用户名: 密码: 验证码:
无机功能材料的湿化学法制备工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们在研究微纳米材料的结构与性质的关系时发现,微纳米材料的性能不仅与其尺寸大小有关,维度、表面结构、暴露晶面等众多与形貌相关的因素对物质的电、磁、光、声、热、力等性质也有着不可忽视的影响。比如,一维微纳米结构的量子尺寸效应以及各向异性,赋予材料独特的物理性质;空心微纳米结构具备较高的比表面积,使材料在催化、输送等方面具有很大的优势。本论文以无机功能微纳米材料为研究主体,以湿化学合成策略为手段,实现了对五氧化二铌以及硼酸镁微纳结构的控制合成。本论文的主要内容包括以下几个方面:
     (1)设计了一条以水和乙醇的混合溶剂为反应体系,通过一种简便、通用的水热均相沉淀法制备出了Nb_2O_5棒状材料。研究表明,当有乙醇加入反应体系时,Nb_2O_5棒的直径比没有乙醇加入时的直径大。采用Nb_2O_5棒为模板,进行两步反应,合成出了Nb_2O_5管状结构。
     (2)在微波辅助加热条件下,以乙二胺为沉淀剂,通过简单沉淀反应,得到了铌酸球形材料,并通过调节沉淀剂的用量,实现了对铌酸球形前驱物直径的调控;对铌酸前驱物进行水热处理以及烧结处理,制备出了正交相Nb_2O_5空心球。另外,通过常温下的沉淀反应,还合成出了具有表面多孔结构特征的棒状(NH_4)_3Nb(O_2)_2F_4前驱物。
     (3)通过简单的水热反应制备出了碱式硼酸镁纳米晶须以及水合硼酸镁空心球纳米结构。研究表明,碱不仅作为反应原料,还作为形貌调控剂;碱的用量对产物的组分和形状起到最至关重要的作用。在较高的碱浓度下,合成出了碱式硼酸镁纳米晶须;在相对较低的碱浓度下,合成出了多级的水合硼酸镁空心球结构。对不同形状和组分的水热产物在7000℃下烧结2小时,得到了其相应的硼酸镁纳米结构。
In recent years,the researchers discover that the properties of materials are related not only with the size of the crystal but also with the morphologies such as the dimension,the exposed planes and the surface structures.All of these factors may play a key role in the properties of materials such as electronic,optical,magnetic,acoustic,thermal and mechanical properties. For example,compared with bulks materials,one-dimensional nanoscale materials,with their possible quantum-confinement effects and anisotropy,exhibit distinct chemical and thermal properties.Hollow nano/microcrystals,with their large surface areas,may have great advantages in the catalyst and transformation of medicine.In this dissertation,systematic explorations have been carried out on new synthetic strategies of functional inorganic nano/micromaterial(Nb_2O_5,Mg_2B_2O_5) and their structure fabrication based on chemical solution method.The main points can be summarized as follows:
     A general chemical strategy based on coordination-assisted preferential etching process to fabricating Nb_2O_5(orthorhombic) hollow tubes by a two-step process has been reported.Nb_2O_5 rods serviced as precursors are synthesized by a simple hydrothermal method and the diameter of rods can be tuned by varying the synthetic conditions.The orthorhombic Nb_2O_5 tubes are then obtained by a coordination-assisted preferential etching reaction of the precursors.The controlled interior structure of Nb_2O_5 tubes can also be achieved by tuning reaction time.
     The orthorhombic Nb_2O_5 hollow spheres are fabricated through the sacrificial template route.As we know,the formation of the nanocrystals involves two steps:nucleation of an initial 'seed' and growth.So the diameters of the niobic acid spheres are tuned by controlling the concentration of ammonia.The porous(NH_4)_3Nb(O_2)_2F_4 are also be prepared by precipitation at room temperature.
     Magnesium borates with controlled compositions and morphologies are successfully fabricated through a two-step synthetic process.Without any organic additive or catalyst, MgBO_2(OH) nanorods and Mg_7B_4O_(13)·7H_2O hollow spheres can be prepared by controlling the concentration of hydroxide ions in hydrothermal condition.Hydroxide ions used here not only act as precipitator but also as shape-directing agent to change the relative specific surface energies of various planes and eventually influence the nucleation and growth of crystal. Mg_2B_2O_5 and Mg_3B_2O_6 with corresponding morphology can be obtained through a simple heat treatment process of MgBO_2(OH) and Mg_7B_4O_(13)·7H_2O precursors at 700℃for 2 h under air atmosphere
引文
[1]潘金生,全健民,田民波.材料科学基础[M].北京:清华大学出版社,1998.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [3]朱晓辉,夏君旨.从材料科学的发展谈陶瓷的发展前景[J].中国陶瓷,2006,42(5):7-9.
    [4]曲远方.功能陶瓷材料[M].北京:化学工业出版社,2004.
    [5]李龙土.功能陶瓷材料及其应用研究进展[J].硅酸盐通报,2005,(5):107-110.
    [6]王辅忠,张慧春,史冬梅,等.纳米陶瓷研究进展[J].材料导报,2006,20(3):19-22.
    [7]高春华,黄新友.纳米陶瓷的性能及制备技术[J].云南大学学报(自然科学版),2002,24(1):49-52.
    [8]王晓丽,薛冬峰.不同镁盐对氧化镁晶须形貌的影响[J].无机盐工业,2006,38(2):16-20.
    [9]Yan C and Xue D.Novel self-assembled MgOnanosheet and its precursors[J].J.Phys.Chem.B,2005,109(25):12358-12361.
    [10]Yan X,Xu D,Xue D.SO_4~(2-) ions direct the one-dimensional growth of 5Mg(OH)_2·MgSO_4·2H_2O [J].Acta Mater.,2007,55(17):5747-5757.
    [11]王雷,晏成林,薛冬峰,等.无机功能材料新工艺研究及其工业化前景.材料导报[J],2007,21(8):96-102.
    [12]Yan C,Xue D,Zou L.Fabrication of hexagonal MgO and its precursors by a homogeneous precipitation method[J].Mater.Res.Bull.,2006,41(12):2341-2348.
    [13]Law M,Luther J M,Song O,et al.Structural,optical,and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines[J].J.Am.Chem.Soc.,2008,130(18):5974-5985.
    [14]Lucas B D,Kim J S,Chin C,et al.Nanoimprint lithography based approach for the fabrication of large-area,uniformly oriented plasmatic arrays[J].Adv.Mater.,2008,20(6):1129-1134.
    [15]Hu Y J,Xiang J,Liang G C,et al.Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed[J].Nano lett.,2008,8(3):925-930.
    [16]Yah C and Xue D.Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in Situ chemistry strategy[J].J.Phys.Chem.B,2006,110(51):25850-25855
    [17]El-Sayed M A.Some interesting properties of metals confined in time and nanometer space of different shapes[J].Acc.Chem.Res,2001,34(4):257-264.
    [18]Milliron D J,et al.Colloidal nanocrystal heterostructures with linear and branched topology[J].Nature,2004,430(6996):190-195.
    [19]薛宽宏,包建春.纳米化学[M].北京:化学工业出版社.2006.
    [20]Urban J J,Spanier J E,Lian 0 Y,et al.Single-crystalline barium titanate nanowires[J].Adv.Mater.,2003,15(5):423-426.
    [21]Huang Y,Lieber C M.Integrated nanoscale electronics and optoelectronics:Exploring nanoscale science and technology through semiconductor nanowires[J].Pure Appl.Chem.,2004,76(12):2051-2068.
    [22]Mann D,Javey A,Kong J,et al.Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts[J].Nano Lett.,2003,3(11):1541-1544.
    [23]Rao CNR,Cheetham A K.Science and technology of nanomaterials:current status and future prospects[J].J.Mater.Chem.,2001,11(12):2887-2894.
    [24]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [25]Patzke G R,Krumeich F,Nesper R.Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology[J].Angew.Chem.Int.Ed.,2002,41(14):2446-2461.
    [26]Sadanadan B,Savage T,Bhattacharya S,et al.Synthesis and thermoelectric power of nitrogen-doped carbon nanotubes[J].J.Nanosci.Nanotechnol.,2003,3(1-2):99-103.
    [27]Duan X F,Huang Y,Cui Y,et al.Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices[J].Nature,2001,409(6816):66-69.
    [28]Huang Y,Duan X F,Wei Q Q,et al.Directed assembly of one-dimensional nanostructures into functional networks[J].Science,2001,291(5504):630-633.
    [29]Cui Y,Lieber C M.Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J].Science,2001,291(5505):851-853.
    [30]Huang M H,Mao S,Feick H,et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292(5523):1897-1899.
    [31]Hochbaum A I,Chen R,Delgado R D,et al.Enhanced thermoelectric performance of rough silicon nanowires[J].Nature,2008,451(7175):163-167.
    [32]Huynh W U,Dittmer J J,Alivisatos A P.Hybrid nanorod-polymer solar cells[J].Science,2002,295(5564):2425-2427.
    [33]Yang H G,Sun C H,Qiao S Z,et al.Anatase TiO_2 single crystals with a large percentage of reactive facets[J].Nature,2008,453(7195):638-641.
    [34]Jin R,Cao Y,Mirkin C A,et al.Photoinduced conversion of silver nanospheres to nanoprisms[J].Science,2001,294:1901-1903
    [35]Yan C and Xue D.Formation of Nb_2O_5 nanotube arrays through phase transformation[J].Adv.Mater.,2008,20(5):1055-1058.
    [36]Chen Y J,Li J B,Han Y S,et al.The effect of Mg vapor source on the formation of MgO whiskers and sheets[J].J.Cryst.Growth,2002,245(1-2):163-167.
    [37]Yang P D,Yan H Q,Mao S,et al.Controlled growth of ZnO nanowires and their optical properties[J].Adv.Funct.Mater.,2002,12(5):323-327.
    [38]Wu Y Y,Yang P D.Direct observation of vapor-liquid-solid nanowire growth[J].J.Am.Chem.Soc.,2001,123(13):3165-3166.
    [39]Baughman R H,Cui C X,Eckhardt H,et al.The vibrational properties and defect structures in vinylene-linked low-band-gap conducting polymers[J].Science,1991,43(1):3413-3418.
    [40]Zheng M J,Zhang L D,Li G H,et al.Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J].Chem.Phys.Lett.,2002,363(1-2):123-129.
    [41]Chen Y W,Liu Y C,Lu S X,et al.Optical properties of ZnO and ZnO:in nanorods assembled by sol-gel method[J].J.Chem.Phys.,2005,123(13):134701-134706.
    [42]Wang X Y,Huang W G,Sebastian P J,et al.Sol-gel template synthesis of highly ordered MnO_2 nanowire arrays[J].J.Power Sources,2005,140(1):211—218.
    [43]Xu C K,Xu G D,Wang G H.Preparation and characterization of NiO nanorods by thermal decomposition of NiC_2O_4 precursor[J].J.Mater.Sci.,2003,38(4):779-783.
    [44]Vantomme A,Yuan Z Y,Du G H,et al.Surfactant-assisted large-scale preparation of crystalline CeO_2 nanorods[J].Langmuir,2005,21:1132-1138.
    [45]Thompson L H,Doraiswamy L K.Sonochemistry:science and engineering[J].Ind.Eng.Chem.Res.,1999,38(4):1215-1249.
    [46]Kumar R V,Koltypin Y,Xu X N,et al.Fabrication of magnetite nanorods by ultrasound irradiation[J].J.Appl.Phys.,2001,89(11):6324-6327.
    [47]Gao T,Li Q H,Wang T H.Sonochemical synthesis,optical properties,and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites[J].Chem.Mater.,2005,17(4):887-892.
    [48]Liu B,Zeng H C.Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm[J].J.Am.Chem.Soc,2003,125(15):4430-4437.
    [49]Wang J M,Gao L.Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties[J].J.Mater.Chem.,2003,13:2551-2558.
    [50]Zhang J,Liu Z G,Lin C K,et al.A simple method to synthesize beta-Ga_2O_3 nanorods and their photolumine scence properties[J].J.Cryst.Growth,2005,280(1-2):99-103.
    [51]Zhu D L,Zhu H,Zhang Y H.Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method[J].J.Cryst.Growth,2003,249(1-2):172-177.
    [52]Liu M and Xue D.Amine-assisted route to fabricate LiNbO_3 particles with a tunable shape[J].J.Phys.Chem.C,2008,112(16):6346-6351.
    [53]Xia Y,Yang P,et al.One-dimensional nanostructures:synthesis,characterization,and applications[J].Adv.Mater.,2003,15(5):353-359.
    [54]hu X,Hanrath T,Johnston K P,et al.Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate[J].Nano Lett.,2003,3(1):93-99.
    [55]Hanrath T,Korgel B A.Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals[J].J.Am.Chem.Soc.,2001,124(7):1424-1429.
    [56]Dingman S D,Rath N P,Markowitz P D,et al.Low-temperature,catalyzed growth of indium nitride fibers from azido-indium precursors[J].Angew.Chem.Int.Ed.,2000,39(8):1470-1472
    [57]钱逸泰.结晶化学导论[M].合肥:中国科技大学出版社,2002.
    [58]薛冬峰.晶体的化学键和非线性光学效应[D].长春:中国科学院长春应用化学研究所,1998.
    [59]张克从,张乐德.晶体生长科学与技术[M].北京:科学出版社,1997.
    [60]Siegfried M J,Choi K S.Electrochemical crystallization of cuprous oxide with systematic shape evolution[J].Adv.Mater.,2004,16(19):1741-1746.
    [61]Choon H B N,Wai Y F.Facile synthesis of single-crystalline γ-CuI nanotetrahedrons and their induced transformation to tetrahedral CuO nanocages[J].J.Phys.Chem.C,2007,111(26):9166-9171.
    [62]Chiang R K,Chiang R T.Formation of hollow Ni_2P nanoparticles based on the nanoscale kirkendall effect[J].Inorg.Chem.,2007,46(2):369-371.
    [63]Li B,Xie Y,Jing M,et al.In_2O_3 hollow microspheres:synthesis from designed In(OH)_3precursors and applications in gas sensors and photocatalysis[J].Langmuir,2006,22(22):9380-9385.
    [64]Zeng H,Cai W,Liu P,et al.ZnO-Based hollow nanoparticles by selective etching:elimination and reconstruction of metal-semiconductor interface,improvement of blue emission and photocatalysis[J].ACS nano,2(8):1661-1670.
    [65]Chen D,Ye J.Hierarchical WO_3 hollow shells:dendrite,sphere,dumbbell,and their photocatalytic properties[J].Adv.Funct.Mater.,2008,18(13):1922- 1928.
    [66]Fan S S,Chapline M G,Franklin N R,et al.Self-oriented regular arrays of carbon nanotubes and their field emission properties[J].Science,1999,283(5401):512-514.
    [67]Li W Z,Me S S,Qian L X,et al.Large-scale synthesis of aligned carbon nanotubes [J].Science,1996,274(5293):1701-1703.
    [68]Wei B Q,Vajtai R,Jung Y,et al.Microfabrication technology:Organized assembly of carbon nanotubes[J].Nature,2002,416(6882) 495-496.
    [69]张先锋,曹安源,孙群慧.定向碳纳米管阵列在石英玻璃基底上的模板生长研究[J].无机材料学报,2003,18(3):613-615.
    [70]Obarr R,Yamamoto S Y,Schultz S.Fabrication and characterization of nanoscale arrays of nickel columns[J].J.Appl.Phys.,1997,81(8):4730-4733.
    [71]刘雪宁,杨经中,唐康泰等.高分子模板法合成特殊形态的氧化锌纳米结构材料[J].化学通报.2000,11(11):46-48.
    [72]Xu D,Xu Y,et al.Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminum oxide templates[J].Chem.Phys.Lett.,2000,325(4):340-344.
    [73]Lee W,Schwirn K,Steinhart M,et al.Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium[J].Nat.Nanotechnol.,2008,3(4):234-239.
    [74]Fan H,Lee W,Scholz,et al.Arrays of vertically aligned and hexagonally arranged ZnO nanowires:a new template-directed approach[J].Nanotechnology,2005,16(3):913-917.
    [75]Lee W,Ji R,Gosele U,et al.Fast fabrication of long-range ordered porous alumina membranes by hard anodization[J].Nat.Mater.,2006,5(9):741-747.
    [76]Ma Y R,Qi L M,Ma J M,et al.Facile synthesis of hollow ZnS nanospheres in block copolymer solutions[J].Langmuir,2003,19(9):4040-4042
    [77]Zhang D B,Qi L M,Ma J N,et al.Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions[J].Adv.Mater.,2002,14(20):1499-1502.
    [78]Bronich T K,Popov A M,Eisenberg A,et al.Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionone complexes [J].Langmuir,2000,16(2):481-489.
    [79]Huang J X,Xie Y,Li B,et al.In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres[J].Adv.Mater.,2000,12(11):808-812.
    [80]Pileni M.The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals[J].Nat.Mater.,2003,2(5):145-150.
    [81]Peng Q,Dong Y,Li Y.ZnSe semiconductor hollow microspheres[J].Angew.Chem.Int.Ed.,2003,42(26):3027-3030.
    [82]X.Y.Chen,Z.H.Wang,X.Wang,et al.Synthesis of novel copper sulfide hollow spheres generated from copper(Ⅱ)-thiourea complex[J].J.Cryst.Growth,2004,263(1-4):570-574.
    [83]Lou X W,Archer L A,Yang Z.Hollow Micro-/Nanostructures:synthesis and applications[J].Adv.Mater.,2008,20(21):3987-4019.
    [84]Yin Y D,Rioux R M,Erdonmez C K,et al.Formation of hollow nanocrystals through the nanoscale kirkendall effect[J].Science,2004,304(5671):711-714.
    [85]Yang J H,Qi L M,Lu C H,et al.Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating[J].Angew.Chem.Int.Ed.,2005,44(4):598-603.
    [86]Yan C,Xue D.General,spontaneous ion replacement reaction for the synthesis of micro-and nanostructured metal oxides[J].J.Phys.Chem.B,2006,110(4):1581-1586.
    [87]Fan H J,Knez M,Scholz R,et al.Monocrystalline spinel nanotube fabrication based on the Kirkendall effect[J].Nat.Mater.,2006,5(8):627-631.
    [88]Wang W S,Zhen L,Xu C Y,et al.Aqueous solution synthesis of Cd(OH)_2 hollow microspheres via ostwald ripening and their conversion to CdO hollow microspheres[J].J.Phys.Chem.C,2008,112(37):14360-14366.
    [89]Luo C,Xue D.Mild,Quasireverse emulsion route to submicrometer lithium niobate hollow spheres[J].Langmuir,2006,22(24):9914-9918.
    [90]Yang H G,Zeng H C.Preparation of hollow anatase TiO_2 nanospheres via ostwald ripening[J].J.Phys.Chem.B,2004,108(11):3492-3495
    [91]Papadopoulos C,Omrane B.Nanometer-scale catalyst patterning for controlled growth of individual single-walled carbon nanotubes[J].Adv.Mater.,2008,20(7):1344-1347.
    [92]Schmidt O G,Eberl K.Nanotechnology-thin solid films roll up into nanotubes[J].Nature,2001,410(6825):168-168.
    [93]Ye C H,Bando Y,Shen G Z,et al.Formation of crystalline SrAl_2O_4 nanotubes by a roll-up and post-annealing approach[J].Angew.Chem.Int.Ed.,2006,45(30):4922-4926.
    [94]Yang H G,Zeng H C,Self-construction of hollow SnO_2 octahedra based on two-dimensional aggregation of nanocrystallites[J].Angew.Chem.Int.Ed.,2004,43(44):5930-5933.
    [95]Zeng H C.Synthetic architecture of interior space for inorganic nanostructures[J].J.Mater.Chem.,2006,16,649-662.
    [96]Xia Y N,Yang P D,Sun Y G,et al.One-dimensional nanostructures:Synthesis,characterization,and applications[J].Adv.Mater.,2003,15(5):353-389.
    [97]Burda C,Chert X B,Narayanan R,et al.Chemistry and properties of nanocrystals of different shapes[J].Chem.Rev.,2005,105(4):1025-1102.
    [98]潘金生,陈永华.晶须及其应用[J].复合材料学报,1995,12(4):1-7.
    [99]刘玲,殷宁,亢茂青,等.晶须增韧复合材料机理的研究[J].材料科学与工程,2000,18(2):116-119.
    [100]周柞万,胡书春.晶须的特点及其产业化前景分析[J].新材料产业,2002,103(7):18-20.
    [101]Krishnarao R V,Mahajan Y R,Formation of SiC whisker from raw rice husks in argon atmosphere[J].Ceram.Int.,1996,22(5):353-358
    [102]Nair N G.Synthesis of silicon carbide whiskers from rice husk and coconut shell [J].Metal Power Report,1999,54(3):39-42.
    [103]Wang W Z,Wang G H,Liu Y K,et al.Synthesis and characterization of aragonite whiskers by a novel and simpler route[J].J.Mater.Chem.,2001,11(6):1752-1754.
    [104]黄勇,张宗涛,江作昭.晶须补强陶瓷基复合材料界面研究进展[J].硅酸盐学报,1996,24(4):451-458.
    [105]马正先,刘豹,马志军,等.硼酸镁晶须制备与应用研究进展[J].化工新型材料,2008,36(8):13-17.
    [106]Sakanek,Kitamurat,Wadah,et al.Effect of mixing state of raw material in the preparation of Mg_2B_2O_5 whiskers[J].Adv.Powd.Tech.,1992,3(1):39-46.
    [107]李慧青,张淑芬,张旖,等.新型增强材料-硼酸镁晶须[J].化工新型材料,2001,29(1):16-18.
    [108]李慧青,张旖,孙萱,等.若干无机盐晶须的研究状况与展望[J].无机盐工业,2002,34(2):17-20.
    [109]李强,周启立,宋晓莉.硼酸镁晶须的制备及应用[J].无机盐工业,2004,36(2):13-14.
    [110]曹秀军,朱卫兵,韩陈,等.纳米硼酸镁的制备及其应用[J].盐业与化工,2007,36(4):13-15.
    [111]Kitamura T,Sakane K,Wada H.Formation of needle crystals of magnesium pyroborate [J].J.Mater.Sci.Lett.,1988,7(5):467-469.
    [112]汪海东,原力,尉敬华,等.微波固相法合成硼酸镁晶须[J].盐湖研究,1998,6(2):98-102.
    [113]靳治良,李武,张志宏.硼酸镁晶须合成的研究[J].无机盐工业,2003,35(3):22-24.
    [114]边绍菊,李沽,乃学瑛,等.硼酸镁晶须的制备及生长机理初探[J].盐湖研究,2007,15(2):45-49.
    [115]Li Y,Fan Z,Lu J G.Synthesis of magnesium borate(Mg_2B_2O_5) nanowires by chemical vapor deposition method[J].Chem.Mater.,2004,16(13):2512-2514.
    [116]Wagner R S and Ellis W C.Vapor-liquid-solid mechanism of single crystal growth [J].Appl.Phys.Lett.,1964,4:89-90.
    [117]Hu J,Odom T W,Lieber C M.Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes[J].Acc.Chem.Res.,1999,32(5):435-445.
    [118]Duan X,Liber C M.Laser-assisted catalytic growth of single crystal GaN nanowires [J].J.Am.Chem.Soc.,2000,122(1):188-189.
    [119]Duan X,Liber C M.General synthesis of compound semiconductor nanowires[J].Adv.Mater.,2000,12(4):298-302.
    [120]Hannon J B,Kodambaka S,Ross F M,et al.The influence of the surface migration of gold on the growth of silicon nanowires[J].Nature,2006,440(7080):69-71.
    [121]江继伟,汪雷,杨青,等.溶胶-凝胶法制备硼酸镁纳米棒[J].无机材料学报,2006,21(4):833-837.
    [122]Xu B,Li T,Zhang Y,et al.New synthetic route and characterization of magnesium borate nanorods[J].Cryst.Growth Des.,2008,8(4):1218-1222.
    [123]李武,Valy V M.纤维硼镁石的高温水热合成研究[J].盐湖研究,1996,4(324):43-47.
    [124]Zhu H,Xiang L,He T,et al.Hydrothermal synthesis and characterization of magnesium borate hydroxide nanowhiskers[J].Chem.Lett.,2006,135(10):1158-1159.
    [125]Varghese B,Haur S C,Lim C T.NbO nanowires as efficient electron field emitters [J].J.Phys.Chem.C,2008,112(27):10008-10012.
    [126]Leite E R,Vila C,Bettini J,et al.Synthesis of niobia nanocrystals with controlled morphology[J].J.Phys.Chem.B,2006,110(37):18088-18090.
    [127]中信微合金化技术中心译.铌科学与技术[M].北京:冶金工业出版社,2003.
    [128]匡国珍,周火根,张浩,等.仲辛醇-HF-H_2SO_4体系制取超高纯氧化担和超高纯氧化妮[J].稀有金属与硬脂合金,2005,33(22):1-3.
    [129]O.L.Keller Jr.Identification of complex ions of niobium(V) in hydrofluoric acid solutions by raman and infrared spectroscopy[J].Inorg.Chem.,1963,2(4):783-787.
    [130]Udovenko A A,Laptash N M.Orientational disorder and phase transitions in crystals of(NH_4)_2NbOF_5[J].Acta Cryst.B,2008,64:527-533.
    [131]Liang C,Sasaki T,Shimizu Y,et al.Pulsed-laser ablation of Mg in liquids:surfactant-directing nanoparticle assembly for magnesium hydroxide nanostructures[J].Chem.Phys.Lett.,2004,389(1-3):58-63.
    [132]Fan H,Sun S,You L,et al.Solvothermal synthesis of Mg(OH)_2 nanotubes using Mg_(10)(OH)_(18)Cl_2·5H_2O nanowires as precursors[J].J.Mater.Chem.,2003,13:3062-3065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700