用户名: 密码: 验证码:
日冕物质抛射伴生现象的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日冕物质抛射(Coronal Mass Ejections,简称CME)是太阳大气和太阳系中最剧烈、尺度最大的能量释放和活动现象。当CME发生时,在很短时间内,将携带的巨大能量和物质,大量的高能射线和高能粒子抛到行星际空间,对空间天气造成强烈扰动,给我们完全依赖的各种现代化技术,如卫星、通讯、遥感、电力等造成严重的影响。所以CME这一研究课题与人们的日常生活息息相关。CME是日冕大尺度磁场平衡遭到破坏的产物,当这种爆发产生时,往往会伴随着很多观测现象,如莫尔顿波、EIT波、暗区(dimming)以及各型射电暴等。这些伴生现象在很大程度上丰富了日冕物质抛射的研究内容,对它们的研究为我们更全面、更深入地理解日冕物质抛射提供了很好的切入点。
     在对CME的研究过程中,人们一直对CME的一些伴生现象抱有极大的兴趣,因为对它们的了解为我们最终完整地理解CME提供了很多线索。本文利用目前被天文领域广泛应用的ZEUS程序,从数值模拟的角度对CME的一些伴生现象,主要是针对莫尔顿波、EIT波以及暗区,做了进一步的研究与探讨。我们在两种不同密度分布的背景场中,对上述伴生现象,做了较系统和深入的数值研究。在研究莫尔顿波和EIT波的过程中,我们从另外一个角度,即速度的散度和速度的旋度对它们分别做了多方位的数值实验。我们发现在两种不同的背景场中,当磁绳以足够快的运动速度积压前方的气体和磁场并使得相关扰动的传播速度最终超过当地的磁声波速度时,都会在磁绳的顶部形成一个弓激波,并且紧贴着磁绳的上部产生一个慢激波,以及在磁绳的两个侧后方的速度漩涡。随着演化时间不断地向前推进,所有这些扰动都逐渐地向外传播。快模激波和慢激波及速度漩涡传播的高度层次不同,快模波传播到达了日面,而慢模波及速度漩涡的传播则只能到达日面以上日冕当中的某个层次。另外,我们还对它们的速度大小以及当地的阿尔芬速度大小做了进一步的研究。通过这些数值结果,我们认为:快模波(即上面提到的弓激波)传播到色球层时,就会产生莫尔顿波,而慢模波及速度漩涡的相互耦合对应于日冕中的EIT波,并且弓激波也是产生Ⅱ型射电暴的源。同时,在我们的模拟结果中还发现在CME上升时,还伴有暗区出现,通过我们进一步的模拟证实了暗区是由于密度的损失引起的。
     另外,我们还数值研究了,在不同密度分布的背景场中,磁通量绳的动力学演化过程。并对这两种情况下的磁通量绳动力学演化过程做了进一步的比较和分析。而且把我们所取得的数值结果与已有的理论结果做了比较。
     在本文的最后,我们对曾经调研的另一个天体物理磁流体动力学程序(CANS:Coordinated Astronomical Numerical Software)中所涉及的一个算法做了进一步的考察,并对其基本形式的算法做了修正和数值实验,得到了较理想的结果。
Solar coronal mass ejections (CMEs) are the largest known solar eruptive activity in spatial scale and also in energetics and geoeffectiveness. In such a process, a great deal of magnetized plasma and energy can be ejected into the outermost corona and interplanetary space within a short time, which can cause the strong interplanetary disturbances and effect satellite operation, aviation power, human space exploration, communication, navigation and so on. So CMEs are well related to human's lives and production activities. Nonequilibria of the large-scale magnetic fields can cause CMEs. CMEs are associated with many dynamical phenomena, e.g., Moreton waves, EIT waves, dimming and type II radio bursts. These phenomena can help us to study the properties of CMEs.
     Since some dynamical phenomena can help researchers investigate CMEs, these phenomena associated with CMEs attract our interests. In this thesis, MHD processes of CMEs are numerically simulated by using ZEUS code. We adopt MHD numerical experiment to study qualitatively some dynamical phenomena associated with the lift-off of flux rope, such as the Moreton waves, the EIT waves and the dimming in two different backgrounds which have the different plasma density distribution. We use the velocity divergence and vorticity to further discuss and investigate the Moreton waves and the EIT waves. We found that as the flux rope rises rapidly, a fast shock is formed in front of it like a piston when its velocity exceeds the local magnetoacoustic speed, and the slow shock is also formed, which draws near the top of the flux rope, at the same time, the velocity vortices are developed at the backside of the flux rope. The proga-tion of these two shocks arrive the different height. The fast-mode shock arrives the solar surface, while the slow-mode shock and velocity vortices arrive some height above the surface. We also investigate the velocity of these two shocks and the local Alfvénic wave. Analyses show that the joint impact of the slow-mode shock and the vortices is quite likely to account for the EIT waves, when the fast-mode shock sweeps the chromosphere, it produces the Moreton waves. The piston-driven shock is the type II radio bursts. From our results, we also found the dimming with the lift-off flux rope. Our simulation shows the dimming is more likely caused by a loss in density.
     In addition, we investigated the evolutionary features of the magnetic configuration that includes a current-carrying flux rope, which used to model the filament in two different backgrounds. We discussed our results and the reported theoretical results.
     At last, we investigate the algorithm in another code-CANS(Coordinated Astronomical Numerical Software). We modify this algorithm, and provide the new preconditioned methods. From the theoretical proof and numerical experiments, we can conclude that our new preconditioners are more effective to accelerate convergence than the previous methods.
引文
[1]傅竹风,胡友秋,空间等离子体数值模拟,安徽科学技术出版社,1995.
    [2]Langdon A.B.,Implicit plasma simulation,Space Science Review,1985,42,67.
    [3]Matsumoto H.,Omura Y.,Particle simulation of electromagnetic waves and its application to space plasmas,Computer Simulation of Space Plasmas,1985,43.
    [4]Landau L.D.,Lifshitz E.M.,Electrodynamics of continuous media,Perg-amon Press New.York,1960.
    [5]Spitzer L.Jr.,Physics of fully ionized gases,New York Publish,2nd ed.,1962.
    [6]Jackson J.D.,Classical electrodynamics,New York:Wiley,1975.
    [7]许敖敖,唐玉华,宇宙电动力学导论,高等教育出版社,1987.
    [8]Krall N.,Trivelpiece A.,Principle of plasma physics,McGraw Hill,New York,1973,78.
    [9]Kantrowitz A.,Petsheck H.E.,Plasma physics in theory and application,McGraw Hill,New York,1966.
    [10]Gosling J.T.,The solar flare myth,JGR,1993,98,18,937.
    [11]Munro R.H.,Gosling J.T.,Hildner E.et al.,The association of coronal mass ejection transients with other forms of solar activity,Solar Phys.,1979,61,201.
    [12]Hundhausen A.J.,Sawyer C.B.,House L.et al.,Coronal mass ejections observed during the solar maximum mission,JGR,1984,89,2639.
    [13]Howard R.A.,Sheeley N.R.,Michels D.J.et al.,Coronal mass ejections,1979 1981,JGR,1985,90,8173.
    [14]Munro R.H.,Sime D.G.,White-light coronal transients observed from SKYLAB May 1973 to February 1974,Solar Phys.,1985,97,191.
    [15]Illing R.M.,Hundhausen A.J.,Observation of a coronal transient from 1.2to 6 solar radii,JGR,1985,90,275.
    [16]Srivastava N.,Schwenn R.,Stenborg G.,Comparative study of CMEs associated with eruptive prominences,Proc.of SOHO 8 Workshop,ESA,SP-446,1999,621.
    [17]Gopalswamy N.,Mikic Z.,Maia D.et al.,The Pre-CME sun,Space Sci.Rev.,2006,123(1-3),303.
    [18]林元章,太阳物理导论,科学出版社,2000.
    [19]Hildner E.,In Study of traveling interplanetary phenomena,D.Reidel Publ.,Dordrecht,1977,P.3.
    [20]Howard R.A.,Sheeley N.R.,Koomen M.J.et al.,Coronal mass ejections -1979-1981,JGR,1985,90,8173.
    [21]Howard R.A.,Sheeley N.R.,Michels D.J.et al.,The statistical properties of coronal mass ejections during 1979-1981,Adv.Space Res,1984,4,307.
    [22]Gopalwamy N.,Kundu M.R.,ApJ,1992,390,37.
    [23]Jackson B.V.,Imaging of coronal mass ejections by the HELIOS spacecraft,Solar Phys.,1985,100,563.
    [24]Jackson B.V.,Howard R.A.,Webb D.F.,Solar wind eight,edited by Winterhalter D.,Gosling J.T.,Habbal S.R.et al.,New York,1996,P.540.
    [25]Vourlidas A.,Buzasi D.,Howard R.A.et al.,Solar variability:from core to outer frontiers,ESA Publications Division,2002,P.91.
    [26] Gopalswamy N., Coronal Mass Ejections of Solar Cycle 23, JApA, 2006,27, 243.
    
    [27] Webb D. F., Cliver E. W., Crooker N. U. et al., Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms, JGR, 2000, 105,7491.
    
    [28] Gopalswamy N., A global picture of cmes in the inner heliosphere, In the sun and the heliosphere as an integrated system, edited by G. Poletto and S. T. Suess, ISBNl-4020-2830-X(HB), P.201, Kluwer Academic Publishers,2004.
    
    [29] Lin J., Soon W., Baliunas S. L., Theories of solar eruptions: a review, New Astronomy Reviews, 2003, 47, 53L.
    
    [30] Howard R. A., Sheeley R. A., Michels D. J. et al., In the sun and the heliosphere in three dimensions, ASSL, 1986, 123, P.107.
    
    [31] Macqueen R. M., Burkepile J. T., Holzer T. E. et al., Solar coronal brightness changes and mass ejections during solar cycle 22, ApJ, 2001, 549, 1175.
    
    [32] Gopalswamy N., A global picture of CMEs in the inner heliosphere, in The sun and the heliosphere as an integrated system, Kluwer Academic Publishers, 2004, P.201.
    
    [33] Gosling J. T., Hildner E., Macqueen R. M. et al., The speeds of coronal mass ejection events, Solar Phys., 1976, 48, 389.
    
    [34] Hundhausen A. J., Burkepile J. T., Cyr O. C., Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989, JGR, 1994, 99,6543.
    
    [35] Gopalswamy N., Lara A., Yashiro S. et al., Solar variability as an input to the Earth's environment, ESA Publications Division, 2003, P.403.
    
    [36] Chen J., Effects of toroidal forces in current loops embedded in a background plasma, ApJ, 1989, 338, 453.
    [37] Cargill P. J., Chen J., Spicer D. S. et al., Magnetohydrodynamic simulations of the motion of magnetic flux tubes through a magnetized plasma, JGR,1996, 101, 4855.
    
    [38] Burkepile J. T., Complexity of coronal mass ejections in the corona, Spring AGU Meeting 2002, SH22D-06.
    
    [39] Funsten, H. O., Burkepile J. T., Hundhausen A. J. et al., Combined Ulysses solar wind and SOHO coronal observations of several west limb coronal mass ejections, JGR, 1999, 104, 12493.
    
    [40] Chen J., Krall J., Acceleration of coronal mass ejections, JGR, 2003, 108,1410.
    
    [41] Yashiro S., Gopalswamy N., Michalek G. et al., A catalog of white light coronal mass ejections observed by the SOHO spacecraft, JGR, 2004, 109,07105.
    
    [42] Yashiro S., Gopalswamy N., Michalek G. et al., Properties of narrow coronal mass ejections observed with LASCO, Adv. Space Res., 2003, 32(12), 2631.
    
    [43] Howard R. A., Micheis D. J., Sheeley N. R. et al., The observation of a coronal transient directed at Earth, ApJ, 1982, 263, L101.
    
    [44] Cane H. V., Sheeley N. R., Howard R. A., Energetic interplanetary shocks,radio emission, and coronal mass ejections, JGR, 1987, 92, 9869.
    
    [45] Tousey R., Howard R. A., Koomen M. J., The Frequency and Nature of Coronal Transient Events Observed by OSO-7*, BAAS, 1974, 6, 295.
    
    [46] Webb D. F., Howard R. A., The solar cycle variation of coronal mass ejections and the solar wind mass flux, JGR, 1994, 99, 4201.
    
    [47] Cliver E. W., Cyr O. C., Howard R. A. et al., In solar coronal structures,VEDA Publ. Co., Bratislava, 1994, P.83.
    
    [48] Lin J., van Ballegooijen A. A., Catastrophic and non-catastrophic mechanisms for coronal mass ejections, ApJ, 2002, 576, 485.
    [49]Svestka Z.,Varieties of coronal mass ejections and their relation to flares,Space Sci.Rev.,2001,95,135.
    [50]林隽,Soon W.,Baliunas S.,太阳大气中的爆发过程及其理论,科学通报,2002,第47卷,第21期,1601.
    [51]Hundhausen A.J.,Coronal mass ejections,Proc.6th Internat Solar Wind Conf.,1988,181.
    [52]Carrington R.C.,Description of a singular appearance seen in the sun on September 1,1859,MNRAS,1859,20,13.
    [53]Hodgson R.,On a curious appearance seen in the sun,MNRAS,1859,20,15.
    [54]Dodson H.W.,Position and development of the solar flares of May 8 and 10,1949,ApJ,1949,110,382.
    [55]Dodson H.W.,Hedeman H.R.,Survey of number of flares observed during the IGY.,ApJ,1960,65,51.
    [56]Malville J.M.,Moreton G.E.,The expansion of flare filaments,PASP,1963,75,176.
    [57]Bruzek A.,On the association between loop prominences and flares,ApJ,1964,140,746.
    [58]schmieder B.,Forbes T.G.,Malherbe J.M.et al.,Evidence for gentle chromospheric evaporation during the gradual phase of large solar flares,ApJ,1987,317,956.
    [59]Forbes T.G.,Acton L.W.,Reconnection and field line shrinkage in solar flares,ApJ,1996,459,330.
    [60]Kleczek J.,Mass balance in flare loops,In:AAS-NASA Symp.on physics of solar flares,1964,77.
    [61]Hudson H.S.,Ohlki K.,Soft X-ray and microwave observations of hot regions in solar flares,Solar Phys.,1972,23,155.
    [62]Hirayama T.,Theoretical model of flares and prominences,Solar Phys.,1974,34,323.
    [63]Antiochos S.K.,Sturrock P.A.,Evaporative cooling of flares plasma,Solar Phys.,1978,220,1137.
    [64]Sturrock P.A.,A classification of magnetic field configurations associated with solar flares,Solar Phys.,1971,23,438.
    [65]Kopp R.A.,Pneuman G.W.,Magnetic reconnection in the corona and the loop prominence phenomenon,Solar Phys.,1976,50,85.
    [66]Bruzek A.,Motions in arch filament systems,Solar Phys.,1964,8,29.
    [67]Roy J.R.,The magnetic configuration of the November 18,1968 loop prominence system,Solar Phys.,1972,26,418.
    [68]Forbes T.G.,Malherbe J.M.,A shock condensation mechanism for loop prominences,ApJ,1986,302,67.
    [69]Forbes T.G.,Malherbe J.M.,Priest E.R.,The formation of flare loops by magnetic reconnection and chromospheric ablation,Solar Phys.,1986,120,285.
    [70]Forbes T.G.,Malherbe J.M.,A numerical simulation of magnetic reconnection and radiative cooling in line-tied current sheets,Solar Phys.,1991,135,361.
    [71]Kahler S.W.,Sheeley N.R.,Liggett M.,Coronal mass ejections and associated X-ray flare durations,ApJ,1989,344,1026.
    [72]Kahler S.W.,Solar flares and coronal mass ejections,ARA&A,1992,30,113.
    [73] Dryer M., Comments on the origins of coronal mass ejections, Solar Phys.,1996, 169, 421.
    
    [74] Parker E. N., Sudden expansion of the corona following a large solar flare and the attendant magnetic field and cosmic-ray effects., ApJ, 1961, 133,1014.
    
    [75] Wu S. T., Dryer M., Han S. M., Non-planar MHD model for solar flare-generated disturbances in the heliospheric equatorial plane, Solar Phys.,1983, 84, 395.
    
    [76] Maxwell A., Dryer M., Mcintosh P., A piston-driven shock in the solar corona, Solar Phys., 1985, 97, 401.
    
    [77] Harrison R. A., Solar coronal mass ejections and flares, A&A, 1986, 162,283.
    
    [78] Andrews M. D., A search for CMEs associated with big flares, Solar Phys.,2003, 218, 261.
    
    [79] Wang Y. M., Zhang J., A Comparative study between eruptive X-class flares associated with CMEs and confined X-class flares, ApJ, 2007, 665, 1428.
    
    [80] Low B. C., Solar activity and the corona, Solar Phys., 1996, 167, 217.
    
    [81] Harrison R. A., The nature of solar flares associated with coronal mass ejection, A&A, 1995, 304, 585.
    
    [82] Svestka Z., Varieties of coronal mass ejections and their relation to flares,Space Sci. Rev., 2001, 95, 135.
    
    [83] Zhang J., Dere K. P., Howard R. A. et al., On the temporal relationship between coronal mass ejections and flares, ApJ, 2001, 559, 452.
    
    [84] House L. L., Illing R. M. E., Sawyer C. et al., H_αejecta in the outer corona,BAAS, 1981, 13, 862.
    [85]Gilbert H.R.,Holzer T.E.,Burkepile J.T.et al.,Active and eruptive prominences and their relationship to coronal mass ejections,ApJ,2000,537,503.
    [86]Gopalswamy N.,Shimojo M.,Lu W.et al.,Prominence eruptions and coronal mass ejection:A statistical study using microwave observations,ApJ,2003,586,562.
    [87]Zhou G.P.,Wang J.X.,Cao Z.L.,Correlation between halo coronal mass ejections and solar surface activity,A&A,2003,397,1057.
    [88]方成,丁明德,陈鹏飞,太阳活动区物理,南京大学出版社,2008.
    [89]Moreton G.E.,Ramsey H.E.,Recent observations of dynamical phenomena associated with solar flares,PASP,1960,72,357.
    [90]Uchida Y.,Propagation of hydromagnetic disturbances in the solar corona and moreton's wave phenomenon,Solar Phys.,1968,4,30.
    [91]Uchida Y.,Behavior of the flare produced coronal MHD wavefront and the occurrence of type Ⅱ radio bursts,Solar Phys.,1974,39,431.
    [92]Kai K.,Expanding arch structure of a solar radio outburst,Solar Phys.,1970,11,310.
    [93]Wild J.P.,Smerd S.F.,Weiss A.A.,Solar bursts,ARA&A,1963,1,291.
    [94]Vrsnak B.,warmuth A.,Temmer M.et al.,Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003,A&A,2006,448,739.
    [95]Chen P.F.,Wu S.T.,Shibata K.et al.,Evidence of EIT and Moreton waves in numerical simulations,ApJ,2002,572,L99.
    [96]Thompson B.J.,Plunkett S.P.,Gurman J.B.et al.,SOHO/EIT observations of an Earth-directed CME on May 12,1997,Geophys.Res.Lett.,1998,25(14),2465.
    [97]Moses D.,Clette F.,Delaboudiniere J.P.et al,EIT observations of the Extreme Ultraviolet sun,Solar Phys.,1997,175,571.
    [98]Thompson B.J.,Gurman J.B.,Neupert W.M.et al.,SOHO/EIT observations of the 1997 April 7 coronal transient:possible evidence of coronal Moreton waves,ApJ,1999,517,L151.
    [99]Delannee,C.,Aulanier G.,CME associated with transequatorial loops and a bald patch flare,Solar Phys.,1999,190,107.
    [100]Klassen A.,Aurass H.,Mann G.et al.,Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type Ⅱ radio burst spectra,A&As,2000,141,357.
    [101]Dere K.P.et al.,MHD interpretation of LASCO observations of a coronal mass ejection as a disconnected magnetic structure,Solar Phys.,1997,175,601.
    [102]Wills-Davey M.J.,Thompson B.J.,Observations of a propagating disturbance in TRACE,Solar Phys.,1999,190,467.
    [103]Warmuth A.,Vrsnak B.,Magdalenic J.et al.,A multiwavelength study of solar flare waves.I.Observations and basic properties,A&A,2004,418,1101.
    [104]Wang Y.M.,EIT waves and fast-mode propagation in the solar corona,ApJ,2000,543,L89.
    [105]Pinter S.,Propagation pattern of flare-generated IP shock waves deduced from multiple spacecraft observations,The 15th International Cosmic Ray Conference,1977,191.
    [106]Wu S.T.,Zheng H.N.,Wang S.et al.,Three-dimensional numerical simulation of MHD waves observed by the EIT,JGR,2001,106(A11),25089.
    [107]Eto S.,Isobe H.,Narukage N.et al.,Relation between a Moreton wave and an EIT wave observed on 1997 November 4,PASJ,2002,54(3),481.
    [108]Veronig A.M.,Temmer M.,Vrsnak B.et al.,Interaction of a Moreton/EIT wave and a coronal hole,ApJ,2006,647,1466.
    [109]Zhukov A.N.,Auchere F.,On the nature of EIT waves,EUV dimmings and their link to CMEs,A&A,2004,427,705.
    [110]Thompson B.J.et al.,Structure of a large low-latitude coronal hole,Solar Phys.,2000,193,161.
    [111]Warmuth A.et al.,Evolution of two EIT/H_α Moreton waves,ApJ,2001,560,L105.
    [112]Khan J.I.,Aurass H.,X-ray observations of a large-scale solar coronal shock wave,A&A,2002,383,1018.
    [113]Narukage N.et al.,Simultaneous observation of a Moreton wave on 1997November 3 in H_α and soft X-Rays,ApJ,2002,572,L109.
    [114]Vrsnak B.et al.,Flare waves observed in Helium I 10830(?).A link between H_α Moreton and EIT waves,A&A,2002,394,299.
    [115]Gilbert H.R.et al.,A comparison of CME-associated atmospheric waves observed in coronal(Fe Ⅻ 195(?)) and chromospheric(He Ⅰ 10830(?)) lines,ApJ,2004,607,540.
    [116]Warmuth A.et al.,A multiwavelength study of solar flare waves.Ⅱ.Perturbation characteristics and physical interpretation,A&A,2004b,418,1117.
    [117]Biesecker D.A.et al.,Solar phenomena associated with "EIT waves"ApJ,2002,569,1009.
    [118]Hudson H.S.et al.,Soft X-ray observation of a large-scale coronal wave and its exciter,Solar Phys.,2003,212,121.
    [119]Cliver E.W.et al.,On the origins of solar EIT waves,ApJ,2005,631,604.
    [120]Wills-Davey M.J.,Deforest C.E.,Stenflo J.O.,Are "EIT waves" fastmode MHD waves?,ApJ,2007,664,556W.
    [121]Delannee C.,Another view of the EIT wave phenomenon,ApJ,545,512D.
    [122]Ballal I.,Erdelyi R.,Pinter B.,On the nature of coronal EIT waves,ApJ,2005,633,L145.
    [123]Attrill G.D.A.et al.,Coronal "wave":magnetic footprint of a coronal mass ejection?,ApJ,2007,656,L101.
    [124]Chen P.F.,The relation between EIT waves and solar flares,ApJ,2006,641,L153.
    [125]Hansen R.T.,Garcia C.J.,Hansen S.F.et al.,Abrupt depletions of the inner corona,PASP,1974,86,500.
    [126]Rust D.M.,Hildner E.,Expansion of an X-ray coronal arch into the outer corona,Solar Phys.,1976,48,381.
    [127]Webb D.F.,Mcintosh P.S.,Nolte J.T.et al.,Evidence linking coronal transients to the evolution of coronal holes,Solar Phys.,1978,58,389.
    [128]Rust D.M.,Coronal disturbances and their terrestrial effects /Tutorial Lecture/,Space Sci.Rev.,1983,34,21R.
    [129]Hudson H.S.,Acton L.W.,Freeland S.L.,A long-duration solar flare with mass ejection and global consequences,ApJ,1996,470,629.
    [130]Zarro D.M.,Sterling A.C.,Thompson B.J.et al.,ApJ,1999,559,452.
    [131]Zarro D.M.,Sterling A.C.,Thompson B.J.et al.,SOHO EIT observations of Extreme-Ultraviolet "dimming" associated with a halo coronal mass ejection,ApJ,1999,520,L139.
    [132]Thompson B.J.,Reynolds B.,Aurass H.et al.,Solar Phys.,2000,193,162.
    [133]Hudson H.S.,Cliver E.W.,Observing coronal mass ejections without coronagraphs,JGR,2001,106,25199H.
    [134]Sterling A.C.,Hudson H.,YOHKOH SXT observations of X-Ray "dimming" associated with a halo coronal mass ejection,ApJ,1997,491,L55.
    [135]Jiang Y.C.,Ji H.S.,Wang H.M.et al.,H_α dimmings associated with the X1.6 flare and halo coronal mass ejection on 2001 October 19,ApJ,2003,597,L161.
    [136]Jiang Y.C.,Wang J.X.,Photospheric magnetic field changes associated with the activations of a quiescent filament,A&A,2000,356,1055.
    [137]Jiang Y.C.,Wang J.X.,Filament activity and photospheric magnetic evolution related to flares,A&A,2001,367,1022.
    [138]Inoue S.,Kusano K.,Three-dimensional simulation study of flux rope dynamics in the solar corona,ApJ,2006,645,742.
    [139]Nitta S.,Tanuma S.,Shibata K.et al.,Fast magnetic reconnection in free space:self-similar evolution process,APJ,2001,550,1119.
    [140]章振大,日冕物理,科学出版社,2000.
    [141]Shanmugaraju A.,Moon Y.J.,Dryer M.et al.,An investigation of solar maximum metric type Ⅱ radio bursts:do two kinds of coronal shock sources exist?,Solar Phys.,2003,215,161.
    [142]Cliver E.W.,Webb D.F.,Howard R.A.,Solar Phys.,1999,187,89.
    [143]Cliver E.W.,Hudson H.S.,J.Atmos.Solar Terrest.Phys.,2002,64,231.
    [144] Gopalswamy N., Kaiser M. L., Lepping R. P. et al., Origin of coronal and interplanetary shocks - A new look with WIND spacecraft data, J. Geophys.Res, 1998, 103, 307.
    
    [145] Gopalswamy N., Kaiser M. L., Lepping R. P. et al. Reply, J. Geophys.Res, 1999, 104, 4749G.
    
    [146] Gopalswamy N., in R. G. Stone et al. (eds.), AGU Monograph 119, American Geophysical Union, Washington, D. C, 2000, P.123.
    
    [147] Oliver E. W., Comment on "Origin of coronal and interplanetary shocks: A new look with Wind spacecraft data" by N. Gopalswamy et al., J. Geophys.Res., 1999, 104, 4743C.
    
    [148] Gosling J. T., The solar flare myth, J. Geophys. Res., 1993, All, 18,937.
    
    [149] Dryer M., Comments on the Origins of Coronal Mass Ejections, Solar Phys., 1996, 169, 421.
    
    [150] Classen H. T., Aurass H, On the association between type II radio bursts and CMEs, Astron. Astrophys., 2002, 384, 1098.
    
    [151] Cane H. V., Velocity profiles of interplanetary shocks, Solar Wind Five,NASA Conf. Publ., 1983, CP2280, 703.
    
    [152] Bravo S., Nikiforova E., Characteristics of coronal mass ejections associated with interplanetary shocks, Solar Phys., 1994, 151, 333.
    
    [153] Richardson I. G., Farrugia C. J, Winterhalter D., Solar activity and CMEs on the western hemisphere of the sun in mid-August 1989, JGR, 1994,99(A2), 2513.
    
    [154] Cane H. V., The current status in our understanding of energetic particles,Coronal Mass Ejections, Geophys. Monograph, 99, (eds.) Crooker N. et al,Washington D. C.:AGU, 1997, 205.
    
    [155] Sheeley N. R., Howard R. A, Michels D. J. et al., Coronal mass ejections and interplanetary shocks, JGR, 1985, 90, 163.
    [156]Gopalswamy N.,Yashiro S.,Kaiser M.et al.,Characteristics of CMEs associated with long-wavelength type Ⅱ radio bursts,JGR,2001,106(A12),29219.
    [157]Gopalswamy N.,Lara A.,Yashiro S.et al.,Coronal mass ejection activity during solar cycle 23,Solar Variability as an Input to the Earth's Environment,ESA SP-535,ESA Publications Division,2003,403.
    [158]Maxwell A.,Dryer M.,Space Sci.Rev.,1982,32,11.
    [159]Robinson R.D.,Sheridan K.V.,Proc.Astron.Soc.Australia,1982,4,392.
    [160]Robinson R.D.,Solar Phys.,1985,95,343.
    [161]Klassen A.,Karlicky M.,Aurass H.,Solar Phys.,1999,188,141.
    [162]Uchida Y.,Propagation of hydromagnetic disturbances in the solar corona and Moreton's wave phenomenon,Solar Phys.,1968,4,30.
    [163]Wagner W.J.,Macqueen R.M.,The excitation of type Ⅱ radio bursts in the corona,A&A,1983,120,136.
    [164]Vrsnak B.et al.,Formation of coronal MHD shock waves-Ⅰ.The basic mechanism,Solar Phys.,2000,196,157.
    [165]Vrsnak B.,Magdalenic J.,Aurass H.et al.,Solar Phys.,2001,202,319.
    [166]Cane H.V.,Reames D.V.,Soft X-ray emission,meter-wavelength radio bursts,and particle acceleration in solar flares,ApJ,1988,325,895.
    [167]Raymond J.C.,Thompson B.J.et al.,SOHO and radio observations of a CME shock wave,Geophys.Res.Lett.,2000,27(10),1439.
    [168]Mancuso S.,Raymond J.C.,Kohl K.et al.,UVCS/SOHO observations of a CME-driven shock:consequences on ion heating mechanisms behind a coronal shock,A&A,2002,383,267.
    [169]Cliver E.W.,Nitta N.V.,Thompson B.J.et al.,Coronal shocks of November 1997 revisited:the CME-type Ⅱ timing problem,Solar Phys.,2005,225,105.
    [170]Tang Y.H.,Dai Y.,Some characteristics of two kinds of CMEs associated with erupting filament,Proc.of the Second French-Chinese Meeting on Solar Phys.,Beijing:Inter.Sci.Publ.& World Publ.Co.,2003,163.
    [171]Lin J.,Mancuso S.,Vourlidas A.,Theoretical investigation of the onsets of type Ⅱ radio bursts during solar eruptions,ApJ,2006,649,1110.
    [172]Reiner M.J.,Kaiser M.L.,Plunkett S.P.et al.,Radio tracking of a whitelight CME from solar corona to interplanetary medium,ApJ,2000,529,L53.
    [173]Subramanian K.R.,Ebenezer E.,A statistical study of the characteristics of type Ⅱ double radio bursts,A&A,2006,451(2),683.
    [174]Magara T.,Chen P.F.,Shibata K.et al.,A unified model of coronal mass ejection-related type Ⅱ radio bursts,ApJ,2000,538,L175.
    [175]Mancuso S.,Raymond J.C.,Coronal transients and metric type Ⅱ radio bursts:Ⅰ.Effects of geometry,A&A,2004,413,363.
    [176]Mancuso S.,Coronal transients and metric type Ⅱ radio bursts:Ⅱ.Accelerations at low coronal heights,A&A,2007,463,1137.
    [177]Forbes T.G.,Model prediction for magnetic shear changes during solar flares,ASP Conf.Seri.,1993,46,415.
    [178]Forbes T.G.,Priest E.R.,Photospheric magnetic field evolution and eruptive flares,ApJ,1995,446,377.
    [179]McClymont A.N.,Fisher G.H.,On the mechanical energy available to drive solar flares,In:Waiter Jr.J.H.,Butch J.L.,Moore R.L.,eds.Physics of Magnetic Flux Ropes(AGU),54 Washington DC:AGU,1989,219.
    [180]Melrose D.B.,McClymont A.N.,The resistances of the photosphere and of a flaring coronal loop,Solar Phys.,1987,113,241.
    [181]Forbes T.G.,A review on the genesis of coronal mass ejections,JGR,2000,105,23153.
    [182]Low B.C.,Coronal mass ejection,flares and prominences,In:Habbal S.R.,Esser R.,Hollweg J.V.et al.,eds.Slar Wind Nine,Woodbury:AIP,1999,109.
    [183]Klimchuk J.A.,Theory of coronal mass ejections,Song P.,Siscoe G.,Singer H.,eds.Space Weather(AGU Monograph 125),Washington DC:AGU,2001,143.
    [184]Wolfson R.,Energy requirements for opening the solar corona,ApJ,1993,419,382.
    [185]Wolfson R.,Low B.C.,Energy buildup in sheared force-free magnetic fields,ApJ,1992,391,353.
    [186]Mikic Z.,Barnes D.C.,Schnack D.D.,Dynamical evolution of a solar coronal magnetic field arcade,ApJ,1988,328,830.
    [187]Mikic Z.,Linker J.A.,Disruption of coronal magnetic field arcades,ApJ,1994,430,898.
    [188]Priest E.R.,Forbes T.G.,The evolution of coronal magnetic fields,Solar Phys.,1990,130,399.
    [189]Finn J.M.,Chen J.,Equilibrium of solar coronal arcades,ApJ,1990,349,345.
    [190]Antiochos S.K.,Devote C.R.,Klimchuk J.A.,A model for solar coronal mass ejections,ApJ,1999,510,485.
    [191]Van Tend W.,The onset of coronal transients,Solar Phys.,1979,61,89.
    [192] Van Tend W., Kuperus M., The development of coronal electric current systems in active regions and their relation to filaments and flares, Solar Phys., 1978, 59, 115.
    
    [193] Sturrock P. A., Explosive and nonexplosive onsets of instability, PhRvL,1964, 16, 270.
    
    [194] Low B. C., Evolving force-free magnetic fields: I.The development of the preflare stage, ApJ, 1977, 212, 234.
    
    [195] Birn J., Goldstein H., Schindler K., A theory of the onset of solar eruptive processes, Solar Phys., 1978, 57, 81.
    
    [196] Priest E. R., Milne A. M., Force-free magnetic arcades relevant to two-ribbon solar flares, Solar Phys., 1980, 65, 315.
    
    [197] Forbes T. G., Isenberg P. A., A catastrophe mechanism for coronal mass ejections, ApJ, 1991, 373, 294.
    
    [198] Lin J., Forbes T. G., Effects of reconnection on the coronal mass ejection process, J. Geophys. Res., 2000, 105, 2375.
    
    [199] Lin J., Energetics and propagation of coronal mass ejections in different plasma environments, ChJAA, 2002, 2, 539.
    
    [200] Lin J., Raymond J. C., van Ballegooijen A. A., The role of magnetic reconnection of the observable features of solar eruptions, ApJ, 2004, 602,422.
    
    [201] Lin J., Theoretical mechanisms for solar eruptions, Ph D thesis, Physics Dept, Univ of N H, Durham, 2001.
    
    [202] Stone J. M., Norman M. L., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions.I.The hydrodynamic algorithms and tests, ApJS, 1992, 80, 753.
    [203]Stone J.M.,Norman M.L.,ZEUS-2D:A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions.Ⅱ.The magnetohydrodynamic algorithms and tests,ApJS,1992,80,791.
    [204]Stone J.M.,Mihalas D.,Norman M.L.,ZEUS-2D:A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions.Ⅲ.The radiation hydrodynamic algorithms and tests,ApJS,1992,80,819.
    [205]Hawley J.F.,Smarr L.L.,Wilson J.R.,A numerical study of nonspherical black hole accretion:I.Equations and test problems,ApJ,1984a,227,296.
    [206]Hawley J.F.,Smarr L.L.,Wilson J.R.,A numerical study of nonspherical black hole accretion:Ⅱ.Finite differencing and code calibration,ApJ,1984b,55,211.
    [207]Norman M.L.,Winlder K.H.,in Astrophysical radiation hydrodynamics,ed.Winkler K.H.,Norman M.L.(Dordrecht:Reidel),1986,187.
    [208]Winkler K.H.,Norman M.L.,Mihalas D.,Adaptive-mesh radiation hydrodynamics-Ⅰ.The radiation transport equation in a completely adaptive coordinate system,J.Quant.Spectrosc.Radiat.Transfer,1984,31,473.
    [209]yon Neumann J.,Richtmyer R.D.,J.Appl.Phys.,1950,21,232.
    [210]van Leer B.,Towards the ultimate conservative difference scheme:Ⅳ.A new approach to numerical convection,J.Comput.Phys.,1977,23,276.
    [211]Evans C.,Hawley J.F.,Simulation of magnetohydrodynamic flows-A constrained transport method,ApJ,1988,332,659E.
    [212]Hawley J.F.,Stone J.M.,MOCCT:a numerical technique for astrophysical MHD,Comput.Phys.Commun.,1994,89,127.
    [213]Priest E.R.,Forbes T.G.,The magnetic nature of solar flares,A&A,2002,20,313.
    [214] Cane H. V., Erickson W. C., Prestage N. P., Solar flares, type II radio bursts, coronal mass ejections, and energetic particles, J. Geophy. Res.,2002, 107, 1315.
    
    [215] Vourlidas A., in Solar and Space Weather Radiophysics: Current Status and Future Developments, ed. Garry D. E., Keller C. U.(Dordrecht: Kluwer),2004, 223.
    
    [216] Gopalswamy A., in Solar and Space Weather Radiophysics: Current Status and Future Developments, ed. Garry D. E., Keller C. U.(Dordrecht: Kluwer),2004, 305.
    
    [217] Reiner M. J., Kaiser M. L., Hight-frequency type II radio emissions associated with shocks driven by coronal mass, J. Geophy. Res., 1999, 104,16979.
    
    [218] Reiner M. J., Kaiser M. L., Gopalswamy N. et al., Statistical analysis of coronal shock dynamics implied by radio and white-light observations, J.Geophy. Res., 2001, 106, 25279.
    
    [219] Leblanc Y., Dulk G. A. et al., Tracing shock waves from the corona to 1AU: Type II radio emission and relationship with CMEs, J. Geophy. Res.,2001, 106, A11, 25301.
    
    [220] Evans J. E., Observations of the solar emission corona outside eclipse,PASP, 1957, 69(410), 421.
    
    [221] Lin J., Forbes T. G., Demoulin P., The effect of curvature on flux-rope models of coronal mass ejections, ApJ, 1998, 504, 1006.
    
    [222] Isenberg P. A., Forbes T. G., Demoulin P., Catastrophic evolution of a force-free flux rope: A model for eruptive flares, ApJ, 1993, 417, 368.
    
    [223] Forbes T. G., Numerical simulation of a catastrophe model for coronal mass ejections, J. Geophy. Res., 1990, 95, 11,919.
    [224]Harra L.K.,Sterling A.C.,Imaging and spectroscopic investigations of a solar coronal wave:Properties of the wave front and associated erupting material,ApJ,2003,587,429.
    [225]Harra L.K.,Sterling A.C.,Material outflows from coronal intensity "dimmin regions" during coronal mass ejection onset,ApJ,2001,561,L215.
    [226]Varga R.S.,Matrix iterative analysis,Prentice-Hall,Englewood Cliffs,New York,1962.
    [227]Hadjimos A.,Accelerated overrelaxation method,Math.Comp.,1978,32,149.
    [228]Evans D.J.,Martins M.M.,Trigo M.E.,The AOR iterative method for new preconditioned linear systems,J.Comput.Appl.Math.,2001,132,461.
    [229]Li Y.T.,Li C.,Wu S.,Improvements of preconditioned AOR iterative methods for L-matrices,J.Comput.Appl.Math.,2007,206,656.
    [230](美)约翰D.安德森(JohnD.Anderson)著,吴颂平,刘赵淼,译,计算流体力学基础及其应用,机械工业出版社,2007.
    [231]Wills-Davey M.J.,Deforest C.E.,Stenflo J.O.,Are "EIT Waves" Fastmode MHD Waves?,ApJ,2007,664,556.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700