用户名: 密码: 验证码:
肝癌局部免疫微环境状态以及PEBP1分子表达影响肝癌复发转移的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Characteristics of Tumor Immune Microenvironment and PEBP1 Expression in Relation to the Prognosis of Hepatocellular Carcinoma
  • 作者:徐永锋
  • 论文级别:博士
  • 学科专业名称:外科学
  • 学位年度:2010
  • 导师:樊嘉 ; 邱双健
  • 学科代码:100210
  • 学位授予单位:复旦大学
  • 论文提交日期:2010-04-01
摘要
肝细胞肝癌是最常见的恶性肿瘤之一,在世界范围内肝癌是第六位的常见肿瘤,在肿瘤相关死亡率中排第三位。我国是肝癌的高发国家之一,约占全球肝癌病例一半以上。肝癌的疾病过程进展迅速、具有极高的复发转移倾向。虽然在肝癌的基础与临床研究中已经取得了长足的进展,然而肝癌总体疗效仍然不佳。既往的肝癌研究侧重于研究肝癌本身的生物学行为,忽视了肝癌演进过程中肝癌微环境中其他非肿瘤细胞作用。近年来逐渐重视从微环境与肝癌相互作用的角度进行了研究,以试图全面、深刻认识肝癌发生发展和转移复发的内在机制。
     本研究的主要内容从两方面入手,一、从影响肿瘤发生发展的外部原因,详细研究了肝癌局部微环境的免疫状态,发现肿瘤局部微环境中免疫细胞表型以抑制性表型为主,并且影响着肝癌复发转移。二、从肿瘤内在疾病基础即基因的改变对复发转移的影响。我们研究了在肝癌发生发展以及治疗中具有重要作用的Raf/MEK/ERK信号通路上游分子PEBP1,发现了PEBP1在肝癌中的异常表达与术后复发转移密切相关。最后我们通过联合分析,发现肿瘤局部免疫状态以及PEBP1的表达共同影响了肝癌进展,并且提示PEBP1除了具有影响肝癌内在的侵袭转移潜能外,可能本身也参与了肿瘤的免疫逃避机制。
     本研究旨在探索免疫细胞在肝癌患者体内不同的微环境状态下(外周血循环、癌旁肝脏和肝癌病灶局部微环境)的免疫细胞免疫表型与分布的差异。主要侧重分析了在机体抗免疫功能中发挥着重要作用的CD8效应性T细胞,以及肿瘤免疫中占主要地位的调节性T细胞。同时我们也分析了其他相关免疫细胞CD4辅助性T细胞、γδT以及NKT及NK细胞等。
     首先我们通过酶消化法以及Percoll梯度离心法,建立稳定的获取组织内浸润淋巴细胞分离方法。借助于流式细胞仪,配对比较分析了三处不同来源的免疫的表型与分布差异。
     结果我们发现,在肝癌外周血循环、癌旁肝脏和肝癌病灶局部的三处不同微环境中,免疫细胞的表型与分布是截然不同的,体现了不同的免疫功能状态。具体为:1.CD8效应性T细胞的分布,肝癌病灶内与外周血循环中的比例均显著低于肝旁肝脏组织。同时我们还发现了相对于健康对照者,肝癌患者CD8效应性T细胞共抑制分子BTLA增加,在成熟活化的记忆效应T细胞阶段时表达呈显著上调,提示CD8细胞在肝癌患者体内功能上是受抑制的。2.肝癌患者外周CD4+CD25+Treg显著高于健康对照者。在肝癌患者体内,肝癌局部微环境中的CD4+CD25+调节性T细胞显著高于外周和癌旁微环境,并且FoxP3的阳性表达率以及表达强度均显著高于外周和癌旁肝脏。
     另外我们还发现了CD4辅助性T细胞,与CD8T细胞分布情况截然相反,其在癌旁肝脏内分布最低,而外周血和肝癌病灶内均有较高的分布比例。固有免疫78T细胞在肿瘤病灶内比例下调。
     本实验在离体活细胞水平,发现了在肝癌患者体内,肿瘤局部微环境的免疫状态是免疫抑制表型为主的,包括过继免疫细胞CD8细胞减少,并且在成熟活化阶段明显受到抑制,而免疫抑制性Treg则在肿瘤局部显著增加,同时固有免疫γδT细胞的减少进一步加重了肿瘤局部微环境的免疫状态。
     在本研究中,我们对大样本的临床病例,通过组织芯片进一步研究肝癌的局部微环境免疫状态,以及对肝癌复发转移的影响,并且通过体外共培养实验初步探讨了Treg对肝癌侵袭能力的影响。
     首先我们通过免疫组化的方法,在组织芯片上研究了240根治性肝癌切除标本,发现肝癌肿瘤局部CD8+效应性T细胞显著低于癌旁微环境,而FoxP3+Treg在肿瘤局部浸润显著高于癌旁微环境。以CD8/Treg比值代表局部免疫状态,单因素与多因素生存分析表明CD8/Treg比值是肝癌术后复发与总生存的独立危险因素。同时我们发现Treg浸润程度与肝癌的恶性侵袭特征(血管侵犯、分化程度和肿瘤直径)显著相关,提示Treg可能具有促进肝癌侵袭潜能的作用。进一步通过Treg与肝癌细胞株体外共培养实验,证实Treg能在体外促进肝癌细胞的侵袭能力。
     本实验在免疫组化水平证明了肝癌的局部微环境状态以免疫抑制表型为主,即在肝癌局部CD8效应性T细胞浸润减少而Treg浸润显著增加。肝癌局部的免疫状态(CD8/Treg比值)在肝癌预后的独立危险因素。同时我们也证明了Treg能在体外促进肝癌细胞的侵袭能力。
     PEBP1是Raf蛋白抑制剂,调节包括Raf/MEK/ERK在内的多种信号通路。PEBP1能抑制肿瘤的侵袭转移,并且在肿瘤免疫监视中发挥重要作用。
     本研究通过免疫组化和实时定量PCR法,检测了240例原发性肝癌病例中PEBP1的蛋白和基因表达水平。发现PEBP1无论是蛋白水平还是基因水平在肿瘤内表达显著下调,并且下调的PEBP1与肝癌的侵袭性病理特征相关。通过单因素和多因素生存分析,发现低表达的PEBP1(无论是蛋白水平还是基因水平)是肝癌术后不良预后指标。我们的结论在另外一组403例肝癌病例中进一步得到验证。通过与肝癌局部免疫状态的联合分析,我们发现PEBP1与CD8/Treg比值,都是肝癌预后的独立指标,并且肝癌PEBP1的表达差异影响了CD8/Treg预后的价值。通过Western blot实验,我们发现肝癌组织中PEBP1表达下降,与Raf/MEK/ERK信号异常活化显著相关。
     我们的研究发现PEBP1在肝癌内表达显著下降,是肝癌不良预后的预测指标。肝癌中的PEBP1的低表达不仅与肿瘤的恶性侵袭能力相关,我们的研究也提示PEBP1也参与了肿瘤免疫逃避的机制。肝癌进展的过程受到肿瘤细胞本身的基因异常以及局部微环境状态的共同影响。
The immune system can both promote tumor progression or mediated tumor rejection, as a balance between pro-tumor and antitumor immunity. Tumor microenvironment plays an important role in the progression of tumor. Presumably, the local tumor immune microenvironment polarizes host immune response toward a specific phenotype, in favoring or suppressing tumor progression. However, the exact local immune status is unclear in hepatocellular carcinoma.
     For comprehensive immune characterization, it is also important to investigate T cells from diseased organs/tissues. We compared the immune status of different local microenvironments (peripheral circulation, peritumoral microenvironment and intratumoral microenvironment) in hepatocellular carcinoma. The present study was focused on analyzing the immunophenotypic of tumor infiltrating lymphocytes.
     We found the number of CD8+ T cells was significantly decreased in intratumoral microenvironment, compared with peripheral circulation and peritumoral microenvironment. We also found CD8+T cell of HCC patients expressed high level of the B and T lymphocyte attenuator (BTLA), a newly discovered coinhibitory molecule, when compared with healthy donors, indicating impaired function of CD8+T cell in HCC. Notably, we also found the enrichment of CD4+CD25+ regulatory T cells (Treg) in intratumoral microenvironment. Moreover, the highest expression level and intensity level of FoxP3 presented in CD4+CD25+ Treg in intratumoral microenvironment. We also found the inherent immunity cell of y8T to be downregulated in intratumoral microenvironment.
     Our results indicated that the tumor microenvironment of hepatocellular carcinoma is featured by the immunosuppressive status:
     Tumor immune microenvironment plays an important role in the progression of tumor. We investigated whether immune status of tumor microenvironment correlated with prognosis of hepatocellular carcinoma.
     Immunohistochemical staining of CD8 and Foxp3 was conducted in a set of tissue microarrays which based on a cohort of 240 hepatocellular carcinoma patients after curative resection. We used the ratio of CD8/Treg as a comprehensive index to represent the immune status of intratumoral microenvironment. Survival analysis was performed by univariate and multivariate analysis.
     Based on immunohistochemisty, we found that the number of CD8+ infiltrating cells was decreased and FoxP3+ infiltrating cells increased in intratumoral microenvironment, when compared with peritumoral microenvironment. The number of FoxP3+Treg was significantly associated with invasive characteristics (such as vascular invasion, poor differentiation and large size). Multivariate analysis indicated the ratio of CD8/Treg was an independent predictor for time to recurrence and overall survival time. In vitro co-culture study, we found Treg had the ability to promote the invasive potential HCC tumor cells.
     In conclusion, we found the immunosuppressive status of intratumoral microenvironment was an adverse index for HCC prognosis. Treg had the ability to promote the invasive potential HCC tumor cells which beyond its immunopotency.
     Phosphatidylethanolamine binding protein 1 (PEBP1) plays a pivotal role in cancer by regulating multiple cellular signaling processes, potentiating immune-mediated apoptosis and suppressing metastasis in animal models. We examined whether RKIP expression in hepatocellular carcinoma (HCC) correlated with the risk of recurrence and survival after resection.
     A randomly selected cohort of 240 Chinese HCC patients, predominantly hepatitis B-related, formed the basis of the study. PEBP1 expression levels were evaluated by immunohistochemistry and real-time reverse-transcriptase PCR. Immunostaining results of CD8+ cytotoxic to Foxp3+ regulatory T cells (Tregs) ratio was also evaluated as a comprehensive immune index in relation to PEBP1 expression. Survival analysis was performed by univariate and multivariate analysis. The results were further validated in an independent series of 403 patients. The relevance of RKIP to phospho-ERK was determined by Western blot analysis on clinical samples and HCC cell lines.
     We found that PEBP1 prevalently down-regulated in HCC and was significantly associated with tumor aggressiveness. Both PEBP1 mRNA and protein levels were adverse predictors for time to recurrence and patient overall survival time. The prognostic value of PEBP1 was then confirmed in the validation cohort. In addition, Western blot suggested the loss of PEBP1 led to hyperactivity of MAPK signaling. Subgroup analysis indicated that low level of PEBP1 expression in HCC aggravated the unfavorable prognosis of low intratumoral CD8+/Tregs ratio, while high level of PEBP1 expression reinforced the favorable prognosis of high intratumoral CD8+/Tregs ratio.
     Our current study indicated that down-regulation of RKIP in HCC was an independent predicator for poor patient outcome, which not only contributed to aggressive tumor behaviors but also may represent a tumor-intrinsic mechanism of active immune escape. The progression of hepatocellular carcinoma is controlled by both the cell-intrinsic mechanism of gene mutation and the cell-extrinsic mechanism of tumor immune microenvironment.
引文
1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001;2:533-543.
    2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002. CA Cancer J Clin 2005;55:74-108.
    3. El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132:2557-2576.
    4. Arias JI, Aller MA, Arias J. The use of inflammation by tumor cells. Cancer 2005; 104:223-228.
    5. Gonda TA, Tu S, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle 2009;8:2005-2013.
    6. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004;5:141-149.
    7. Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE. Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 2006;176:61-67.
    8. Axelrod R, Axelrod DE, Pienta KJ. Evolution of cooperation among tumor cells. Proc Natl Acad Sci U S A 2006; 103:13474-13479.
    9. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006;6:392-401.
    10. Bagley RG, Weber W, Rouleau C, Teicher BA. Pericytes and endothelial precursor cells:cellular interactions and contributions to malignancy. Cancer Res 2005;65:9741-9750.
    11. Lin EY, Pollard JW. Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer 2004;90:2053-2058.
    12. Lin CY, Lin CJ, Chen KH, Wu JC, Huang SH, Wang SM. Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS Lett 2006;580:3042-3050.
    13. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009; 16:91-102.
    14. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R, Jagannath S, et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 2006;203:1859-1865.
    15. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors:a prognostic factor that should not be ignored. Oncogene 2010;29:1093-1102.
    16. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353:2654-2666.
    17. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-1964.
    18. Camus M, Tosolini M, Mlecnik B, Pages F, Kirilovsky A, Berger A, Costes A, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 2009;69:2685-2693.
    19. Taylor RC, Patel A, Panageas KS, Busam KJ, Brady MS. Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol 2007;25:869-875.
    20. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies. J Pathol 2002;196:254-265.
    21. Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 2002;7:177-189.
    22. Fleischmann A, Schlomm T, Kollermann J, Sekulic N, Huland H, Mirlacher M, Sauter G, et al. Immunological microenvironment in prostate cancer:high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 2009;69:976-981.
    23. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 1998;27:407-414.
    24. Parmiani Q Anichini A. T cell infiltration and prognosis in HCC patients. J Hepatol 2006;45:178-181.
    25. Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J, Tang ZY. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2006;132:293-301.
    26. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006; 10:99-111.
    27. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, et al. FOXP3+regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 2007; 13:902-911.
    28. Zitvogel L, Tesniere A, Kroemer G Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006;6:715-727.
    29. So T, Takenoyama M, Mizukami M, Ichiki Y, Sugaya M, Hanagiri T, Sugio K, et al. Haplotype loss of HLA class I antigen as an escape mechanism from immune attack in lung cancer. Cancer Res 2005;65:5945-5952.
    30. Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED. HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res 2005;65:10139-10144.
    3.1. Cai MY, Xu YF, Qiu SJ, Ju MJ, Gao Q, Li YW, Zhang BH, et al. Human leukocyte antigen-G protein expression is an unfavorable prognostic predictor of hepatocellular carcinoma following curative resection. Clin Cancer Res 2009; 15:4686-4693.
    32. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003;9:1269-1274.
    33. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites. J Exp Med 2002; 196:447-457.
    34. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 2002;99:12293-12297.
    35. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, Zhou J, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 2009;15:971-979.
    36. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007;7:139-147.
    37. Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 2009.
    38. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004;4:937-947.
    39. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390.
    40. Thomas MB, Zhu AX. Hepatocellular carcinoma:the need for progress. J Clin Oncol 2005;23:2892-2899.
    41. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, et al. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 1999;401:173-177.
    42. Granovsky AE, Rosner MR. Raf kinase inhibitory protein:a signal transduction modulator and metastasis suppressor. Cell Res 2008; 18:452-457.
    43. Zeng L, Imamoto A, Rosner MR. Raf kinase inhibitory protein (RKIP):a physiological regulator and future therapeutic target. Expert Opin Ther Targets 2008;12:1275-1287.
    44. Spiegelberg BD, Hamm HE. Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr Opin Genet Dev 2007; 17:40-44.
    45. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2004;206:193-199.
    46. Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, et al. RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem 2004;279:17515-17523.
    47. Woods Ignatoski KM, Grewal NK, Markwart SM, Vellaichamy A, Chinnaiyan AM, Yeung K, Ray ME, et al. Loss of Raf kinase inhibitory protein induces radioresistance in prostate cancer. Int J Radiat Oncol Biol Phys 2008;72:153-160.
    48. Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA, Bonavida B. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J Immunol 2007;179:5441-5453.
    49. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer:a novel perspective. Cancer Res 2007;67:1883-1886.
    50. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-274.
    51. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998;58:3491-3494.
    52. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma:clinicopathologic demonstration of antitumor immunity. Cancer Res 2001;61:5132-5136.
    53. Zou W. Regulatory T. cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6:295-307.
    54. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest 2007; 117:1167-1174.
    55. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:1151-1164.
    56. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057-1061.
    57. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330-336.
    58. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445:771-775.
    59. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol 2007;8:457-462.
    60. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005;65:2457-2464.
    61. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007;132:2328-2339.
    62. Yang XH, Yamagiwa S, Ichida T, Matsuda Y, Sugahara S, Watanabe H, Sato Y, et al. Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol 2006;45:254-262.
    63. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007;25:2586-2593.
    64. Sasaki A, Tanaka F, Mimori K, Inoue H, Kai S, Shibata K, Ohta M, et al. Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma:Eur J Surg Oncol 2008;34:173-179.
    65. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and. a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 2005;102:18538-1-8543.
    66. Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG, van der Burg SH, et al. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio:which variable determines survival of cervical cancer patients? Clin Cancer Res 2008; 14:2028-2035.
    67. Unitt E, Rushbrook SM, Marshall A, Davies S, Gibbs P, Morris LS, Coleman N, et al. Compromised lymphocytes infiltrate hepatocellular carcinoma:the role of T-regulatory cells. Hepatology 2005;41:722-730.
    68. Santin AD, Bellone S, Palmieri M, Bossini B, Roman JJ, Cannon MJ, Bignotti E, et al. Induction of tumor-specific cytotoxicity in tumor infiltrating lymphocytes by HPV16 and HPV18 E7-pulsed autologous dendritic cells in patients with cancer of the uterine cervix. Gynecol Oncol 2003;89:271-280.
    69. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med.2003;348:203-213.
    70. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61:4766-4772.
    71. Gavrieli M, Sedy J, Nelson CA, Murphy KM. BTLA and HVEM cross talk regulates inhibition and costimulation. Adv Immunol 2006;92:157-185.
    72. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 2003;4:670-679.
    73. Paulos CM, June CH. Putting the brakes on BTLA in T cell-mediated cancer immunotherapy. J Clin Invest 2010;120:76-80.
    74. Murphy KM, Nelson CA, Sedy JR. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol 2006;6:671-681.
    75. Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 2010;120:157-167.
    76. Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001;357:539-545.
    77. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005; 115:3623-3633.
    78. Bretscher PA. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci U S A 1999;96:185-190.
    79. Chambers CA, Allison JP. Costimulatory regulation of T cell function. Curr Opin Cell Biol 1999;11:203-210.
    80. Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 2008;224:141-165.
    81. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10:29-37.
    82. Ha SJ, West EE, Araki K, Smith KA, Ahmed R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev 2008;223:317-333.
    83. Liu X, Alexiou M, Martin-Orozco N, Chung Y, Nurieva RI, Ma L, Tian Q, et al. Cutting edge:A critical role of B and T lymphocyte attenuator in peripheral T cell tolerance induction. J Immunol 2009; 182:4516-4520.
    84. Sun Y, Brown NK, Ruddy MJ, Miller ML, Lee Y, Wang Y, Murphy KM, et al. B and T lymphocyte attenuator tempers early infection immunity. J Immunol 2009; 183:1946-1951.
    85. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875-1886.
    86. Yang XR, Xu Y, Shi GM, Fan J, Zhou J, Ji Y, Sun HC, et al. Cytokeratin 10 and cytokeratin 19:predictive markers for poor prognosis in hepatocellular carcinoma patients after curative resection. Clin Cancer.Res 2008;14:3850-3859.
    87. Shah SA, Cleary SP, Wei AC, Yang I, Taylor BR, Hemming AW, Langer B, et al. Recurrence after liver resection for hepatocellular carcinoma:risk factors, treatment, and outcomes. Surgery 2007;141:330-339.
    88. Sun HC, Zhang W, Qin LX, Zhang BH, Ye QH, Wang L, Ren N, et al. Positive serum hepatitis B e antigen is associated with higher risk of early recurrence and poorer survival in patients after curative resection of hepatitis B-related hepatocellular carcinoma. J Hepatol 2007;47:684-690.
    89. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, et al. Prevalence of Regulatory T Cells Is Increased in Peripheral Blood and Tumor Microenvironment of Patients with Pancreas or Breast Adenocarcinoma. The Journal of Immunology 2002; 169:2756-2761.
    90. Curiel TJ, Coukos G, Zou L, Alvarez X; Cheng P, Mottram P, Evdemon-Hogan M, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine 2004;10:942-949.
    91. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions:Clin Cancer Res 2006;12:5423-5434.
    92. Molling JW, de Gruijl TD, Glim J, Moreno M, Rozendaal L, Meijer CJ, van den Eertwegh AJ, et al. CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 2007;121:1749-1755.
    93. Beissert S, Loser K. Molecular and cellular mechanisms of photocarcinogenesis. Photochem Photobiol 2008;84:29-34.
    94. Ohara M, Yamaguchi Y, Matsuura K, Murakami S, Arihiro K, Okada M. Possible involvement of regulatory T cells in tumor onset and progression in primary breast cancer. Cancer Immunol Immunother 2009;58:441-447.
    95. Granville CA, Memmott RM, Balogh A, Mariotti J, Kawabata S, Han W, Lopiccolo J, et al. A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS ONE 2009;4:e5061.
    96. Condeelis J, Pollard JW. Macrophages:obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124:263-266.
    97. Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway:clinical implications. Clin Cancer Res 2007;13:1362-1366.
    98. Li WC, Ye SL, Sun RX, Liu YK, Tang ZY, Kim Y, Karras JG, et al.Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res 2006;12:7140-7148.
    99. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    100. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004;22:329-360.
    101. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991-998.
    102. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21:137-148.
    103. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting:the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006;90:1-50.
    104. Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation:independent or interdependent processes? Curr Opin Immunol 2007; 19:203-208.
    105. Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D, Keller PJ, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate 2006;66:248-256.
    106. Al-Mulla F, Hagan S, Behbehani AI, Bitar MS, George SS, Going JJ, Garcia JJ, et al. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol 2006;24:5672-5679.
    107. Zlobec I, Baker K, Minoo P, Jass JR, Terracciano L, Lugli A. Node-negative colorectal cancer at high risk of distant metastasis identified by combined analysis of lymph node status, vascular invasion, and Raf-1 kinase inhibitor protein expression. Clin Cancer Res 2008;14:143-148.
    108. Chatterjee D, Sabo E, Tavares R, Resnick MB. Inverse association between Raf Kinase Inhibitory Protein and signal transducers and activators of transcription 3 expression in gastric adenocarcinoma patients:implications for clinical outcome. Clin Cancer Res 2008;14:2994-3001.
    109. Houben R, Vetter-Kauczok CS, Ortmann S, Rapp UR, Broecker EB, Becker JC. Phospho-ERK staining is a poor indicator of the mutational status of BRAF and NRAS in human melanoma. J Invest Dermatol 2008;128:2003-2012.
    110.Lee HC, Tian B, Sedivy JM, Wands JR, Kim M. Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology 2006;131:1208-1217.
    111.Schuierer MM, Bataille F, Weiss TS, Hellerbrand C, Bosserhoff AK. Raf kinase inhibitor protein is downregulated in hepatocellular carcinoma. Oncol Rep 2006; 16:451-456.
    112.Tian J, Tang ZY, Ye SL, Liu YK, Lin ZY, Chen J, Xue Q. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer 1999;81:814-821.
    113.Li Y, Tang ZY, Ye SL, Liu YK, Chen J, Xue Q, Gao DM, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J Gastroenterol 2001;7:630-636.
    114.Li Y, Tang Y, Ye L, Liu B, Liu K, Chen J, Xue Q. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J Cancer Res Clin Oncol 2003;129:43-51.
    115.Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, Wu WZ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 2008;26:2707-2716.
    116.Camp RL, Dolled-Filhart M, Rimm DL. X-tile:a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 2004;10:7252-7259.
    117.McCabe A, Dolled-Filhart M, Camp RL, Rimm DL. Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst 2005;97:1808-1815.
    118.Dolled-Filhart M, McCabe A, Giltnane J, Cregger M, Camp RL, Rimm DL. Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res 2006;66:5487-5494.
    119.Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, Gilks CB, et al. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis:a study of 4,444 cases. Breast Cancer Res Treat 2008;107:249-257.
    120. Ravi R, Bedi GC, Engstrom LW, Zeng Q, Mookerjee B, Gelinas C, Fuchs EJ, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001;3:409-416.
    121. Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 2001;276:16484-16490.
    122. Eves EM, Shapiro P, Naik K, Klein UR, Trakul N, Rosner MR. Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol Cell 2006;23:561-574.
    123. Trakul N, Menard RE, Schade GR, Qian Z, Rosner MR. Raf kinase inhibitory protein regulates Raf-1 but not B-Raf kinase activation. J Biol Chem 2005;280:24931-24940.
    124. Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z, Keller ET. Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst 2003;95:878-889.
    125. Yeung K, Janosch P, McFerran B, Rose DW, Mischak H, Sedivy JM, Kolch W. Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol 2000;20:3079-3085.
    126. Schmitz KJ, Wohlschlaeger J, Lang H, Sotiropoulos GC, Malago M, Steveling K, Reis H, et al. Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol 2008;48:83-90.
    127. Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, De Greve J, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006;24:4293-4300.
    128. Bonavida B. Rituximab-induced inhibition of antiapoptotic cell survival pathways:implications in chemo/immunoresistance, rituximab unresponsiveness, prognostic and novel therapeutic interventions. Oncogene 2007;26:3629-3636.
    129. Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B. Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res 2009;69:8376-8385.
    1. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009;9:239-252.
    2. Muller AJ, Scherle PA. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat Rev Cancer 2006;6:613-625.
    3. Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007;7:139-147.
    4. Axelrod R., Axelrod DE, Pienta KJ. Evolution of cooperation among tumor cells. Proc Natl Acad Sci U S A 2006;103:13474-13479.
    5. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006;6:392-401.
    6. Bagley RG, Weber W, Rouleau C, Teicher BA. Pericytes and endothelial precursor cells:cellular interactions and contributions to malignancy. Cancer Res 2005;65:9741-9750.
    7. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006;6:715-727.
    8. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005;353:2654-2666.
    9. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, et al. Type, density, and location of immune cells within human colorectal tumors predict-clinical outcome. Science 2006;313:1960-1964.
    10. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer:a novel perspective. Cancer Res 2007;67:1883-1886.
    11. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 2005;115:3623-3633.
    12. Condeelis J, Pollard JW. Macrophages:obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006;124:263-266.
    13. Kukreja A, Hutchinson A, Dhodapkar K, Mazumder A, Vesole D, Angitapalli R, Jagannath S, et al. Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 2006;203:1859-1865.
    14.邱双健,叶胜龙,,汤钊猷.肝脏免疫与肝癌转移复发.见:汤钊猷主编.肝癌转移复发的基础与临床.第1版上海:上海科技教育出版社2003:191-204.
    15. Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow? Lancet 2001;357:539-545.
    16. Kornstein MJ, Brooks JS, Elder DE. Immunoperoxidase localization of lymphocyte subsets in the host response to melanoma and nevi. Cancer Res 1983;43:2749-2753.
    17. Baxevanis CN, Dedoussis GV, Papadopoulos NG, Missitzis I, Stathopoulos GP, Papamichail M. Tumor specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer 1994;74:1275-1282.
    18. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 1998;58:3491-3494.
    19. Stewart TH, Tsai SC. The possible role of stromal cell stimulation in worsening the prognosis of a subset of patients with breast cancer. Clin Exp Metastasis 1993;11:295-305.
    20. Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M, Suzuki Y, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma:clinicopathologic demonstration of antitumor immunity. Cancer Res 2001;61:5132-5136.
    21. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors:a prognostic factor that should not be ignored. Oncogene 2010;29:1093-1102.
    22. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004;4:71-78.
    23. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002;23:549-555.
    24. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13:453-461.
    25. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies. J Pathol 2002;196:254-265.
    26. Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 2002;7:177-189.
    27. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer:recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006;16:53-65.
    28. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF. Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 2007;27:334-348.
    29. Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol 2003;15:308-314.
    30. Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells:current challenges and future directions. Adv Cancer Res 2005;93:189-234.
    31. Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-betal secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 2004; 172:7335-7340.
    32. Coronella JA, Spier C, Welch M, Trevor KT, Stopeck AT, Villar H, Hersh EM. Antigen-driven oligoclonal expansion of tumor-infiltrating B cells in infiltrating ductal carcinoma of the breast. J Immunol 2002; 169:1829-1836.
    33. Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Selective growth, in vitro and in vivo, of individual T cell clones from tumor-infiltrating lymphocytes obtained from patients with melanoma. J Immunol 2004; 173:7622-7629.
    34. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-274.
    35. Whiteside TL. Tumor-infiltrating lymphocytes as antitumor effector cells. Biotherapy 1992;5:47-61.
    36. Sheu BC, Hsu SM, Ho HN, Lin RH, Torng PL, Huang SC. Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with the progression of human cervical carcinoma. Cancer 1999;86:1537-1543.
    37. Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL. Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res 2002;8:3137-3145.
    38. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006;6:295-307.
    39. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest 2007;117:1167-1174.
    40. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:1151-1164.
    41. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057-1061.
    42. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330-336.
    43. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445:771-775.
    44. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol 2007;8:457-462.
    45. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389:737-742.
    46. Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 2009; 10:689-695.
    47. Rifa'i M, Kawamoto Y, Nakashima I, Suzuki H. Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 2004;200:1123-1134.
    48. Wei S, Kryczek I, Zou L, Daniel B, Cheng P, Mottram P, Curiel T, et al. Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma. Cancer Res 2005;65:5020-5026.
    49. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, et al. CD 127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells. J Exp Med 2006;203:1701-1711.
    50. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21:137-148.
    51. Curiel TJ. Regulatory T cells and treatment of cancer. Curr Opin Immunol 2008;20:241-246.
    52. Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 2006; 16:115-123.
    53. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos Q Rubin SC, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61:4766-4772.
    54. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 2002; 169:2756-2761.
    55. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 2003;9:4404-4408.
    56. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003;9:606-612.
    57. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006;12:5423-5434.
    58. Somasundaram R, Jacob L, Swoboda R, Caputo L, Song H, Basak S, Monos D, et al. Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 2002;62:5267-5272.
    59. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, Vickers MA. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 2004;103:1755-1762.
    60. Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 2004;173:1444-1453.
    61. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10:942-949.
    62. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005;65:2457-2464.
    63. Yang XH, Yamagiwa S, Ichida T, Matsuda Y, Sugahara S, Watanabe H, Sato Y, et al. Increase of CD4+ CD25+ regulatory T-cells in the liver of patients with hepatocellular carcinoma. J Hepatol 2006;45:254-262.
    64. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007;25:2586-2593.
    65. Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, Zhang Z, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007;132:2328-2339.
    66. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 2007;13:902-911.
    67. Shevach EM. CD4+ CD25+ suppressor T cells:more questions than answers. Nat Rev Immunol 2002;2:389-400.
    68. Hawrylowicz CM, O'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 2005;5:271-283.
    69. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005;202:1075-1085.
    70. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004;21:589-601.
    71. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 2005;174:1783-1786.
    72. Pittet MJ, Mempel TR. Regulation of T-cell migration and effector functions: insights from in vivo imaging studies. Immunol Rev 2008;221:107-129.
    73. Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, von Boehmer H, von Andrian UH. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 2006;25:129-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700