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700