用户名: 密码: 验证码:
以蛋白质为模板制备二氧化钛纳米材料及机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,以生物组织(例如生物有机体的某一部分、微生物和生物大分子等)为模板合成各种材料受到了广泛的关注,而蛋白质模板则为科学家们更加青睐。这主要是由于蛋白质有先天的优势,它在生物体内能与很多无机物质紧密结合在一起,形成诸如人体骨骼,节肢动物的外壳和硅藻属的骨架等,而且蛋白质来源广泛、价格低廉又容易购得,因此成为研究生物模板时的重点。
     目前,国内外学者们普遍用作模板的蛋白质主要是去铁铁蛋白,人铁蛋白,清蛋白以及蚕丝蛋白,利用蛋白的空腔或胶连网状结构来产生模板效应。
     本论文主要研究了常见的两种廉价蛋白,酪蛋白和蛋清蛋白,将这两种蛋白应用到合成中,以它们作模板来尝试合成具有光催化活性的二氧化钛和氧化锌。
     首先以酪蛋白为模板,在水相体系中合成二氧化钛。经过10天的静置,在室温条件下合成制得了TiO2纳米薄片,薄片为无定形TiO2,表面光滑。纳米薄片的长度和宽度均为微米级,厚度约为20nm。经过500℃焙烧后可部分保持形貌,在紫外光及可见光照下降解苯酚效果良好。
     然后又在以蛋清蛋白为模板的水相体系中合成TiO2,制得了分散均匀、形状规则的TiO2小颗粒,颗粒直径约为9nm。通过TEM, XPS, FTIR, TG-DTA和Uv-Vis等表征手段对反应的机理进行了深入的研究,提出了变性的蛋清蛋白形成网状胶连体作模板的机理,简单描述如下:蛋清蛋白和无定形二氧化钛在室温下形成无机一蛋白混合物,当温度升高至80℃,蛋白分子伸展,变性并聚集成一个巨大的网状结构,同时无定形二氧化钛吸附在网状结构的表面或内部。当温度升高至150℃时,胶连网状结构分解,无定形二氧化钛形成均匀的二氧化钛小晶核,再经过适当时间的晶化,形成了均匀且分散良好的二氧化钛纳米颗粒。对产物的光催化测试结果表明其在紫外光照下对甲基橙的降解效率优于普通的无模板合成的TiO2。
     最后对以酪蛋白为模板合成ZnO颗粒进行了初步探讨,得到了形状较规则的ZnO颗粒,且产物的光催化效果比商用TiO2(P25)更加优异。
In recent years, a variety of biological tissues for the template synthesis of materials have attracted extensive attention. Amongst, proteins are of particular interests due to their inherent advantages. Proteins can closely integrate with many inorganic materials in vivo to form the body such as bone, shell of arthropods and skeleton of diatoms. Moreover, proteins are cheap and accessible with a wide range of sources.
     Casein and egg albumin are employed as bio-templates to synthesize titania and zinc oxide with good photocatalytic activities.
     We employ casein as template with water as solvent and obtain titania nanosheets from static solution at room temperature after 10 days. The titania nanosheets are amorphous with smooth surface. Their length and width are in micron-level and their thickness is about 20 nm. The morphology of nanosheets can be preserved to some extent after calcined at 500℃. The calcined titania nanosheets exhibit good photocatalytic activity in the degradation of phenol under UV and visible light irradiation.
     Egg albumin has been used as a template in water solution for the synthesis of titania. Uniform and well dispersed TiO2 nanoparticles with a diameter of ca.9 nm can be obtained. The as-prepared TiO2 nanoparticles are characterized by means of TEM, XPS, FTIR, TG-DTA and UV-Vis. Based on the characterization results, a possible mechanism of heat-induced denatured protein network as template matrix to fabricate TiO2 nanoparticles was carefully proposed, which is described as below:egg albumin solutions and amorphous TiO2 could form inorganic-protein conjugation complexes at room temperature. As temperature increased to 80℃, the protein molecules unfolded, denatured and formed a huge network matrix, with TiO2 embedding in the inner and absorbing on the outer surface of the matrix. At higher temperatures up to 150℃, the gelation network decomposed and uniform TiO2 nanoparticles were obtained after proper crystallization process. The as-prepared TiO2 nanoparticles exhibit superior photocatalytic activity in degradation of methyl orange under UV light irradiation.
     In the second part of work, casein has been applied as a bio-template for synthesis of zinc oxide, which acts as a potential photocatalyst, and some results have been obtained. ZnO particles with regular shape are obtained by means of bio-template and good photocatalytic activity was achieved.
引文
[1]Feynman R P. There's Plenty of Room at the Bottom. An Invitation to Enter a New Field of Physics at the annual meeting of the American Physical Society.1959
    [2]lijima S. Helical microtubes of graphitic carbon. Nature,1991,354:56-58
    [3]Mihut C, Descorme C, Duprez D, et al. Kinetic and Spectroscopic Characterization of Cluster-Derived Supported Pt-Au Catalysts. J Cata,2003,212 (2):125-135
    [4]Vazquez-Zavala A, Garcia-Gomez J, Gomez-Cortes A. Study of the structure and selectivity of Pt-Au catalysts supported on A12O3, TiO2, and SiO2. App Surf Sci,2000,167(3):177-183
    [5]Klein D L, Roth R, Lim A K L, et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature,1997,389:699-701
    [6]Pool R. The Smallest Chemical Plants. Science,1994,263:1698-1699
    [7]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes. Accounts Chem Res,1999,32:435-445
    [8]Xia Y N, Yang P D, Sun Y G, et al.One-dimensional nanostructures:Synthesis, characterization and applications. Adv Mater,2003,15:353-389
    [9]Xia Y N, Yang P D. Guest Editorial:Chemistry and physics of nanowires. Adv Mater,2003, 15:351-352
    [10]Vaia R A, Ishii H, Giannelis E P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater,1993,5 (12): 1694-1696
    [11]Yamashita I. Fabrication of a two-dimensional array of nano-particles using ferritin molecule. Thin Solid Films,2001,393:12-18
    [12]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [13]王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2001
    [14]王世敏,许祖勋等.纳米材料制备新技术.武汉:化学工业出版社,2001
    [15]Bian J M, Li X M, Gao X D, et al. Appl Phys Lett,2004,84 (4):541-543
    [16]赵俊亮,李效民,边继明等.喷雾热解法生长N掺杂ZnO薄膜机理分析.无机材料学报,2005,20(4):959-964
    [17]Landsberg A, Campbell T T. Freeze-dry technique for making ultra-fine metal powder. J Metal,1965,8:856-860
    [18]Johnson D W, Schnettler F J. Characerization of freeze-dried A12O3 and Fe2O3. J Am Ceram Soc,1970,53:440-444
    [19]Roehrig F K, Wright T R. Carbide synthesis by freeze-drying. J Am Ceram Soc,1971,55:58
    [20]Banerjee A N, Maity R, Ghosh P K, et al. Thermoelectric properties and electrical characteristics of sputter-deposited p-CuA102 thin films. Thin Solid Films,2005,474: 261-266
    [21]Banerjee A N, Chattopadhyay K K. Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuA102 thin films. J Appl Phys,2005,97 (8):084308
    [22]Kotov Y A, Azarkevich E I. Producing Al and A12O3 nanopowders by electrical explosion of wires. Key Eng Mater,1997,132 (1):173-176
    [23]Suzuki T, Keawchai K, Jiang W H, et al. Nanosize Al2O3 powder production by pulsed wire discharge. Jpn J Appl Phys,2001,40:1073-1075
    [24]Kotov Yu A. Electric explosion of wires as a method for preparation of nanopowders. J Nanopart Res,2003,5:539-550
    [25]Lakshmi B B, Patrissi C J, Martin C R. Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures. Chem Mater,1997,9(11),2544-2550
    [26]Antonelli D M, Ying J Y. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method.2003,34:2014-2017
    [27]Kawashita M, Tsuneyamaa S, Miyajia F, et al. Antibacterial silver-containing silica glass prepared by sol-gel method.2000,21:393-398
    [28]Wang X, Li Y D. Selected control hydrothermal synthesis of a and β MnO2 nanowires. J Am Chem Soc,2002,124:2880-2881
    [29]Wang X, Li Y D. Hydrothermal reduction route to Mn(OH)2 and MnCO3 nanocrystals. Mater Chem Phys,2003,82:419-422
    [30]Li Y D, Liao H W, Ding Y, et al. Solvothermal Elemental Direct Reaction to CdE (E=S, Se, Te) Semiconductor Nanorod. Inorg Chem,1999,38(7):1382-1387
    [31]Yang J, Zeng J H, Yu S H, et al. Formation Process of CdS Nanorods via Solvothermal Route. Chem Mater,2000,12 (11):3259-3263
    [32]Deng Z X, Wang C, Sun X M, et al. Structure-Directing Coordination Template Effect of Ethylenediamine in Formations of ZnS and ZnSe Nanocrystallites via Solvothermal Route. Inorg Chem,2002,41 (4):869-873
    [33]Zarur A J, Ying J Y. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature,2000,403:65-67
    [34]Boutonneta M, Kizlinga J, Stenius P, et al. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf,1982,5:209-225
    [35]Santra S, Tapec R, Theodoropoulou N, et al. Synthesis and Characterization of Silica-Coated Iron Oxide Nanoparticles in Microemulsion:The Effect of Nonionic Surfactants. Langmuir, 2001,17 (10),2900-2906
    [36]Mane R S, Lokhande C D. Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys,2000,65:1-31
    [37]Lifshitza E, Daga I, Litvina 1, et al. Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods. Chem Phys Lett,1998,288:188-196
    [38]Hansen B N, Hybertson B M, Barkley R M, et al. Supercritical fluid transport-chemical deposition of films. Chem Mater,1992,4 (4):749-752
    [39]Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B,1990,42:9458-9471
    [40]Bower C, Zhou O, Zhu W, et al. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett,2000,77:2767-2769
    [41]Masuda H, Yanagishita T, Yasui K, et al. Synthesis of Well-Aligned Diamond Nanocylinders. Adv Mater,2001,13:247-249
    [42]Che G, Lakshmi B B, Martin C R, et al. Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chem Mater,1998,10 (1): 260-267
    [43]Liu X, Wu X H, Cao H, et al. Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J Appl Phys,2004,95: 3141-3147
    [44]Banerjee S, Dan A, Chakravorty D. Review Synthesis of conducting nanowires. J Mater Sci, 2002,37:4261-4271
    [45]Xu D S, Xu Y J, Chen D P, et al. Preparation of CdS Single-Crystal Nanowires by Electrochemically Induced Deposition. Adv Mater,2000,12:520-522
    [46]Cao H Q, Xu Z, Sang H, et al. Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules. Adv Mater,2001,13:121-123
    [47]Zheng M J, Zhang L D, Zhang X Y, et al. Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes. Chem Phys Lett, 2001,334:298-302
    [48]Tu W X, Liu H F. Rapid synthesis of nanoscale colloidal metal clusters by microwave
    Irradiation. J Mater Chem,2000,10:2207-2211
    [49]Tu W X, Liu H F. Continuous Synthesis of Colloidal Metal Nanoclusters by Microwave Irradiation. Chem Mater,2000,12 (2):564-567
    [50]Park S E, Kim D S, Chang J S, et al. Synthesis of MCM-41 using microwave heating with ethylene glycol. Catal Today,1998,44:301-308
    [51]Verma S, Joy P A, Khollam Y B, et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Mater Lett,2004,58:1092-1095
    [52]Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures.1991,254:1312-1319
    [53]Sauer M, Meier W. Responsive nanocapsules. Chem Commun,2001,55-56
    [54]Sun S H. Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles. Adv Mater,2006,18:393-403
    [55]Shevchenko E V, Talapin D V, Rogach A L, et al. Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. J Am Chem Soc,2002,124 (38):11480-11485
    [56]Engelkamp H, Middelbeek S, Nolte R J M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. Science,1999,284:785-788
    [57]Penner R M, Martin C R. Controlling the Morphology of Electronically Conductive Polymers. J Electrochem Soc,1986,133:2206-2207
    [58]Huang H Y, Remsen E E, Kowalewski T, et al. Nanocages Derived from Shell Cross-Linked Micelle Templates. J Am Chem Soc,1999,121:3805-3806
    [59]Iwahori K, Yamashita Ⅰ. Bio-template Synthesis of Nanoparticle by Cage-shaped Protein Supramolecule, Apoferritin. J Cluster Sci,2007,18:358-370
    [60]Caruso F, Caruso R A, Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science,1998,282:1111-1114
    [61]Furneaux R C, Rigby W R, Davidson A P. The formation of controlled-porosity membranes from anodically oxidized aluminium. Nature,1989,337:147-149
    [62]Johnson S A, Ollivier P J, Mallouk T E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science,1998,283:963-965
    [63]严晗,刘胜,甘志银等,基于碳纳米管模板的氮化镓纳米线束合成,纳米技术与精密工程,2009,7:191-194
    [64]Rodriguez-Mirasol J, Cordero T, Radovic L R, et al. Structural and Textural Properties of Pyrolytic Carbon Formed within a Microporous Zeolite Template. Chem Mater,1998 10 (2): 550-558
    [65]Schonenberger C, van der Zande B M I, Fokkink L G J, et al. Template Synthesis of Nanowires in Porous Polycarbonate Membranes:Electrochemistry and Morphology. J Phys Chem B,1997,101 (28):5497-5505
    [66]Jana N R, Gearheart L, Murphy C J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv Mater,2001,13,1389-1393
    [67]Hou H Q, Jun Z, Reuning A, et al. Poly(p-xylylene) Nanotubes by Coating and Removal of Ultrathin Polymer Template Fibers. Macromolecules,2002,35 (7):2429-2431
    [68]Tsukamoto R, Iwahori K, Muraoka M, et al. Synthesis of Co3O4 Nanoparticles Using the Cage-Shaped Protein, Apoferritin. Bull Chem Soc Jpn,2005,78:2075-2081
    [69]Shiomi T, Tsunoda T, Kawai A, et al. Biomimetic synthesis of lysozyme-silica hybrid hollow particles using sonochemical treatment:Influence of pH and lysozyme concentration on morphology. Chem Mater,2007,19:4486-4493
    [70]Wu Q S, Zheng N W, Ding Y P, et al. Micelle-template inducing synthesis of winding ZnS nanowires. Inorg Chem Commun,2002,5:671-673
    [71]Shi H T, Qi L M, Ma J M, et al. Polymer-Directed Synthesis of Penniform BaWO4 Nanostructures in Reverse Micelles. J Am Chem Soc,2003,125 (12):3450-3451
    [72]朱振峰,杨冬,刘辉等,生物模板法制备多孔陶瓷的研究进展,材料导报:综述篇,2009,23(11):50-54
    [73]Wang Y J, Tang Y, Dong A G, et al. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. J Mater Chem,2002,12, 1812-1818
    [74]Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain Templates. Chem. Commun,2003,22:2784-2785
    [75]Zhang W, Zhang D, Fan T X, et al. Biosynthesis of cathodoluminescent zinc oxide replicas using butterfly (Papilio paris) wing scales as templates. Mater Sci Eng C.2009,29:92-96
    [76]Kim Y. Small Structures Fabricated Using Ash-Forming Biological Materials as Templates. Biomacromolecules 2003,4,908-913
    [77]Rambo C R, Sieber H. Novel synthetic route to Biomorphic Al2O3 ceramics. Adv Mater, 2005,17:1088-1091
    [78]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature,1997,385:420-423
    [79]Li Z, Chung S W, Nam J M, et al. Living Templates for the Hierarchical Assembly of Gold Nanoparticles. Angew Chem Int Ed,2003,42:2306-2309
    [80]Dujardin E, Peet C, Stubbs G, et al. Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates. Nano Lett,2003,3 (3):413-417
    [81]Storhoff J J, Mirkin C A. Programmed Materials Synthesis with DNA. Chem Rev,1999,99: 1849-1862
    [82]Knez M, Bittner A M, Boes F, et al. Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires. Nano Lett,2003,3 (8):1079-1082
    [83]Sewell S L, Wright D W. Biomimetic Synthesis of Titanium Dioxide Utilizing the R5 Peptide Derived from Cylindrotheca fusiformis. Chem Mater,2006,18 (13):3108-3113
    [84]Meegan J E, Aggeli A, Boden N, et al. Designed Self-Assembled β-Sheet Peptide Fibrils as Templates for Silica Nanotubes.2004,14:31-37
    [85]范杰,余承忠,赵东元.生物蛋清蛋白模板合成海绵状大孔无机氧化物.高等学校化学学报,2001,22:1459-1461
    [86]王克夷.蛋白质导论.北京:科学出版社,2007
    [87]Yamashita I, Hayashi J, Hara M. Bio-template Synthesis of Uniform CdSe Nanoparticles Using Cage-shaped Protein, Apoferritin. Chem Lett,2004,33:1158-1159
    [88]Iwahori K, Yoshizawa K, Muraoka M, et al. Fabrication of ZnSe Nanoparticles in the Apoferritin Cavity by Designing a Slow Chemical Reaction System. Inorg Chem,2005,44: 6393-6400
    [89]Yang L, Xing R M, Shen Q M, et al. Fabrication of Protein-Conjugated Silver Sulfide Nanorods in the Bovine Serum Albumin Solution. J Phys Chem B 2006,110:10534-10539
    [90]Qin D Z, Ma X M, Yang L, et al. Biomimetic synthesis of HgS nanoparticles in the bovine serum albumin solution. J Nanopart Res,2008,10:559-566
    [91]Sumerel J L, Yang W J, Kisailus D, et al. Biocatalytically Templated Synthesis of Titanium Dioxide. Chem Mater,2003,15:4804-4809
    [92 Walter P, Welcomme E, Hallgot P, et al. Early Use of PbS Nanotechnology for an Ancient Hair Dyeing Formula. Nano Lett,2006,6 (10):2215-2219
    [93]Xie J P, Lee J Y, Wang D I C, et al. Silver Nanoplates:From Biological to Biomimetic Synthesis. ACS Nano,2007,1 (5):429-439
    [94]Li-Chan E C Y, Powrie W D, Nakai S. In Egg Science and Technology. Stadelman W J, Cotterill O J. Eds. The Haworth Press:New York,1995,105-175
    [95]Powrie W D, Nakai S. In Egg Science and Technology. Stadelman W J, Cotterill O J. Eds. Avi Publishing:Westport, CT,1986,97-139
    [96]Drakos A, Kiosseoglou V. Stability of Acidic Egg White Protein Emulsions Containing Xanthan Gum. J Agric Food Chem 2006,54 (26):10164-10169
    [97]Sun Y X, Ishida T, Hayakawa S. Dielectric Study of Heat-Denatured Ovalbumin in Aqueous Solution by Time Domain Reflectometry Method. J Agric Food Chem 2004,52 (8): 2351-2357
    [98]Wang A J, Bolen D W. A Naturally Occurring Protective System in Urea-Rich Cells: Mechanism of Osmolyte Protection of Proteins against Urea Denaturation. Biochemistry, 1997,36 (30):9101-9108
    [99]Halwer, M. Disulfide Cross-links in Denatured Ovalbumin. J Am Chem Soc,1954,76: 183-186
    [100]Gagen W L, Holme J. The Denaturation and Aggregation of Ovalbumin by Urea in Neutral Solutions. J Phys Chem,1964,68:723-730
    [101]Holme, J. The Thermal Denaturation and Aggregation of Ovalbumin. J Phys Chem,1963, 67:782-788
    [102]Fricke H, Landmann W, Leone C, et al. Application of Optical Rotation Measurements in Studying the Structural Degradation of γ-Irradiated Ovalbumin. J Phys Chem,1959,63: 932-935
    [103]Hanna G F, Foster J F. Streaming Orientation Studies on Denatured Proteins. Ⅳ. Denaturation of Ovalbumin with Surface Active Ions. J Phys Chem,1953,57:614-617
    [104]Van der Plancken I, Van Loey A, Hendrickx M E G. Changes in Sulfhydryl Content of Egg White Proteins Due to Heat and Pressure Treatment. J Agric Food Chem,2005,53 (14): 5726-5733
    [105]Ngarize S, Herman H, Adams A, et al. Comparison of Changes in the Secondary Structure of Unheated, Heated, and High-Pressure-Treated β-Lactoglobulin and Ovalbumin Proteins Using Fourier Transform Raman Spectroscopy and Self-Deconvolution. J Agric Food Chem, 2004,52 (21):6470-6477
    [106]Matsudomi N, Kanda Y, Yoshika Y, et al. Ability of as-Casein to Suppress the Heat Aggregation of Ovotransferrin. J Agric Food Chem,2004,52 (15):4882-4886
    [107]Mine Y. Laser Light Scattering Study on the Heat-Induced Ovalbumin Aggregates Related to Its Gelling Property. J Agric Food Chem,1996,44 (8):2086-2090
    [108]Broersen K, Van Teeffelen A M M, Vries A, et al. Do Sulfhydryl Groups Affect Aggregation and Gelation Properties of Ovalbumin? J Agric Food Chem,2006,54 (14):5166-5174
    [109]Geng B Y, Zhan F M, Jiang H, et al. Egg albumin as a nanoreactor for growing single-crystalline Fe3O4 nanotubes with high yields. Chem Commun,2008,5773-5775
    [110]张建忠,郦一心.酪蛋白和酪蛋白制品的开发.中国乳品工业,1998,26(6):31-32
    [111]Whitaker J R, Tannenbaum S R. Food Proteins. Publisher:A V 1 Publishing Company, Incorporated,1977
    [112]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238:37-38
    [113]Sclapani A, Mozzanega M, Herrmann J. Influence of Silver Deposits on the Photocatalytic Activity of Titania. J Catal,1997,168:117-120
    [114]Tachibana Y, Haque S A, Mercer I P, et al. Electron injection and recombination in dye sensitized nanocrystalline titanium dioxide films:A comparison of ruthenium bipyridyl and porphyrin sensitizer dyes. J Phys Chem B,2000,104 (6):1198-1205
    [115]Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films. Chem Mater,2002,14 (6):2812-2816
    [116]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull Environ Contain Toxicol,1976,16:697-701.
    [117]Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis:A review. Ind Eng Chem Res,2004,43 (24):7683-7696
    [118]Chakrabartia S, Dutta B K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J Hazard Mater,2004,112 (3):269-278
    [119]Morrison S R, Freund T. Chemical Role of Holes and Electrons in ZnO Photocatalysis. J Chem Phys,1967,47:1543-1551
    [120]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental Applications of Semiconductor Photocatalysis. Chem Rev,1995,95 (1):69-96
    [121]Wang C, Zhao J C, Wang X M, et al. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Appl Catal B:Environ,2002,39 (3): 269-279
    [122]Daneshvar N, Salari D, Khataee A R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A 2004,162: 317-322
    [1]Anson M L. Advances in protein chemistry. Academic Press,1945,361-363
    [2]Gong X Q, Selloni A. Reactivity of Anatase TiO2 Nanoparticles:The Role of the Minority (001) Surface. J Phys Chem B,2005,109 (42):19560-19562
    [3]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453:638-641
    [4]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238:37-38
    [5]Kabra K, Chaudhary R, Sawhney R L. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis:A review. Ind Eng Chem Res,2004,43 (24):7683-7696
    [6]Hoffmann M R, Martin S T, Choi W Y, et al. Environmental Applications of Semiconductor Photocatalysis. Chem Rev,1995,95 (1):69-96
    [7]Morrison S R, Freund T. Chemical Role of Holes and Electrons in ZnO Photocatalysis. J Chem Phys,1967,47:1543-1551
    [8]Zhang Z B, Wang C C, Zakaria R, et al. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J Phys Chem B,1998,102 (52):10871-10878
    [9]Almquista C B, BiswasRole P. Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity. J Catal,2002,212 (2):145-156
    [10]Gajovic A, Furic K, Tomasic N, et al. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures. J Alloys Compd,2005,398:188-199
    [11]Green R J, Hopkinson I, Jones R A L. Unfolding and Intermolecular Association in Globular Proteins Adsorbed at Interfaces. Langmuir,1999,15 (15):5102-5110
    [12]Ngarize S, Herman H, Adams A, et al. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated beta-lactoglobulin and ovalbumin proteins using fourier transform raman spectroscopy and self-deconvolution. J Agric Food Chem,2004,52 (21):6470-6477
    [13]Broersen K, Van Teeffelen A M M, Vries A, et al. Do sulfhydryl groups affect aggregation and gelation properties of ovalbumin? J Agric Food Chem,2006,54 (14):5166-5174
    [14]Quitain A T, Daimon H, Fujie K, et al. Microwave-Assisted Hydrothermal Degradation of Silk Protein to Amino Acids. Ind Eng Chem Res,2006,45 (13):4471-4474
    [15]McArthur S L. Applications of XPS in bioengineering. Surf Interface Anal,2006,38: 1380-1385
    [16]Debiemme-Chouvy C, Haskouri S, Cachet H. Study by XPS of the chlorination of proteins aggregated onto tin dioxide during electrochemical production of hypochlorous acid. Appl Surf Sci,2007,253 (12):5506-5510
    [17]Fang J, Wang F, Qian K. Bifunctional N-Doped Mesoporous TiO2 Photocatalysts. J Phys Chem C,2008,112 (46):18150-18156
    [18]Sousa S R, Moradas-Ferreira P, Saramago B, et al. Human Serum Albumin Adsorption on TiO2 from Single Protein Solutions and from Plasma. Langmuir,2004,20:9745-9754
    [19]Dablemont C, Lang P, Mangeney C, et al. FTIR and XPS Study of Pt Nanoparticle Functionalization and Interaction with Alumina. Langmuir,2008,24 (11):5832-5841
    [20]Jagadale T C, Takale S P, Sonawane R S, et al. N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol-Gel Method. J Phys Chem C,2008,112 (37): 14595-14602
    [21]Abdallah W A, Taylor S D. Study of Asphaltenes Adsorption on Metallic Surface Using XPS and TOF-SIMS. J Phys Chem C,2008,112 (48):18963-18972
    [22]Zhao H S, He W, Wang Y J, et al. Biomineralizing synthesis of mesoporous hydroxyapatite calcium pyrophosphate polycrystal using ovalbumin as biosurfactant. Mater Chem Phys, 2008,111:265-270
    [23]Yang L, Xing R M, Shen Q M, et al. Fabrication of Protein-Conjugated Silver Sulfide Nanorods in the Bovine Serum Albumin Solution. J Phys Chem B,2006,110:10534-10539
    [24]Haris P I, Severcan F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B:Enzym,1999,7:207-221
    [25]Najera J J, Horn A B. Infrared spectroscopic study of the effect of oleic acid on the deliquescence behaviour of ammonium sulfate aerosol particles. Phys Chem Chem Phys, 2009,11,483-494
    [26]Kim S Y, Lim T H, Chang T S, et al. Photocatalysis of methylene blue on titanium dioxide nanoparticles synthesized by modified sol-hydrothermal process of TiCl4.Catal Lett,2007, 117:112-118
    [27]Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials,2004,25 (17):3829-3835
    [28]Gaihre B, Aryal S, Barakat N A M, et al. Gelatin stabilized iron oxide nanoparticles as a three dimensional template for the hydroxyapatite crystal nucleation and growth. Mater Sci Eng C, 2008,28(8):1297-1303
    [29]Guo M L, Sulc F, Ribbe M W, et al. Direct Assessment of the Reduction Potential of the [4Fe-4S]1+/0 Couple of the Fe Protein from Azotobacter vinelandii. J Am Chem Soc,2002, 124(41):12100-12101
    [30]Richard C, Bosquet F, Pilichowski J F. Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions:effect of substrate concentration on the distribution of products. J Photochem Photobiol A:Chem,1997,108:45-49
    [31]Driessen M D, Miller T M, Grassian V H. Photocatalytic oxidation of trichloroethylene on ZnO:characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy. J Mol Catal A:Chem,1998,131:149-156
    [32]Yeber M C, Rodriguez J, Freer J, et al. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere,2000,41:1193-1197
    [33]Dijken A V, Janssen A H, Smitsmans M H P, et al. Size-selective photoetching of nanocrystalline semiconductor particles. Chem Mater,1998,10:3513-3522
    [34]Neppolian B, Sakthivel S, Arabindoo B, et al. Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts. J Environ Sci Health, Part A:Toxic/Hazardous Subst Environ Eng,1999,34(9):1829-1838
    [35]Gouvea C A K, Wypych F, Moraes SG, et al. Semiconductor assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere,2000,40:433-440
    [36]Dindar B, Icli S. Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight. J Photochem Photobiol A:Chem,2001,140:263-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700