用户名: 密码: 验证码:
DNA过氧化物酶的活性及在生物检测中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA是生命体内十分重要的功能大分子,是绝大多数生物物种的遗传信息的载体。DNA具有不同的二级结构,包括三螺旋DNA、G-四链体和i-motif序列等。探讨DNA的结构与功能的关系具有十分重要的意义,可以加深对生命本质的认识以及拓展DNA在各个领域的应用。
     DNA过氧化物酶是由G-四链体DNA与氯高铁血红素形成的复合物,具有过氧化物酶的活性,能够催化双氧水(H2O2)氧化2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)发生显色反应。本论文研究了DNA过氧化物酶的结构与功能的关系,并设计了一种基于DNA过氧化物酶的检测腺苷的生物传感器。
     1.通过对DNA过氧化物酶的DNA序列的末端进行突变的策略,利用紫外光谱,圆二色谱等实验手段,本文较系统地研究了DNA过氧化物酶的结构与酶活力的关系。我们发现在DNA过氧化物酶的DNA序列的末端增加核苷dTn会对其酶的活性发生较大的影响。当组装成的DNA过氧化物酶的结构越稳定,越有利于酶与底物(H2O2)间的结合,DNA过氧化物酶表现出的活性就越高,反之则越低。
     2.进而我们设计了一种基于DNA过氧化物酶的生物传感器,它是以核酸适配子为识别分子,以Fok I限制性内切酶为信号控制器,以DNA过氧化物酶为信号输出装置。该DNA生物传感器具有很好的灵敏度和选择性,只对腺苷有识别作用,且其最低检测下限可达500nM,对于其他核苷则无响应。此生物传感器能通过酶促反应的显色效果实现可视化检测,而无需依赖于仪器。
DNA is an important functional macromolecule in the life, as the carrier of genetic information in the vast majority of biological species. There are different secondary structures of DNA, including triple helix DNA, G-quadruplex and i-motif sequences, etc.. It is of great significance to investigate the relationship between DNA structure and function, which could help us to deepen the understanding on the essence of life and expand the applications of DNA in various fields.
     DNAzyme, formed by hemin and G-quadruplex DNA, has demonstrated peroxidase-like activities, and it can catalyze the oxidation of 2,2'-azinobis(3-ethylbenzothiozoline)-6-sulfonic acid (ABTS) by H2O2 as color-changed reaction. This dissertation studied the relationship between the structure and function of DNAzyme, and designed a DNAzyme-based biosensor for the detection of adenosine.
     1. By the strategy that mutated the end of the DNA sequence of DNAzyme, using ultraviolet spectroscopy, circular dichroism and other experimental methods, this paper systematically studied the relationship between the structure of DNAzyme and its peroxidase activity. We found that adding dTn to the end of the DNA sequence of the enzyme would make great influence on the peroxidase activity. And the more stable the assembled DNAzyme was, the more conducive the binding of enzyme and substrate (H2O2) could be, which showed a higher peroxidase activity, and vice versa, the lower.
     2. And then we designed a DNAzyme-based biosensor that employed the aptamer as the receptor, restriction enzyme Fok I as the signal controller, DNAzyme as the resultant output device. This DNA biosensor had good sensitivity and selectivity, only to have identified the present of adenosine with the limit of detection (LOD) of 0.5μM, and there was no response to other nucleosides. This biosensor can achieve the optical detection through the color change of the enzymatic reaction, instead of relying on the instrument.
引文
1. Muir, T. W., Chemical biology in a time of transition. ACS Chem Biol 2009,4, 241-243.
    2. Doudna, J. A., Chemical biology at the crossroads of molecular structure and mechanism. Nat Chem Biol 2005,1,300-303.
    3. Muir, T. W., Chemical biology in a time of transition. ACS Chem Biol 2009,4, 241-243.
    4. Leconte, A. M.; Romesberg, F. E., Chemical biology:a broader take on DNA. Nature 2006,444,553-555.
    5. Bock, R.M., Nucleic acid structure function relations. Science 1970,170, 351-355.
    6. 王镜岩,朱圣庚,徐长法 生物化学 高等教育出版社,2003,第三版
    7. 杨铭 结构生物学与现代药学研究 科学出版社,2008.
    8. Little, P. F., Structure and function of the human genome. Genome Res 2005,15, 1759-1766.
    9. Watson, J. D.; Crick, F. H., Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953,171,737-738.
    10. Joshua-Tor, L.; Rabinovich, D.; Hope, H.; Frolow, F.; Appella, E.; Sussman, J. L., The three-dimensional structure of a DNA duplex containing looped-out bases. Nature 1988,334,82-84.
    11. Lin, C. H.; Patel, D. J., Solution structure of the covalent duocarmycin A-DNA duplex complex. J Mol Biol 1995,248,162-179.
    12. Herbert, A.; Rich, A., Left-handed Z-DNA:structure and function. Genetica 1999,106,37-47.
    13. Uegaki, K.; Shirakawa, M.; Harada, H.; Taniguchi, T.; Kyogoku, Y., Secondary structure and folding topology of the DNA binding domain of interferon regulatory factor 2, as revealed by NMR spectroscopy. FEBS Lett 1995,359, 184-188.
    14. Wu, L.; Hu, P.; Xiao, Y.; Zhang, M.; Zhang, L.; Weng, X.; Wu, X.; Zhou, X.; Cao, X., Synthesis and DNA-recognition and -cleavage properties of multiply charged porphyrin esters. Chem Biodivers 2008,5,153-161.
    15. Aymami, J.; Coll, M.; van der Marel, G. A.; van Boom, J. H.; Wang, A. H.; Rich, A., Molecular structure of nicked DNA:a substrate for DNA repair enzymes. Proc Natl Acad Sci USA 1990,87,2526-2530.
    16. Takasuka, T. E.; Cioffi, A.; Stein, A., Sequence information encoded in DNA that may influence long-range chromatin structure correlates with human chromosome functions. PLoS One 2008,3, e2643.
    17. Wang, E.; Malek, S.; Feigon, J., Structure of a G.T.A triplet in an intramolecular DNA triplex. Biochemistry 1992,31,4838-4846.
    18. Radhakrishnan, I.; Patel, D. J., Solution structure of a pyrimidine. purine. pyrimidine DNA triplex containing T.AT, C+.GC and G.TA triples. Structure 1994,2,17-32.
    19. Radhakrishnan, I.; Patel, D. J., Solution structure of a purine.purine.pyrimidine DNA triplex containing G.GC and T.AT triples. Structure 1993,1,135-152.
    20. Gellert, M.; Lipsett, M. N.; Davies, D. R., Helix formation by guanylic acid. Proc Natl Acad Sci U S A 1962,48,2013-2018.
    21. Zahler, A. M.; Williamson, J. R.; Cech, T. R.; Prescott, D. M., Inhibition of telomerase by G-quartet DNA structures. Nature 1991,350,718-720.
    22. Burge, S.; Parkinson, G. N.; Hazel, P.; Todd, A. K.; Neidle, S., Quadruplex DNA:sequence, topology and structure. Nucleic Acids Res 2006,34,5402-5415.
    23. Neidle, S.; Parkinson, G. N., Quadruplex DNA crystal structures and drug design. Biochimie 2008,90,1184-1196.
    24. Simonsson, T., G-quadruplex DNA structures-variations on a theme. Biol Chem 2001,382,621-628.
    25.张礼和,王梅祥 化学生物学进展 化学工业出版社,2005.
    26. Hazel, P.; Parkinson, G. N.; Neidle, S., Predictive modelling of topology and loop variations in dimeric DNA quadruplex structures. Nucleic Acids Res 2006,34, 2117-2127.
    27. Gubala, V.; Betancourt, J. E.; Rivera, J. M., Expanding the Hoogsteen edge of 2'-deoxyguanosine:consequences for G-quadruplex formation. Org Lett 2004,6, 4735-4738.
    28. Gray, R. D.; Chaires, J. B., Kinetics and mechanism of K+-and Na+-induced folding of models of human telomeric DNA into G-quadruplex structures. Nucleic Acids Res 2008,36,4191-4203.
    29. Lim, K. W.; Amrane, S.; Bouaziz, S.; Xu, W.; Mu, Y.; Patel, D. J.; Luu, K. N.; Phan, A. T., Structure of the human telomere in K+ solution:a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 2009,131, 4301-4309.
    30. Gavathiotis, E.; Searle, M. S., Structure of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat:evidence for A-tetrad formation from NMR and molecular dynamics simulations. Org Biomol Chem 2003,1,1650-1656.
    31. Kong, D. M.; Yang, W.; Wu, J.; Li, C. X.; Shen, H. X., Structure-function study of peroxidase-like G-quadruplex-hemin complexes. Analyst 2010,135,321-326.
    32. Fernando, H.; Sewitz, S.; Darot, J.; Tavare, S.; Huppert, J. L.; Balasubramanian, S., Genome-wide analysis of a G-quadruplex-specific single-chain antibody that regulates gene expression. Nucleic Acids Res 2009,37,6716-6722.
    33. Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H., Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 2002,99,11593-11598.
    34. Stewart, S. A.; Hahn, W. C.; O'Connor, B. F.; Banner, E. N.; Lundberg, A. S.; Modha, P.; Mizuno, H.; Brooks, M. W.; Fleming, M.; Zimonjic, D. B.; Popescu, N. C.; Weinberg, R. A., Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci U S A 2002,99, 12606-12611.
    35. Bryan, T. M.; Marusic, L.; Bacchetti, S.; Namba, M.; Reddel, R. R., The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit. Hum Mol Genet 1997,6,921-926.
    36. Tian, X.; Chen, B.; Liu, X., Telomere and telomerase as targets for cancer therapy. Appl Biochem Biotechnol 2010,160,1460-1472.
    37. Gomez, D.; Aouali, N.; Renaud, A.; Douarre, C.; Shin-Ya, K.; Tazi, J.; Martinez, S.; Trentesaux, G.; Morjani, H.; Riou, J. F., Resistance to senescence induction and telomere shortening by a G-quadruplex ligand inhibitor of telomerase. Cancer Res 2003,63,6149-6153.
    38. Dai, J.; Dexheimer, T. S.; Chen, D.; Carver, M.; Ambrus, A.; Jones, R. A.; Yang, D., An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc 2006,128,1096-1098.
    39. Phan, A. T.; Modi, Y. S.; Patel, D. J., Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc 2004,126, 8710-8716.
    40. Phan, A. T.; Kuryavyi, V.; Burge, S.; Neidle, S.; Patel, D. J., Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. J Am Chem Soc 2007,129,4386-4392.
    41. Guo, K.; Pourpak, A.; Beetz-Rogers, K.; Gokhale, V.; Sun, D.; Hurley, L. H., Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J Am Chem Soc 2007,129, 10220-10228.
    42. Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H., Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 2002,99,11593-11598.
    43. Paramasivam, M.; Cogoi, S.; Filichev, V. V.; Bomholt, N.; Pedersen, E. B.; Xodo, L. E., Purine twisted-intercalating nucleic acids:a new class of anti-gene molecules resistant to potassium-induced aggregation. Nucleic Acids Res 2008,36, 3494-3507.
    44. Huppert, J. L., Four-stranded nucleic acids:structure, function and targeting of G-quadruplexes. Chem Soc Rev 2008,37,1375-1384.
    45. Garner, T. P.; Williams, H. E.; Gluszyk, K. I.; Roe, S.; Oldham, N. J.; Stevens, M. F.; Moses, J. E.; Searle, M. S., Selectivity of small molecule ligands for parallel and anti-parallel DNA G-quadruplex structures. Org Biomol Chem 2009, 7,4194-4200.
    46. Temime-Smaali, N.; Guittat, L.; Sidibe, A.; Shin-ya, K.; Trentesaux, C.; Riou, J. F., The G-quadruplex ligand telomestatin impairs binding of topoisomerase Ⅲalpha to G-quadruplex-forming oligonucleotides and uncaps telomeres in ALT cells. PLoS One 2009,4, e6919.
    47. Qin, Y.; Rezler, E. M.; Gokhale, V.; Sun, D.; Hurley, L. H., Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res 2007,35,7698-7713.
    48. Ma, H.; Zhang, M.; Zhang, D.; Huang, R.; Zhao, Y.; Yang, H.; Liu, Y.; Weng, X.; Zhou, Y.; Deng, M.; Xu, L.; Zhou, X., Pyridyl-substituted corrole isomers: synthesis and their regulation to G-quadruplex structures. Chem Asian J 2010,5, 114-122.
    49. Sperling, J.; Azubel, M.; Sperling, R., Structure and function of the Pre-mRNA splicing machine. Structure 2008,16,1605-1615.
    50. Fitch, W. M., Calculating the expected frequencies of potential secondary structure in nucleic acids as a function of stem length, loop size, base composition and nearest-neighbor frequencies. Nucleic Acids Res 1983,11,4655-4663.
    51. Landgraf, R.; Chen, C. H.; Sigman, D. S., R-loop stability as a function of RNA structure and size. Nucleic Acids Res 1995,23,3516-3523.
    52. McClain, W. H.; Gabriel, K.; Lee, D.; Often, S., Structure-function analysis of tRNA(Gln) in an Escherichia coli knockout strain. RNA 2004,10,795-804.
    53. Halder, K.; Wieland, M.; Hartig, J. S., Predictable suppression of gene expression by 5'-UTR-based RNA quadruplexes. Nucleic Acids Res 2009,37, 6811-6817.
    54. Wieland, M.; Hartig, J. S., Investigation of mRNA quadruplex formation in Escherichia coli. Nat Protoc 2009,4,1632-1640.
    55. Wieland, M.; Hartig, J. S., RNA quadruplex-based modulation of gene expression. Chem Biol 2007,14,757-763.
    56. Joachimi, A.; Benz, A.; Hartig, J. S., A comparison of DNA and RNA quadruplex structures and stabilities. Bioorg Med Chem 2009,17,6811-6815.
    57. Enver, T.; Zhang, J. W.; Papayannopoulou, T.; Stamatoyannopoulos, G., DNA methylation:a secondary event in globin gene switching? Genes Dev 1988,2, 698-706.
    58. Raschle, M.; Knipscheer, P.; Enoiu, M.; Angelov, T.; Sun, J.; Griffith, J. D.; Ellenberger, T. E.; Scharer, O. D.; Walter, J. C., Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 2008,134,969-980.
    59. Scott, W. G.; Martick, M.; Chi, Y. I., Structure and function of regulatory RNA elements:ribozymes that regulate gene expression. Biochim Biophys Acta 2009, 1789,634-641.
    60. Birch, J. L.; Zomerdijk, J. C., Structure and function of ribosomal RNA gene chromatin. Biochem Soc Trans 2008,36,619-624.
    61. Cropp, T. A.; Chin, J. W., Expanding nucleic acid function in vitro and in vivo. Curr Opin Chem Biol 2006,10,601-606.
    62. Scott, J. F.; Eisenberg, S.; Bertsch, L. L.; Kornberg, A., A mechanism of duplex DNA replication revealed by enzymatic studies of phage phi X174:catalytic strand separation in advance of replication. Proc Natl Acad Sci U S A 1977,74, 193-197.
    63. Zhang, Y.; Leibowitz, M. J., Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans. Nucleic Acids Res 2001,29,2644-2653.
    64. Forconi, M.; Sengupta, R. N.; Liu, M. C.; Sartorelli, A. C.; Piccirilli, J. A.; Herschlag, D., Structure and function converge to identify a hydrogen bond in a group I ribozyme active site. Angew Chem Int Ed Engl 2009,48,7171-7175.
    65. Gunawardane, L. S.; Saito, K.; Nishida, K. M.; Miyoshi, K.; Kawamura, Y.; Nagami, T.; Siomi, H.; Siomi, M. C., A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 2007,315, 1587-1590.
    66. Summerton, J. E., Morpholino, siRNA, and S-DNA compared:impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem 2007,7,651-660.
    67. Fang, X.; Tan, W., Aptamers generated from cell-SELEX for molecular medicine:a chemical biology approach. Acc Chem Res 2010,43,48-57.
    68. Berezovski, M.; Musheev, M.; Drabovich, A.; Krylov, S. N., Non-SELEX selection of aptamers. J Am Chem Soc 2006,128,1410-1411.
    69. Mayer, G., The chemical biology of aptamers. Angew Chem Int Ed Engl 2009, 48,2672-2689.
    70. Blount, K. F.; Uhlenbeck, O. C., The structure-function dilemma of the hammerhead ribozyme. Annu Rev Biophys Biomol Struct 2005,34,415-440.
    71. Karagiannis, T. C.; El-Osta, A., siRNAs:mechanism of RNA interference, in vivo and potential clinical applications. Cancer Biol Ther 2004,3,1069-1074.
    72. Wilkins, C.; Dishongh, R.; Moore, S. C.; Whitt, M. A.; Chow, M.; Machaca, K., RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 2005,436,1044-1047.
    73. Famulok, M.; Mayer, G.; Blind, M., Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc Chem Res 2000,33,591-599.
    74. Hesselberth, J.; Robertson, M. P.; Jhaveri, S.; Ellington, A. D., In vitro selection of nucleic acids for diagnostic applications. JBiotechnol 2000,74,15-25.
    75. Jakt, L. M.; Nishikawa, S., DNA chip databases, omics, and gene fishing: commentary. Cancer Sci 2008,99,829-835.
    76. Nesvold, H.; Kristoffersen, A. B.; Holst-Jensen, A.; Berdal, K. G., Design of a DNA chip for detection of unknown genetically modified organisms (GMOs). Bioinformatics 2005,21,1917-1926.
    77. Lubrich, D.; Lin, J.; Yan, J., A contractile DNA machine. Angew Chem Int Ed Engl 2008,47,7026-7028.
    78. Eichman, B. F.; Fanning, E., The power of pumping together; deconstructing the engine of a DNA replication machine. Cell 2004,119,3-4.
    79. Okamoto, A.; Tanaka, K.; Saito, I., DNA logic gates. J Am Chem Soc 2004,126, 9458-9463.
    80. Elbaz, J.; Moshe, M.; Willner, I., Coherent activation of DNA tweezers:a "SET-RESET" logic system. Angew Chem Int Ed Engl 2009,48,3834-3837.
    81. Cohen, J. D.; Sadowski, J. P.; Dervan, P. B., Programming multiple protein patterns on a single DNA nanostructure. J Am Chem Soc 2008,130,402-403.
    82. Li, Z.; Wei, B.; Nangreave, J.; Lin, C.; Liu, Y.; Mi, Y.; Yan, H., A replicable tetrahedral nanostructure self-assembled from a single DNA strand. J Am Chem Soc 2009,131,13093-13098.
    83. Mitchell, N.; Schlapak, R.; Kastner, M.; Armitage, D.; Chrzanowski, W.; Riener, J.; Hinterdorfer, P.; Ebner, A.; Howorka, S., A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry. Angew Chem Int Ed Engl 2009,48,525-527.
    84. Jhaveri, S.; Rajendran, M.; Ellington, A. D., In vitro selection of signaling aptamers. Nat Biotechnol 2000,18,1293-1297.
    85. Muller, J.; El-Maarri,O.; Oldenburg, J.; Potzsch, B.; Mayer, G., Monitoring the progression of the in vitro selection of nucleic acid aptamers by denaturing high-performance liquid chromatography. Anal Bioanal Chem 2008,390, 1033-1037.
    86.. Ponomarenko, J. V.; Orlova, G. V.; Frolov, A. S.; Gelfand, M. S.; Ponomarenko, M. P., SELEX DB:a database on in vitro selected oligomers adapted for recognizing natural sites and for analyzing both SNPs and site-directed mutagenesis data. Nucleic Acids Res 2002,30,195-199.
    87. Latham, J. A.; Johnson, R.; Toole, J. J., The application of a modified nucleotide in aptamer selection:novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res 1994,22,2817-2822.
    88. Zhang, H.; Li, X. F.; Le, X. C., Tunable aptamer capillary electrophoresis and its application to protein analysis. J Am Chem Soc 2008,130,34-35.
    89. Stoltenburg, R.; Reinemann, C.; Strehlitz, B., SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 2007,24,381-403.
    90. Chaloin, L.; Lehmann, M. J.; Sczakiel, G.; Restle, T., Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 2002,30,4001-4008.
    91. Liu, J.; Lee, J. H.; Lu, Y., Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 2007,79,4120-4125.
    92. Grabowski, P. J.; Zaug, A. J.; Cech, T. R., The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 1981,23,467-476.
    93. Breaker, R. R.; Joyce, G. F., A DNA enzyme that cleaves RNA. Chem Biol 1994,1,223-229.
    94. Li, Y.; Geyer, C. R.; Sen, D., Recognition of anionic porphyrins by DNA aptamers. Biochemistry 1996,35,6911-6922.
    95. Hollenstein, M.; Hipolito, C. J.; Lam, C. H.; Perrin, D. M., A DNAzyme with three protein-like functional groups:enhancing catalytic efficiency of M2+-independent RNA cleavage. Chembiochem 2009,10,1988-1992.
    96. Li, T.; Dong, S.; Wang, E., G-quadruplex aptamers with peroxidase-like DNAzyme functions:which is the best and how does it work? Chem Asian J 2009, 4,918-922.
    97. Li, Y.; Sen, D., Toward an efficient DNAzyme. Biochemistry 1997,36, 5589-5599.
    98. Li, Y.; Sen, D., The modus operandi of a DNA enzyme:enhancement of substrate basicity. Chem Biol 1998,5,1-12.
    99. Travascio, P.; Bennet, A. J.; Wang, D. Y.; Sen, D., A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chem Biol 1999,6,779-787.
    100. Majhi, P. R.; Shafer, R. H., Characterization of an unusual folding pattern in a catalytically active guanine quadruplex structure. Biopolymers 2006,82,558-569.
    101. Cheglakov, Z.; Weizmann, Y.; Beissenhirtz, M. K.; Willner, I., Ultrasensitive detection of DNA by the PCR-Induced generation of DNAzymes:the DNAzyme primer approach. Chem Commun 2006,3205-3207.
    102. Elbaz, J.; Shlyahovsky, B.; Willner, I., A DNAzyme cascade for the amplified detection of Pb(2+) ions or L-histidine. Chem Commun 2008,1569-1571.
    103. Teller, C.; Shimron, S.; Willner, I., Aptamer-DNAzyme hairpins for amplified biosensing. Anal Chem 2009,81,9114-9119.
    104. Teller, C.; Shimron, S.; Willner, I., Aptamer-DNAzyme hairpins for amplified biosensing. Anal Chem 2009,81,9114-9119.
    105. Kong, D. M.; Cai, L. L.; Guo, J. H.; Wu, J.; Shen, H. X., Characterization of the G-quadruplex structure of a catalytic DNA with peroxidase activity. Biopolymers 2009,91,331-339.
    106. Kong, D. M.; Yang, W.; Wu, J.; Li, C. X.; Shen, H. X., Structure-function study of peroxidase-like G-quadruplex-hemin complexes. Analyst 2010,135,321-326.
    107. Cheng, X.; Liu, X.; Bing, T.; Cao, Z.; Shangguan, D., General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochemistry 2009,48,7817-7823.
    108. He, Y.; Tian, Y.; Mao, C., Human telomeric DNA sequences have a peroxidase apoenzyme activity. Mol Biosyst 2009,5,238-240.
    109. Li, D.; Shlyahovsky, B.; Elbaz, J.; Willner, I., Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. JAm Chem Soc 2007,129,5804-5805.
    110. Yin, B. C.; Ye, B. C.; Tan, W.; Wang, H.; Xie, C. C., An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II). JAm Chem Soc 2009,131,14624-14625.
    111. Li, T.; Wang, E.; Dong, S., G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun 2008,3654-3656.
    112. Lu, N.; Shao, C.; Deng, Z., Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. Chem Commun 2008, 6161-6163.
    113. Barker, T. Q.; Buch, R. M.; Rechnitz, G. A., Intact chemoreceptor-based biosensors. Biotechnol Prog 1990,6,498-503.
    114. Lambrianou, A.; Demin, S.; Hall, E. A., Protein engineering and electrochemical biosensors. Adv Biochem Eng Biotechnol 2008,109,65-96.
    115. de Lorimier, R. M.; Smith, J. J.; Dwyer, M. A.; Looger, L. L.; Sali, K. M.; Paavola, C. D.; Rizk, S. S.; Sadigov, S.; Conrad, D. W.; Loew, L.; Hellinga, H. W., Construction of a fluorescent biosensor family. Protein Sci 2002,11, 2655-2675.
    116. Liu, G.; Lin, Y., Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 2006,78,835-843.
    117. Bates, P. J.; Reddoch, J. F.; Hansakul, P.; Arrow, A.; Dale, R.; Miller, D. M., Biosensor detection of triplex formation by modified oligonucleotides. Anal Biochem 2002,307,235-243.
    118. Suprun, E. V.; Budnikov, H. C.; Evtugyn, G. A.; Brainina Kh, Z., Bi-enzyme sensor based on thick-film carbon electrode modified with electropolymerized tyramine. Bioelectrochemistry 2004,63,281-284.
    119. Sadana, A., A fractal analysis of protein to DNA binding kinetics using biosensors. Biosens Bioelectron 2003,18,985-997.
    120. Minunni, M.; Tombelli, S.; Mascini, M.; Bilia, A.; Bergonzi, M. C.; Vincieri, F. F., An optical DNA-based biosensor for the analysis of bioactive constituents with application in drug and herbal drug screening. Talanta 2005,65,578-585.
    121. Piunno, P. A.; Krull, U. J.; Hudson, R. H.; Damha, M. J.; Cohen, H., Fiber-optic DNA sensor for fluorometric nucleic acid determination. Anal Chem 1995,67, 2635-2643.
    122. Sadana, A., A fractal analysis of protein to DNA binding kinetics using biosensors. Biosens Bioelectron 2003,18,985-997.
    123. Holthoff, E. L.; Bright, F. V., Molecularly imprinted xerogels as platforms for sensing. Acc Chem Res 2007,40,756-767.
    124. Koster, M.; Gliesche, C. G.; Wardenga, R., Microbiosensors for measurement of microbially available dissolved organic carbon:sensor characteristics and preliminary environmental application. Appl Environ Microbiol 2006,72, 7063-7073.
    125. Jang, J. D.; Barford, J. P.; Lindawati; Renneberg, R., Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosens Bioelectron 2004,19,805-812.
    126. Spence, M. M.; Ruiz, E. J.; Rubin, S. M.; Lowery, T. J.; Winssinger, N.; Schultz, P. G.; Wemmer, D. E.; Pines, A., Development of a functionalized xenon biosensor. J Am Chem Soc 2004,126,15287-15294.
    127. Bulukin, E.; Meucci, V.; Minunni, M.; Pretti, C.; Intorre, L.; Soldani, G.; Mascini, M., An optical immunosensor for rapid vitellogenin detection in plasma from carp (Cyprinus carpio). Talanta 2007,72,785-790.
    128. Nowicka, A. M.; Kowalczyk, A.; Stojek, Z.; Hepel, M., Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophys Chem 2010,146,42-53.
    129. Kwan, R. C.; Leung, H. F.; Hon, P. Y.; Barford, J. P.; Renneberg, R., A screen-printed biosensor using pyruvate oxidase for rapid determination of phosphate in synthetic wastewater. Appl Microbiol Biotechnol 2005,66,377-383.
    130. Farre, M.; Martinez, E.; Ramon, J.; Navarro, A.; Radjenovic, J.; Mauriz, E.; Lechuga, L.; Marco, M. P.; Barcelo, D., Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Anal Bioanal Chem 2007,388,207-214.
    131. Xiao, Y.; Piorek, B. D.; Plaxco, K. W.; Heeger, A. J., A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. JAm Chem Soc 2005,127,17990-17991.
    1. Cairns, M. J.; King, A.; Sun, L. Q., Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites. Nucleic Acids Res 2003,31,2883-2889.
    2. Hjiantoniou, E.; Iseki, S.; Uney, J. B.; Phylactou, L. A., DNazyme-mediated cleavage of Twist transcripts and increase in cellular apoptosis. Biochem Biophys Res Commun 2003,300,178-181.
    3. Li, Y.; Geyer, C. R.; Sen, D., Recognition of anionic porphyrins by DNA aptamers. Biochemistry 1996,35,6911-6922.
    4. Travascio, P.; Li, Y.; Sen, D., DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 1998,5,505-517.
    5. Li, Y.; Sen, D., Toward an efficient DNAzyme. Biochemistry 1997,36, 5589-5599.
    6. Li, Y.; Sen, D., The modus operandi of a DNA enzyme:enhancement of substrate basicity. Chem Biol 1998,5,1-12.
    7. Travascio, P.; Bennet, A. J.; Wang, D. Y.; Sen, D., A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chem Biol 1999,6,779-787.
    8. Li, D.; Shlyahovsky, B.; Elbaz, J.; Willner, I., Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J Am Chem Soc 2007,129,5804-5805.
    9. Lu, N.; Shao, C.; Deng, Z., Rational design of an optical adenosine sensor by conjugating a DNA aptamer with split DNAzyme halves. Chem Commun 2008, 6161-6163.
    10. Huizenga, D. E.; Szostak, J. W., A DNA aptamer that binds adenosine and ATP. Biochemistry 1995,34,656-665.
    1. Li, Y.; Geyer, C. R.; Sen, D., Recognition of anionic porphyrins by DNA aptamers. Biochemistry 1996,35,6911-6922.
    2. Li, Y.; Sen, D., A catalytic DNA for porphyrin metallation. Nat Struct Biol 1996, 3,743-747.
    3. Li, Y.; Sen, D., The modus operandi of a DNA enzyme:enhancement of substrate basicity. Chem Biol 1998,5,1-12.
    4. Travascio, P.; Li, Y.; Sen, D., DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 1998,5,505-517.
    5. Travascio, P.; Bennet, A. J.; Wang, D. Y.; Sen, D., A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chem Biol 1999,6,779-787.
    6. Travascio, P.; Witting, P. K.; Mauk, A. G.; Sen, D., The peroxidase activity of a hemin-DNA oligonucleotide complex:free radical damage to specific guanine bases of the DNA. J Am Chem Soc 2001,123,1337-1348.
    7. Alfonta, L.; Singh, A. K.; Willner, I., Liposomes labeled with biotin and horseradish peroxidase:a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal Chem 2001,73,91-102.
    8. Weizmann, Y.; Cheglakov, Z.; Willner, I., A Fok I/DNA machine that duplicates its analyte gene sequence. J Am Chem Soc 2008,130,17224-17225.
    9. Elbaz, J.; Moshe, M.; Shlyahovsky, B.; Willner, I., Cooperative multicomponent self-assembly of nucleic acid structures for the activation of DNAzyme cascades: a paradigm for DNA sensors and aptasensors. Chemistry 2009,15,3411-3418.
    10. Li, T.; Wang, E.; Dong, S., Base-pairing directed folding of a bimolecular G-quadruplex:new insights into G-quadruplex-based DNAzymes. Chemistry 2009,15,2059-2063.
    11. Li, T.; Wang, E.; Dong, S., A grafting strategy for the design of improved G-quadruplex aptamers and high-activity DNAzymes. PLoS One 2009,4, e5126.
    12. Li, T.; Dong, S.; Wang, E., G-quadruplex aptamers with peroxidase-like DNAzyme functions:which is the best and how does it work? Chem Asian J 2009, 4,918-922.
    13. Kong, D. M.; Yang, W.; Wu, J.; Li, C. X.; Shen, H. X., Structure-function study of peroxidase-like G-quadruplex-hemin complexes. Analyst 2010,135,321-326.
    14. Kong, D. M.; Cai, L. L.; Guo, J. H.; Wu, J.; Shen, H. X., Characterization of the G-quadruplex structure of a catalytic DNA with peroxidase activity. Biopolymers 2009,91,331-339.
    15. Kong, D. M.; Wu, J.; Ma, Y. E.; Shen, H. X., A new method for the study of G-quadruplex ligands. Analyst 2008,133,1158-1160.
    16. He, Y.; Tian, Y.; Mao, C., Human telomeric DNA sequences have a peroxidase apoenzyme activity. Mol Biosyst 2009,5,238-240.
    17. Cheng, X.; Liu, X.; Bing, T.; Cao, Z.; Shangguan, D., General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochemistry 2009,48,7817-7823.
    18. Li, T.; Wang, E.; Dong, S., G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun 2008,3654-3656.
    19. Cheng, X.; Liu, X.; Bing, T.; Zhao, R.; Xiong, S.; Shangguan, D., Specific DNA G-quadruplexes bind to ethanolamines. Biopolymers 2009,91,874-883.
    20. Cercek, B.; Roby, K.; Siaw, M., A reagent for both visualization and chemiluminescence detection of horseradish peroxidase-tagged DNA probes. Anal Biochem 1995,232,143-144.
    21. Fan, J. H.; Bochkareva, E.; Bochkarev, A.; Gray, D. M., Circular dichroism spectra and electrophoretic mobility shift assays show that human replication protein A binds and melts intramolecular G-quadruplex structures. Biochemistry 2009,48,1099-1111.
    22. Novy, J.; Bohm, S.; Kralova, J.; Kral, V.; Urbanova, M., Formation and temperature stability of G-quadruplex structures studied by electronic and vibrational circular dichroism spectroscopy combined with ab initio calculations. Biopolymers 2008,89,144-152.
    23. Nagatoishi, S.; Tanaka, Y.; Tsumoto, K., Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem Biophys Res Commun 2007,352, 812-817.
    24. Bishop, G. R.; Chaires, J. B., Characterization of DNA structures by circular dichroism. Curr Protoc Nucleic Acid Chem 2003, Chapter 7, Unit 7 11.
    25. Paramasivan, S.; Rujan, I.; Bolton, P. H., Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods 2007,43, 324-331.
    26. Zhou, J.; Yuan, G., Specific recognition of human telomeric G-quadruplex DNA with small molecules and the conformational analysis by ESI mass spectrometry and circular dichroism spectropolarimetry. Chemistry 2007,13,5018-5023.
    1. Li, Y.; Sen, D., A catalytic DNA for porphyrin metallation. Nat Struct Biol 1996, 3,743-747.
    2. Li, Y.; Sen, D., The modus operandi of a DNA enzyme:enhancement of substrate basicity. Chem Biol 1998,5,1-12.
    3. Travascio, P.; Li, Y.; Sen, D., DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 1998,5,505-517.
    4. Travascio, P.; Bennet, A. J.; Wang, D. Y.; Sen, D., A ribozyme and a catalytic DNA with peroxidase activity:active sites versus cofactor-binding sites. Chem Biol 1999,6,779-787.
    5. Travascio, P.; Witting, P. K.; Mauk, A. G.; Sen, D., The peroxidase activity of a hemin-DNA oligonucleotide complex:free radical damage to specific guanine bases of the DNA. J Am Chem Soc 2001,123,1337-1348.
    6. Cheng, X.; Liu, X.; Bing, T.; Zhao, R.; Xiong, S.; Shangguan, D., Specific DNA G-quadruplexes bind to ethanolamines. Biopolymers 2009,91,874-883.
    7. Elbaz, J.; Shlyahovsky, B.; Willner, I., A DNAzyme cascade for the amplified detection of Pb(2+) ions or L-histidine. Chem Commun 2008,1569-1571.
    8. Fu, R.; Li, T.; Park, H. G., An ultrasensitive DNAzyme-based colorimetric strategy for nucleic acid detection. Chem Commun 2009,5838-5840.
    9. Zhang, M.; Huang, J.; Deng, M.; Weng, X.; Ma, H.; Zhou, X., Sensitive and visual detection of adenosine by a rationally designed FokI-based biosensing strategy. Chem Asian J 2009,4,1420-1423.
    10. Zhang, D.; Deng, M.; Xu, L.; Zhou, Y.; Yuwen, J.; Zhou, X., The sensitive and selective optical detection of mercury(II) ions by using a phosphorothioate DNAzyme strategy. Chemistry 2009,15,8117-8120.
    11. Li, D.; Shlyahovsky, B.; Elbaz, J.; Willner, I., Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. J Am Chem Soc 2007,129,5804-5805.
    12. Weizmann, Y.; Cheglakov, Z.; Willner, I., A Fok I/DNA machine that duplicates its analyte gene sequence. J Am Chem Soc 2008,130,17224-17225.
    13. Beyer, S.; Simmel, F. C., A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Res 2006,34,1581-1587.
    14. Chen, S. J.; Huang, Y. F.; Huang, C. C.; Lee, K. H.; Lin, Z. H.; Chang, H. T., Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosens Bioelectron 2008,23,1749-1753.
    15. Xiang, Y.; Tong, A.; Lu, Y., Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb(2+) and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 2009,131,15352-15357.
    16. Chen, S. J.; Huang, C. C.; Chang, H. T., Enrichment and fluorescence enhancement of adenosine using aptamer-gold nanoparticles, PDGF aptamer, and Oligreen. Talanta 2010,81,493-498.
    17. Mergny, J. L.; Lacroix, L.; Teulade-Fichou, M. P.; Hounsou, C.; Guittat, L.; Hoarau, M.; Arimondo, P. B.; Vigneron, J. P.; Lehn, J. M.; Riou, J. F.; Garestier, T.; Helene, C., Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci USA 2001,98,3062-3067.
    18. Juskowiak, B.; Takenaka, S., Fluorescence resonance energy transfer in the studies of guanine quadruplexes. Methods Mol Biol 2006,335,311-341.
    19. De Cian, A.; Guittat, L.; Kaiser, M.; Sacca, B.; Amrane, S.; Bourdoncle, A.; Alberti, P.; Teulade-Fichou, M. P.; Lacroix, L.; Mergny, J. L., Fluorescence-based melting assays for studying quadruplex ligands. Methods 2007,42,183-195.
    20. Jin, Y.; Li, H.; Bai, J., Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Anal Chem 2009,81,5709-5715.
    21. Kong, D. M.; Ma, Y. E.; Wu, J.; Shen, H. X., Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry 2009,15,901-909.
    22. Beck, C.; Jeltsch, A., Probing the DNA interface of the EcoRV DNA-(adenine-N6)-methyltransferase by site-directed mutagenesis, fluorescence spectroscopy, and UV cross-linking. Biochemistry 2002,41,14103-14110.
    23. Ueyama, H.; Takagi, M.; Takenaka, S., A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation. J Am Chem Soc 2002,124,14286-14287.
    24. Ishii, K.; Hirose, Y.; Fujitsuka, M.; Ito, O.; Kobayashi, N., Time-resolved EPR, fluorescence, and transient absorption studies on phthalocyaninatosilicon covalently linked to one or two TEMPO radicals. J Am Chem Soc 2001,123, 702-708.
    25. Ueyama, H.; Takagi, M.; Takenaka, S., A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation. J Am Chem Soc 2002,124,14286-14287.
    26. Szilagyi, A.; Bonn, G. K.; Guttman, A., Capillary gel electrophoresis analysis of G-quartet forming oligonucleotides used in DNA-protein interaction studies. J Chromatogr A 2007,1161,15-21.
    27. Moon, I. K.; Jarstfer, M. B., Preparation of G-quartet structures and detection by native gel electrophoresis. Methods Mol Biol 2010,608,51-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700