用户名: 密码: 验证码:
糖尿病脑病的PET/CT显像及与IGF1R的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用影像学、细胞生物学和分子生物学等技术,从整体水平、细胞水平和分子水平三个层次上,开展了“糖尿病脑病的PET/CT显像及与IGF1R的相关性研究”工作,探讨了PET/CT显像在糖尿病脑病诊断及机制研究中的可能性,同时揭示了IGF1R在糖尿病脑病发生、发展中的重要作用。
     1.糖尿病脑病大鼠的PET/CT显像及免疫组化研究
     通过STZ诱导及水迷宫筛选,建立糖尿病大鼠模型及糖尿病脑病大鼠模型。利用PET/CT检测模型大鼠脑部糖代谢水平,免疫组织化学技术检测IR、IGF1R和Glut4的含量变化情况。与正常对照组相比,糖尿病模型组与糖尿病脑病模型组SUV明显减低,糖尿病脑病模型组大鼠葡萄糖代谢率下降更为明显。糖尿病脑病组大鼠出现IGF1R表达增高而Glut4下降的现象,特别值得关注的是相对于正常对照组,只患有糖尿病而未患脑病的大鼠海马区IGF1R表达水平出现显著降低,各组IR表达量无明显差异。
     2.IGF1R缺失的PC12细胞构建及筛选
     利用慢病毒包装转染技术,抑制IGF1R在神经胶质瘤细胞PC12中的表达,为后续研究提供重要的研究模型。半定量RT-PCR、Western Blot法检测siRNA对IGF1R的影响,进一步通过G418筛选获得了IGF1R低表达的稳转细胞株ΔIGF1R-PC12。
     3.IGF1R缺失对PC12细胞糖代谢及相关信号转导通路的影响
     该部分研究在细胞水平上关注了IGF1R缺失对细胞糖代谢及Akt信号通路的影响。葡萄糖氧化酶法检测IGF1R缺失对PC12细胞消耗葡萄糖的影响;液体闪烁计数法检测IGF1R缺失对PC12细胞摄取葡萄糖的影响;实时定量PCR法检测IGF1R缺失对PC12细胞Glut4的mRNA表达的影响;免疫印迹法检测IGF1R缺失对PC12细胞Phospho-Insulin R、SRC、Phospho-SRC、Akt、Phospho-Akt、IGF1R、PI3K p85、Glut4等蛋白表达的影响。
     IGF1R缺陷提高了PC12细胞葡萄糖消耗,但仍不能完全逆转Aβ25-35对细胞消耗葡萄糖能力的损害;IGF1R缺陷可促进胰岛素刺激下的PC12细胞葡萄糖摄取量,同时这种效应具有浓度和时间依赖性;IGF1R的缺失提高了胰岛素对PC12细胞IR和IRS磷酸化的敏感性,对本研究非常重要的是在ΔIGF1R-PC12细胞中,IR对胰岛素表现出的亲和力,仅需要正常PC12细胞感知胰岛素浓度的1/100(0.1nM);在IGF1R敲除的PC12细胞中,Akt磷酸化通路被激活,引起胰岛素受体相关通路对胰岛素的敏感性被大幅提升。
     本文应用PET/CT技术开展了糖尿病脑病的机制研究,发现了IGF1R信号通路在糖尿病脑病发病过程中的重要作用。此项研究,为相关神经系统疾病理论研究开辟了新方向,同时也为治疗糖尿病脑病及相关药物开发提供了新思路和靶位点。
As is well known, PET/CT has an important Clinical significance and value todiagnosis, decisions of treatment and efficacy evaluation for patient in a variety ofcentral nervous system diseases, such as epilepsy, senile dementia, Parkinson's disease.Neuroimaging could link changes in the structure of the brain with changes incognitive function. Brain scanning in real time on the brains of Patient with diabetesgiven in three-dimensional imaging of the amount of monitoring, which evaluates theneuroanatomical regions involved in the brains of patients with diabetes, it isimpossible in neuropathology research organizations.
     Here, brain glucose metabolism levels in Diabetic encephalopathy rat modelwere detected with PET/CT. It is exerted and measured that related pathologicstructural changes and some major functional molecules expression in hippocampus.The results show that the abnormal expression increase of IGF1R or related pathwaysactivation is very related to the occurrence of diabetic encephalopathy. This issupported by the observation that the production of reactive oxygen species is reducedin brains of IGF1R knock-out mice compared with their WT counterparts followingMPTP treatment known to induce a Parkinson’s disease-like phenotype. On the otherside, an alternative model suggests that increased neuronal resilience associated withreduced IGF signaling is promoted by enhanced DNA repair capabilities. It isreasonable to speculate that the histone deacetylase SIRT1, an aging regulator thatplays roles in the maintenance of genomic stability may also be a mediator foranti-apoptosis of the reduced IGF signaling protective effect in Alzheimer’s disease.
     In view of the importance of IGF1R knock-out to nerve cells, we inhibited ofIGF1R expression in PC12cells, and reduced the activating level of IGF1R pathwayusing the lentiviral packaging, picked stable transfected cells, namely ΔIGF1R-ofPC12cells. In the follow parts, to investigate underlying details in that IGF1R defectsaffecting the nerve cells consumption and glucose uptake, and take particular attentionto the effects and the interactions between IGF1R, IR, phosphorylation of Aktsignaling pathway.
     The content of the issue is divided into three parts, the use of imaging, pathology,molecular biology, cell biology techniques,on individual, cell and molecular levels, we studied the important role of IGF1R to the development of diabeticencephalopathy, revealed the interaction between IGF1R signaling pathwaydiminishing, glucose metabolism and IR signaling pathway in nerve cells. Followingthis three-part research brief summary, as follows:
     1. PET/CT Imaging and Immunohistochemical on DiabeticEncephalopathy in Rats
     In this part, first of all, we have established a rat model of diabetes screening bybehavioral experiments, rats suffering from diabetic encephalopathy, and then detectthe level of rat brain glucose metabolism using PE/CT, the final study brainthepathological features of the hippocampus and IR, IGF1R and Glut4in tissue withpathological staining and immunohistochemical methods. The results show that,compared with the normal control group and diabetic group, the level of brain glucosemetabolism in diabetic encephalopathy rats significantly reduced amyloid calm,organization and the cytoplasm have a red dye, the nerve fiber thickening,swellingderangement and so on, like neuropathological characteristics; IR expressionlevel is basically the same among the experimental group, diabetic encephalopathyrats IGF1R expression increased Glut4but the phenomenon of decline, it isnoteworthy that relative to the normal control group, only sufferinghippocampus ofrats with diabetes without suffering from encephalopathy IGF1R expression levelswere significantly reduced.
     2. IGF1R knock-out PC12cell obtaining and screening
     In accordance with the findings of the first part, only those with diabetes withoutencephalopathy rat hippocampal IGF1R expression levels appear significantlyreduced brain glucose metabolism capacity remained at a high level. Therefore,lentiviral packaging transfection techniques has been used to inhibit IGF1Rexpression in glioma cells PC12, which provided an important model for furtherresearch. After a large number of molecular biology vector assembling and screening,we obtained the IGF1R low expression of the stable transfected celllines-ΔIGF1R-PC12ultimately.
     3. Study on the Inhibiting IGF1R affected PC12cell glucose metabolismand signal pathways
     The part of the research,at the cellular level, concerning to the IGF1R defectsacted in cell glucose metabolism and Akt signaling pathway, the major resultwas the IGF1R defects enhanced PC12cells glucose consumption, but still not completelyreversed damage triggered by Aβ25-35in cells; IGF1R defect could promote glucoseuptake in insulin-stimulated PC12cells inthe dose and time manner; IGF1R defectcould improve insulin sensitivity to IR and IRS phosphorylation in PC12cells;extremely important to this study, in ΔIGF1R-of PC12cells, IR showed only need thesense insulin concentration of1/100(0.1nM) of normal PC12cells; in IGF1Rknock-out PC12cells, when Aktphosphorylation pathway was activated, the insulinsensitivity of IR would be improved significantly.
     This study revealed that IGF1R signaling pathway’s role in diabeticencephalopathy, opened up a new direction for related research in nervous systemdiseases, but also provided a new idea for the treatment of diabetic encephalopathy,relevant drug development and target sites.
引文
[1] Townsend DW, Cherry SR. Combining anatomy and function: the path to trueimage fusion[J]. Eur Radiol,2001,11:1968-1974.
    [2] Markus Schwaiger. PET/CT: Challenge for Nuclear Cardiology[J]. The Journal ofNuclear Medicine,2005,46:1664-1678.
    [3] Kalender WA. Spiral volumetric CT with singlebreath-hold technique, continuoustransport and continuous scanner rotation[J]. Radiology,1990,176:181-183.
    [4] Shankar V, Lilja S, Brigitte V. A Broad Overview of Positron EmissionTomography Radiopharmaceuticals and Clinical Applications: What Is New?[J].Semin Nucl Med,2011,41:246-264.
    [5] MePherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancerepidemiology, risk factors, and geneties[J]. BMJ,2000,321:624-628.
    [6] Nave BT, Ouwens M, Withers DJ, et al. International Atomic Energy Agency.Radioisotope products and their availability[J]. Nuclear Technology Review,2010,36-38.
    [7] Füchtner F, Steinbach J, M ding P. Basic previous term hydrolysis next term2-[18F]fluoro-1,3,4,6-tetra-O-acetyl-image-glucose in the preparation of2-[18F]fluoro-2-deoxy-Image-glucose[J]. Appl Radiat Isot,1996,47:61-66.
    [8] Dunphy MP, Lewis JS. Radiopharmaceuticals in preclinical and clinicaldevelopment for monitoring of therapy with PET[J]. J Nucl Med50(Suppl1),2009,106S-121S.
    [9] Lever JR. PET and SPECT imaging of the opioid system: receptors, radioligandsand avenues for drug discovery and development[J]. Curr Pharm Des,2007,13:33-49.
    [10] Vallabhajosula S. Molecular Imaging: Radiopharmaceuticals for PET andSPECT[J]. Berlin/Heidelberg,2009, Springer-Verlag.
    [11] Naren K, Halldin C, Rinne JO. Radiopharmaceuticals for positron emissiontomography investigations of Alzheimer’s disease[J]. Eur J Nucl Med Mol Imaging,2010,37:1575-1593.
    [12] Choi SR, Golding G, Zhuang Z, et al. Preclinical properties of18F-AV-45: a PETagent for amyloid beta plaques in the brain[J]. J Nucl Med,2009,50:1887-1894.
    [13] Sioka C, Fotopoulos A, Kyritsis AP. Recent advances in PET imaging forevaluation of Parkinson’s disease[J]. Eur J Nucl Med Mol Imaging,2010,37:1594-1603.
    [14] Vallabhasojula S.18F-Labelled positron emission tomographicradiopharmaceuticals in oncology: an overview of radiochemistry and mechanism oftumor localization[J]. Semin Nucl Med,2007,37:400-419.
    [15] Wadsak W, Mitterhauser M. Basics and principles of radiopharmaceuticals forPET/CT[J]. Eur J Radiol,2010,73:461-469.
    [16] Shaw SM. Molecular imaging in cardiovascular disease: targets andopportunities[J]. Nat Rev Cardiol,2009,6:569-579.
    [17] Ghosh N, Ornella E, Rimoldi E, et al. Assessment of myocardial ischaemia andviability: role of positron emission tomography[J]. Eur Heart J,2010,31:2984-2995.
    [18] Sinusas AJ. Multimodality cardiovascular molecular imaging: an overview[J]. JNucl Med,2010,51:13-23.
    [19] Xiao-jun Cai1, Hui-qin Xu, Yi Lu. C-peptide and Diabetic Encephalopathy[J].Chin Med Sci J,2011,26:115-129.
    [20] Van Dieren S, Beulens JW, Schouw YT, et al. The global burden of diabetes andits complications: an emerging pandemic[J]. Eur J Cardiovasc Prev Rehabil,2010;17:S3-8.
    [21] Mastrocola R, Restivo F, Vercellinatto I, et al. Oxidative and nitrosative stress inbrain mitochondria of diabetic rats[J]. J Endocrinol,2005,187:37-44.
    [22]高原,肖谦.海马突触可塑性与糖尿病脑病[J].国外医学老年医学分册,2006,27:19-22.
    [23] Aigbe IF, Kolo PM, Omotoso AB. Left ventricular structure and function inblack normotensive type2diabetes mellitus patients[J]. Ann Afr Med.2012,11(2):84-90.
    [24] St rachan MW, Frier BM, DearyLJ. Type2diabetes and cognitiveimpairment[J]. Diabet Med,2003,20:1–2.
    [25] Pulsinelli WA, Levy DE, Sigsbee B, et al. Increased damage after ischemicstroke in patients with hyperglycemia with or without established diabetes mellitus[J].The Am J Med,1983,74:540-544.
    [26] Sima AA. Encephalopathies: the emerging diabetic complications[J]. ActaDiabetol,2010,47:279-93.
    [27] Van Harten B, de Leeuw FE, Weinstein HC, et al. Brain imagingin patients withdiabetes: a systematic review[J]. Diabetes Care,2006,29:2539-2548.
    [28] Gillett M, Davis WA, Jackson D, et al. Prospective Evaluation of carotid bruit asa predictor of first stroke in type2diabetes: the Fremantle diabetes Study[J]. Stroke,2003,34:2145-2151.
    [29] Cardoso CR, Salles GF, Deccache W. QTC interval prolongation is predictor offuture stroke in patients with type2diabetes mellitus[J]. Stroke,2003,34:2187-2104.
    [30] Burvill PW. A critique of current criteria for earlydementia in epidemiologicalstudies[J]. Int J Geriatr Psychiatry,1993,8:553–559.
    [31]郭莹,钟历勇.胰岛素生物作用障碍与糖尿病脑病[J].国际病理科学与临床杂志,2006,26:273-276.
    [32] Grandis M, Nobbio L, Abbruzzese M, et al. Insulin treatment enhancesexpression ofIGF-1in sural nerves of diabetic patient[J]. Muscle Nerve,2001,24(5):622-629.
    [33] Purves T, Middlemas A, Agthong S, et al. A role formitogen activated proteinkinases in the etiology of diabetic neuropathy[J]. FASEB J,2001,15(13):2508-2514.
    [34]钱玉英,赵咏梅,姬志娟等. APP17肽对糖尿病小鼠学习记忆功能和海马NT-3胆碱乙酰化酶神经元的影响[J].中华老年医学杂志,1999,18:349-352.
    [35] Calza L, Giardino L, Giuliani A, et al. Nerve growth control of neuronalexression of angiogenetic and vasoactive factors[J]. Proc nat1Acad Sci USA,2001,98(7):4160-4165.
    [36] Lee PG, Cai F, Helke CJ. Streptozotocin-induced diabetes reduces retrogradeaxonal transport in the afferent and efferent vagus nerve[J]. Brain Res,2002,941:127-136.
    [37] Lu K, Liang CL, Chen HJ, et al. Injury severity and cell death mechanisms:effects of concomitant hypovolemic hypotension on spinal cord ischemia-reperfusionin rats[J]. Exp Neurol,2004,185:120-132.
    [38]陈灏珠,实用内科学[M].第11版.北京:人民卫生出版社,2001,10:2507.
    [39] Dalal PM, Parab PV. Cerebrovascular disease in type2diabetes mellitus[J].Neurol India,2002,50(4):380-385.
    [40]孙海鸥,殷玉华,姬秋和.糖尿病脑病[J].国外医学内分泌学分册,2004,24:79-81.
    [41] Mohamed AK, Bierhaus A, Schiekofer S, et al. The role of oxidative stress andNF-kappaBactivation in late diabetic complications[J]. Biofactors,1999,10:157-167.
    [42] Lassaa H, Palace MR. Glycoxidation: the menace of diabetes and ageing[J]. MtSinai J Med,2003,70:232-241.
    [43] Migdalis IN, Xenos K, Chairpoulos K, et al. Ca2+-Mg2+-ATPase activity andionized calcium in type2diabetic neuropathy[J]. Diabetes Res Clin Pract,2000,49:113-118.
    [44] Hall KE, Liu J, Sima AA, et al. Impaired inhibitory C-protein contributes toincreased calcium current in rats with diabetic neuropathy[J]. J Neurophysiol,2001,86:760-777.
    [45] Muranyi M, Fujioka M, He Q, et al. Diabetes activates cell death pathway aftertransient focal cerebral ischemia[J]. Diabetes,2003,52(2):481-486.
    [46] Trudeaua F, Cagnonb S, Massieolte G. Hipppocampal synaptic plasticity andglutamale receptor regulation: influences of diabetes mellitus[J]. Eur J Phaemacol,2004,177-186.
    [47] Kamal A, Ramakers GM, Biessels GJ, et al. Effects of a phorbol ester andcyclosporin A on hippocampal synaptic plasticity in streptozotocin-induceddiabeticrats: reduced sensitivity to phorbol esters[J]. Neurosci Lett,2003,339:45-48.
    [48] Man HE, Lin JW, Ju WH, et al. Regulation of AMPA receptor-mediated synaptictransmissionby clathrin-dependent receptor internalization[J]. Neuron,2000,25:649-662.
    [49] Kamal A, Biesssls GJ, Duis SE, et al. Learning and hippocampal synapticplasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing[J].Diabetologia,2000,43:500-506.
    [50]赵亮,丁金芝,曲静.糖尿病与糖尿病脑病的影响因素及诊治分析[J].中国误诊学杂志,2011,11(1):106-107.
    [51] Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespanperspective[J]. Lancet Neurol,2008,7(2):184-190.
    [52]田国庆.2型糖尿病认知功能障碍影响因素及发病机制研究进展.中国康复理论与实践,2009,15(3):242-245.
    [53] Dyarte JM, Oloveira CR. Modification of adenosine A(1) and A(2) receptordensity in the hippocampus of streptozotocin induced diabetic rat[J]. Neurochem Int,2006,48(2):144-150.
    [54] Mitsui T, Kakizaki H, Kobayashi S, et al. Vesicouret hral function in diabeticpatients: association of abnormal nerve conduction velocity with vesicouret hraldysfunction[J]. Neurourol Urodyn,1999,18:639–645.
    [55] Manschot SM, Biessels GJ, Cameron NE, et al. Angiotensin converting enzymeinhibition partially prevents deficits in water maze performance, hippocampalsynaptic plasticity and cerebral blood flow in streptozotocin2diabetic rats[J]. BrainRes,2003,966:274–282.
    [56] Pandolfi A, Giaccari A, Cilli C, et al. Acute hyperglycemia and acutehyperinsulinemia decrease plasma fibrinolytic activity and increaseplasminogenactivator inhibitor type1in the rat[J]. Acta Diabetol,2001,38:71–76.
    [57] Li ZG, Zhang W, Sima AA. C-peptide prevent shippocampal apoptosis in type1diabetes. Int J Exp Diabetes Res,2002,3:241–245.
    [58]李健斋,王抒.老年人血脂异常与冠心病及其防治问题[J].世界医学杂志,2003,7:1-4.
    [59] Adams TE, Epa VC, Garrett TP, et al. Structure and function of the type1insulin-like growth factor receptor[J]. Cell Mol Life Sci,2000,57:1050-93.
    [60] Zhuang HX,Wurin L,Fei ZJ, et al. Insulin-like growth fator (IGF) geneexpression is redueed in neural tissues and liver from rats with non-insulin-dependentdiabetes mellitus, and IGF treatment ameliorates diabetic neuropahty[J]. J PharrnaeolExp Ther,1997,283(l):366-374.
    [61] Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins:biological actions[J]. Endocr Rev,1995,16(1):3-34.
    [62] Bohannon NJ, Corp ES, Wilcox BJ, et al. Localization of binding sites forinsulin-like growth factor-I (IGF-I) in the rat brain by quantitative autoradiography[J].Brain Res,1988,444:205-213.
    [63] Sherrard RM, Richardson NA, Sara VR. Localisation of insulin-like growthfactor-I (IGF-I) immunoreactivity in the olivocerebellar system of developing andadult rats[J]. Brain Res Dev Brain Res,1997,98:102-113.
    [64] Llorens-Martin M, Torres-Aleman I, Trejo JL. Mechanisms mediating brainplasticity: IGF1and adult hippocampal neurogenesis[J]. Sima AA,2009,15:134-148.
    [65] Fushimi S, Shirabe T. Expression of insulin-like growth factors in remyelinationfollowing ethidium bromide-induced demyelination in the mouse spinal cord[J].Neuropathology,2004,24:208-218.
    [66] Trejo JL, Llorens-Martin MV, Torres-Aleman I. The effects of exercise on spatiallearning and anxiety-like behavior are mediated by an IGF-I-dependent mechanismrelated to hippocampal neurogenesis[J]. Mol Cell Neurosci,2008,37:402-411.
    [67] Pera EM, Ikeda A, Eivers E, De Robertis EM. Integration of IGF and anti-BMPsignals viaSmad1phosphorylation in neural induction[J]. Genes Dev,2003,17:3023-3028.
    [68] Pera EM, Wessely O, Li SY, et al. Neural andhead induction by insulin-likegrowth factor signals[J]. Dev Cell,2001,1:655-665.
    [69] Richard-Parpaillon L, Heligon C, Chesnel F, et al. The IGF pathway regulateshead formation by inhibiting Wnt signaling in Xenopus[J]. Dev Biol,2002,244:407-417.
    [70] Mason JL, Goldman JE. Cycling progenitors in the adult forebrain white matterrespond differentially to PDGF-AA, FGF-2, and IGF-1[J]. Mol Cell Neurosci,2002,20:30-42.
    [71] Hsieh J, Aimone JB, Kaspar BK, et al. IGF-I instructs multipotent adultneuralprogenitor cells to become oligodendrocytes[J]. J Cell Biol,2004,164:111-122.
    [72] Palacios N, Sanchez-Franco F, Fernandez M, et al. Intracellular events mediatinginsulin-like growth factor I-induced oligodendrocyte development: modulation bycyclic AMP[J]. J Neurochem,2005,95:1091-1107.
    [73] Espinosa-Jeffrey A, Kumar S, Zhao PM, et al. Transferrin regulates transcriptionof the MBP gene and its action synergizes withIGF-1to enhance myelinogenesis inthe md rat[J]. Dev Neurosci,2002,24:227-241.
    [74] Fernando P, Megeney LA. Is caspase-dependent apoptosis only celldifferentiation taken to the extreme [J]. FASEB J,2007,21:8-17.
    [75] Aranha MM, Sola S, Low WC, et al. Caspases and p53modulate FOXO3A/Id1signaling during mouse neural stem cell differentiation[J]. J Cell Biochem,2009,107:748-758.
    [76] Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3byinsulin mediated by protein kinase B[J]. Nature,1995,378:785-789.
    [77] Whittaker J. Characterization of the functional insulin bindingepitopes of thefull-length insulin receptor[J]. J Biol Chem,2005,280:20932-20936.
    [78] Sun LY, Ercole AJ. Insulin-like growth factor-I (IGF-I) stimulates histoneH3andH4acetylation in the brain in vivo[J]. Endocrinology,2006,147:5480-5490.
    [79] Broughton SK, Chen H, Riddle A, et al. Large-scale generation of highlyenriched neural stem-cell-derived oligodendroglial cultures: maturationdependentdifferences in insulin-like growth factor-mediated signal transduction[J]. J Neurochem,2007,100:628-638.
    [80] Wada A, Yokoo H, Yanagita T, et al. New twist on neuronal insulin receptorsignaling in health, disease, and therapeutics[J]. J Pharmacol Sci,2005,99:128-143.
    [81] Johnson-Farley NN, Travkina T, Cowen DS. Cumulative activation of Akt andconsequent inhibition of glycogen synthase kinase-3by brain-derived neurotrophicfactor and insulin-like growth factor-1incultured hippocampal neurons[J]. JPharmacol Exp Ther,2006,316:1062-1069.
    [82] Duarte AI, Santos P, Oliveira CR, et al. Insulin neuroprotection against oxidativestress is mediated by Akt and GSK-3β signaling pathwaysand changes in proteinexpression[J]. Biochim Biophys Acta,2008,1783:994-1002.
    [83] Leinninger GM, Backus C, Uhler MD, et al. Phosphatidylinositol3-kinase andAkt effectors mediate insulin-like growth factor-I neuroprotection in dorsal rootganglia neurons[J]. FASEB J,2004,18:1544-1546.
    [84] Neufeld TP. Shrinkage control: regulation of insulinmediated growth by FOXOtranscription factors[J]. J Biol,2003,2:18.11-18.15
    [85] Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival byphosphorylating and inhibiting a Forkhead transcription factor[J]. Cell,1999,96:857-868.
    [86] Zheng W-H, Kar S, Quirion R. Insulin-like growth factor-1-inducedphosphorylation of transcription factor FKHRL1is mediated by phosphatidylinositol3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-inducedsurvival of cultured hippocampal neurons[J]. Mol Pharmacol,2002,62:225–233.
    [87] Lixia G, Wenhua Z, Jean-Guy C, et al. Nuclear/cytoplasmic shuttling of thetranscription factor FoxO1is regulated by neurotrophic factors[J]. J Neurochem,2005,93:1209-1219.
    [88] Nave BT, Ouwens M, Withers DJ, et al. Mammalian target of rapamycin is adirect target for protein kinase B: identification of a convergence point for opposingeffects of insulin and amino-acid deficiency on protein translation[J]. Biochem J,1999,344(2):427-431.
    [89] Chenal J, Pierre K, Pellerin L. Insulin and IGF-1enhance the expression of theneuronal monocarboxylate transporter MCT2by translational activation viastimulation of the phosphoinositide3-kinase-Akt-mammalian target of rapamycinpathway[J]. Eur J Neurosci,2008,27:53-65.
    [90] Wuarin L, Namdev R,Burns J, et al. Brain insulin-like growth factor-2mRNAcontent is reduced ininsulin-dependent and non-insulin-dependent diabetes melliuts[J].J Neuorchem,1996,67(2):742-751.
    [91] Sonntag WE, Bennett SA, Khan AS, et al. Age and insulin-like growth factor-1modulate N-methyl-D-aspartate receptor subtype expression in rats[J]. Brain Res Bull,2000,51(4):331-338.
    [92] Lai M, Hibberd CJ, Gluckman PD, et al. Reduced expression of insulin-likegrowth factor1messenger RNA in the hippocampus of aged rats[J]. Neurosci Lett,2000,288(1):66-70.
    [93]曾云先,钟宇华,卢振环等.2型糖尿病患者治疗前后血清IGF浓度改变及相关因素的研究[J].广西医科大学学报,2002,19(1):76-77.
    [94] Duarte JM, Nogueira C, Mackie K, et al. Increase of cannabinoid CB1receptordensity in the jippocampus of streptozotocin-induced diabetic rats[J]. Exp Neurol,2007,204(1):479-482.
    [95] Lin YH, Westenbroek C, Tie L, et al. Effects of glucose, insulin, and supernatantfrom pancreatic beta-cells on brain-pancreas relative protein in rat hippocampus.Neurochem Res,2006,31(12):1417-1424.
    [96]Chang HK, Mukes JD, Figgers CL. Ameliorative effects of dietary caloricrestriction on oxidative stress and inflammation in the brain of streptozotocin-induceddiabetic rats[J]. Am J Chin Med,2004,32(4):497-507.
    [97] Ugochukwu NH, Mukes JD, Figgers CL. Ameliorative effects of dietary caloricrestriction on oxidative stress and inflammation in the brain of streptozotocin-induceddiabetic rats[J]. Clin Chim Acta,2006,370(12):165-173.
    [98] Elangovan V, Kohen R, Shohami E. Neurological recovery from closed headinjury is impaired in diabetic rats[J]. J Neurotranma,2000,17(11):1013-1027.
    [99] Thomas T, Thomas G, Mclendon C, et al. β-amyloid-mediated vasoactivity andvascular endothelial damage[J]. Nature,1996,380:168-171.
    [100] Dong XC, Park S, Lin XY. Irs1and Irs2signaling is essential for hepaticglucose homeostasis and systemic growth[J]. J Clin Invest,2006,1:32-36.
    [101] Kobayashi M, Nikami H, Morimatsu M, et al. Expression and localization ofinsulin regulatable glucose transporter(Glut4) in rat brain[J]. Neurosci Lett,1966,213:103-106.
    [102] Messari SE, Leloup C, Quignon M, et al. Immunocytochemical localization ofthe insulin regulatable glucose transporter(Glut4) in the central nervous system[J]. JComp Neurol,1998,399:492-512.
    [103] Vannucci SJ, Koehler-Stec EM, Li K, et al. Glut4glucose transpoter expressionin rodent brain effects of diabetes[J]. Brain Res,1998,797:1-11.
    [104] Pardride WM. Brain metabolism: a perspective from the blood-brain barrier[J].Physiol Rev,1983,63:1481-1535[J].
    [105] Mcewen BS, Reagen LP. Glucose transporter expression expression in thecentral nervous system: relationship to synaptic function[J]. Eur J Pharmacol,2004,490:13-24.
    [106] Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growthfactor expression and signaling mechanisms in Alzheimer’s disease is this typediabetes[J]. J Alzheimer’s Dis,2005,7:63-80.
    [107] Carpenter S, Chen WC, Dorman KS. Rev variation during persistent lentivirusinfection[J]. Viruses,2011,3(1):1-11.
    [108] Srinivasakumar N, Schuening FG. A lentivirus packaging system based onalternative RNA transport mechanisms to express helper and gene transfer vectorRNAs and its use to study the requirement of accessory proteins for particle formationand gene delivery[J]. Journal of virology,1999,73(11):9589–9598.
    [109] Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with aconditional packaging system[J]. Journal of virology,1998,72(11):8463–8471.using recombinant baculoviruses[J]. Gene therapy,2008,15(18):1280–1286.
    [111]Mautino MR, Morgan RA. Inhibition of HIV-1replication by novel lentiviralvectors expressing transdominant Rev and HIV-1env antisense[J].Gene therapy,2002,9(7):421–431.
    [112] Zhou J, Zhang ZX, Zhao H, et al. Anti-angiogenesis by lentivirus-mediatedsmall interfering RNA silencing of angiopoietin-2gene in pancreatic carcinoma[J].Technology in cancer research&treatment,2011,10(4):361–369.
    [113] Hüsser, L, Alves MP, Ruggli N, et al. Identification of the role of RIG-I, MDA-5and TLR3in sensing RNA viruses in porcine epithelial cells using lentivirus-drivenRNA interference. Virus research,2011,159(1):9–16.
    [114] Guo Z, Huang H, Zeng L, et al. Lentivirus-mediated RNAi knockdown ofprostate-specific membrane antigen suppresses growth, reduces migration ability andthe invasiveness of prostate cancer cells[J]. Medical Oncology,2011,28(3):878–887.
    [115] Qin XJ, Dai DJ, Gao ZG, et al. Effect of lentivirus-mediated shRNA targetingVEGFR-3on proliferation, apoptosis and invasion of gastric cancer cells[J].International journal of molecular medicine,2011,28(5):761–768.
    [116] Wang XT, Xie YB, Xiao Q. Lentivirus-mediated RNA interference targetingE2F-1inhibits human gastric cancer MGC-803cell growth in vivo[J]. Experimental&molecular medicine,2011,43(11):638–645.
    [117] Feng Y, Hu J, Ma J, et al. RNAi-mediated silencing of VEGF-C inhibitsnon-small cell lung cancer progression by simultaneously down-regulating theCXCR4, CCR7, VEGFR-2and VEGFR-3-dependent axes-induced ERK, p38andAKT signalling pathways[J]. European journal of cancer,2011,47(15):2353–2363.
    [118] Logue EC, Taylor KT, Goff PH, et al. The cargo-binding domain of transportin3is required for lentivirus nuclear import[J]. Journal of virology,2011,85(24):12950–12961.
    [119] Daughaday WH, Parker KA, Borowsky S, et al. Measurement ofsomatomedin-related peptides in fetal, neonatal, and maternal rat serum byinsulin-like growth factor (IGF) I radioimmunoassay, IGF-II radioreceptor assay(RRA), and multiplication-stimulating activity RRA after acid-ethanol extraction[J].Endocrinology,1982,110:575-581.
    [120] Juul A, Bang P, Hertel NT, et al. Serum insulin-like growth factor-I in1030healthy children, adolescents, and adults: relation to age, sex, stage of puberty,testicular size, and body mass index[J]. J Clin Endocrinol Metab,1994,78:744-752.
    [121] Baxter RC, Martin JL. Radioimmunoassay of growth hormone-dependentinsulinlike growth factor binding protein in human plasma[J]. J Clin Invest,1986,78:1504-1512.
    [122] Scott J, Cowell J, Robertson ME, et al. Insulin-like growth factor-II geneexpression in Wilms' tumour and embryonic tissues[J]. Nature,1985,317:260-262.
    [123] Wang ZQ, Fung MR, Barlow DP, et al. Regulation of embryonic growth andlysosomal targeting by the imprinted Igf2/Mpr gene[J]. Nature,1994,372:464-467.
    [124] Bach LA, Headey SJ, Norton RS. IGF-binding proteins the pieces are fallinginto place[J]. Trends Endocrinol Metab,2005,16:228-234.
    [125] Yu H, Rohan T. Role of the insulin-like growth factor family in cancerdevelopment and progression[J]. J Natl Cancer Inst,2000,92:1472-1489.
    [126] Leroith D, Helman L. The new kid on the block(ade) of the IGF-1receptor[J].Cancer Cell,2004,5:201-202.
    [127] Lee PD, Conover CA, Powell DR. Regulation and function of insulin-likegrowth factor-binding protein-1[J]. Proc SocExpBiol Med,1993,204:4-29.
    [128] Cohen E, Paulsson JF, Blinder P, et al. Reduced IGF-1Signaling DelaysAge-Associated Proteotoxicity in Mice[J]. Cell,2009,139(6),1157–1169
    [129] Staal SP. Molecular cloning of the akt oncogene and its human homologuesAKT1and AKT2: amplification of AKT1in a primary human gastricadenocarcinoma[J]. Proc Natl Acad Sci,1987,84:5034-5037.
    [130] Coffer PJ, Woodgett JR. Molecular cloning andcharacterization of a novelputative protein-serine kinase related to the cAMP-dependent and protein kinase Cfamilies[J]. Eur J Biochem,1991,201:475-481.
    [131] Cheng JQ, Godwin AK, Bellacosa A, et al. AKT2, a putative oncogene encodinga member of a subfamily of protein-serine/threonine kinases, is amplified in humanovarian carcinomas[J]. Proc Natl Acad Sci,1992,89:9267-9271.
    [132] Peterson RT, Schreiber SL. Kinase phosphorylation: keeping it all in the family.Curr[J]. Biol,1999,9:521–524.
    [133] Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3by insulin mediated by protein kinase B[J]. Nature,1995,378:785-789.
    [134] Cantley LC. The phosphoinositide3-kinase pathway[J]. Science,2002,296:1655-1657.
    [135] Vivanco I, Sawyers CL. The phosphatidylinositol3-kinase AKT pathway inhuman cancer[J]. Nat Rev Cancer,2002,2:489-501.
    [136] Stephens L, Anderson K, Stokoe D, et al. Protein kinase B kinases thatmediatephosphatidylinositol3,4,5-trisphosphate-dependent activation of protein kinase B[J].Science,1998,279:710-714.
    [137] Lynch DK, Ellis CA, Edwards PA, et al. Integrin-linked kinase regulatesphosphorylation of serine473of protein kinase B by an indirect mechanism[J].Oncogene,1999,18:8024-8032
    [138] Alessi DR, Caudwell FB, Andjelkovic M, et al. Molecular basis for the substratespecificity of protein kinase B: comparison with MAPKAP kinase-1and p70S6kinase[J]. FEBS Lett,1996,399:333-338.
    [139] Holland PM, Cooper JA. Protein modification: docking sites for kinases[J]. CurrBiol,1999,9:329-331.
    [140] Downward J. How Bad phosphorylation is good for survival[J]. Nat Cell Biol,1999,1:33-35.
    [141] Zhou BP, Liao Y, Xia W, et al. Cytoplasmic localization of p21Cip1/WAF1byAkt-induced phosphorylation in HER-2/neu-overexpressing cells[J]. Nat Cell Biol,2001,3:245-252.
    [142] Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3by insulin mediated by protein kinase B[J]. Nature,1995,378:85-789.
    [143] Andjelkovic M, Jakubowicz T, Cron P, et al. Activation and phosphorylationof a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promotedby serum and protein phosphatase inhibitors[J]. Proc Natl Acad Sci,1996,93:5699-5704.
    [144] Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding toHsp90[J]. Proc Natl Acad Sci,2000,97:10832-10837.
    [145] Cheng JQ, Godwin AK, Bellacosa A, et al. AKT2, a putative oncogene encodinga member of a subfamily of protein-serine/threonine kinases, is amplified in humanovarian carcinomas[J]. Proc Natl Acad Sci,1992,89:9267-9271.
    [146] Nakatani K, Thompson DA, Barthel A, et al. Up-regulation of Akt3in estrogenreceptor-deficient breast cancers and androgenindependent prostate cancer lines[J]. JBiol Chem,1999,274:21528-21532.
    [147] Dickey CA, Koren J, Zhang YJ, et al. Akt and CHIP coregulate tau degradationthrough coordinated interactions[J]. Proc Natl Acad Sci,2008,105:3622-3627.
    [148] Dickey CA, Kamal A, Lundgren K, et al. The high-affinity HSP90-CHIPcomplex recognizes and selectively degrades phosphorylated tau client proteins[J]. JClin Invest,2007,117(3):648–658
    [149] Dechiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype inheterozygous mice carrying an insulin-like growth factor II gene disrupted bytargeting[J]. Nature,1990,345:78-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700