用户名: 密码: 验证码:
烟酸衍生智能高分子的合成及其在药物控制释放中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子前药因其低毒、高效、缓释、长效等特点在现代医药发展中占据着越来越重要的地位。近些年来,pH响应智能高分子因为其便利的响应条件和潜在的应用价值而倍受研究者的关注。由于生物体特殊的体内酸碱环境,使得pH响应智能高分子在生物医药方面拥有广阔的应用前景。因此合成与研究具有pH响应行为的高分子前药载体具有极大的学术价值与应用前景。
     本文以烟酸和甲基丙烯酸羟乙酯(HEMA)为原料合成烟酸衍生的甲基丙烯酰氧基乙基-3-吡啶甲酸酯(MAEPF)单体并对其进行表征。综合本课题组前期研究成果,采用CPFDB为链转移剂、TPO为光引发剂,研究MAEPF在柔和的可见光活化下的室温RAFT聚合规律,包括反应动力学行为和可控性特征。研究发现,在该条件下MAEPF单体聚合反应具有良好的活性和可控性。而且,提高单体的起始投料比,可显著提高聚合反应速率,并明显缩短聚合反应初期的引发期,这些效应对合成结构精确的高分子量的PMAEPF聚合物提供了极大的便利。在此基础上,本文以聚甲基丙烯酰氧基乙基-3-吡啶甲酸酯为大分子链转移剂,在柔和的可见光活化下通过室温RAFT共聚合反应,合成了多种不同结构且分子量分布较窄的嵌段共聚物。这些嵌段共聚物的精确合成为构筑具有特殊结构和性质(如两亲性、生物活性等)的烟酸衍生高分子药物载体提供了方法与前体。
     本文还研究了不同聚合度的PMAEPF均聚物及其与小分子模型药物双嘧达莫(DIP)混合物的玻璃化转变温度。结果表明,在聚合度为24~81之间时PMAEPF均聚物的Tg在50oC左右。DIP的加入,显著降低PMAEPF的玻璃化转变温度。不同聚合度和嵌段长度比的PMAEPF-b-PPEGMA胶束化行为研究结果表明,亲疏水链长比直接影响胶束的稳定。在稳定的胶束中,因为胶束核为硬塑体,即使降低水溶液pH,胶束尺寸也不发生变化。以PMAEPF80-b-PPEGMA10胶束为载体,包覆小分子药物DIP,载药胶束在中性条件下其疏水胶束核的Tg在室温附近,有利于DIP向溶液中扩散。在偏酸性条件下,由于PMAEPF嵌段吡啶基团和DIP的季铵化,强化了两者的水合能力,驱动胶束核中的DIP向水溶液扩散,其释放速率明显快于中性条件。
Polymeric prodrugs are polymers that drugs are covalently bound to polymers. Because of low toxicity, high efficiency and controlled drug release, they become more and more important in biomedical field. In recent years, pH-responsive polymers have been extensively investigated. As a particular type of smart materials, they exhibited extensively potential applications. Clearly, developing a new type of pH-responsive polymeric prodrug is desirable from academic and industrial standpoints.
     In this paper, a nicotinic-acid-based monomer, methacryloyloxylethyl 3-pyridylformate (MAEPF) was synthesized and characterized. A range of well-defined PMAEPF polymers were synthesized via highly efficient and well controlled 2-cyanoprop-2-yl(4-fluoro) dithiobenzoate or CPFDB-mediated RAFT polymerization of MAEPF monomer under an environmentally friendly visible light radiation at 30 oC, using (2,4,6-trimethylbenzoyl) diphenylphosphine oxide (TPO) as a photo-initiator. Kinetic studies indicated that this RAFT polymerization was well-controlled. A relatively low concentration of chain transfer agent (CTA) led to both effects of shortening initialization period of this RAFT process and accelerating the overall polymerization rate. Moreover, a variety of well-defined PMAEPF-based block copolymers with poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) blocks, poly(N, N-dimethylaminoethyl methacrylate) (PDMAEMA) blocks and poly(glycidyl methacrylate) (PGMA) blocks were synthesized via ambient temperature RAFT polymerization under this mild visible light radiation at 30 oC, using above-synthesized PMAEPF polymers as macro-CTA.
     The effect of molecular weights of PMAEPF and dipyridamole contents (DIP) on the glass transition temperature (Tg) of these polymers and blends were investigated. The results indicated that Tg of PMAEPF polymers were around 50 oC. On addition of DIP, the glass transition temperature of their blends was dramatically lowered to around room temperature. The molecular weight and structural unit ratio of PMAEPF to PPEGMA significantly affected the micellization of PMAEPF-b-PPEGMA copolymer in aqueous solution. The solution pH had negligible influence on the PMAEPF-b-PPEGMA copolymer micelles, due to the glass state of PMAEPF micellar cores at ambient temperature. However, blending DIP in PMAEPF micellar cores led to the dramatic decrease of Tg, thus facilitated the polymer chain diffusion between micelles, which caused narrow-size-distributed micelles. The drug release was remarkably accelerated on quarternization of pyridine groups and DIP in acidic solutions.
引文
[1] Khandare, J.; Minko, T. Polymer–drug conjugates: progress in polymeric prodrugs [J]. Prog. Polym. Sci. 2006, 31:359-397.
    [2] Duncan, R. The dawning era of polymer therapeutics [J]. Nat. Rev. Drug Discov. 2003, 2:347-360.
    [3] Charrois, G.J.R.; Allen, T.M. Drug release rate influences the pharmacokinetics, biodistribution, therapeutic activity, and toxicity of pegylated liposomal doxorubicin formulations in murine breast cancer [J]. Biochim. Biophy. Acta Biomembr. 2004, 1663:167-177.
    [4] Thomas, A.C.; Campbell, J.H. Conjugation of an antibody to cross-linked fibrin for targeted delivery of anti-restenotic drugs [J]. J. Controlled Release 2004, 100:357-377.
    [5] Heredia, K.L.; Bontempo, D.; Ly T.; Byers, J.T.; Halstenberg, S.; Maynard, H.D. In situ preparation of protein-“smart”polymer conjugates with retention of bioactivity [J]. J. Am. Chem. Soc. 2005, 127:16955-16960.
    [6] Sallach, R.E.; Wei, M.; Biswas, N.; Conticello, V.P.; Lecommandoux, S.; Dluhy, R.A.; Chaikof, E.L. Micelle density regulated by a reversible switch of protein secondary structure [J]. J. Am. Chem. Soc. 2006, 128:12014-12019.
    [7] Nishi, K.K.; Jayakrishnan, A. Self-gelling primaquine-gum arabic conjugate: an injectable controlled delivery system for primaquine [J]. Biomacromolecules 2007, 8: 84-90.
    [8] Hruby, M.; Konak, C.; Ulbrich, K. Polymeric micellar pH-sensitive drug delivery system for doxombicin [J]. J. Controlled Release 2005, 103:137-148.
    [9] Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change [J]. Angew. Chem. Int. Ed. 2003, 42:4640-4643.
    [10] Bae, Y.; Kataoka, K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy [J]. Bioconjugate Chem. 2005, 16:122-130.
    [11] Yoo, H.S.; Park, T.G. Biodegradable polymeric micelles composed of doxorubidn conjugated PLGA-PEG block copolymer [J]. J. Controlled Release 2001, 70:63-70.
    [12] Giacomelli, C.; Schmidt, V.; Borsali, R. Nanocontainers formed by self-Assembly of poly (ethylene oxide)-b-poly(glycerol monomethacrylate)-drug conjugates [J]. Macromolecules 2007, 40:2148-2157.
    [13] Gil, E.S.; Hudson, S.A. Stimuli-responsive polymers and their bioconjugates [J]. Prog. Polym. Sci. 2004, 29:1173-1222.
    [14] Perkin, K.K.; Turner, J.L.; Wooley, K.L.; Mann, S. Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages [J]. Nano Lett. 2005, 5:1457-1461.
    [15] Lazzari, M.; Lopez-Quintela, M.A. Block copolymers as a tool for nanomaterial fabrication [J]. Adv. Mater. 2003, 15:1583-1594.
    [16] Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery [J]. Drug Discov. Today 2002, 7:569-579.
    [17] Qiu, Y.; Park, K. Environment-sensitive hydrogels delivery [J]. Adv. Drug Deliv. Rev. 2001, 53:321-339.
    [18] Philippova, O.E.; Hourdet, D.; Audebert, R.; Khokhlov, A.R. PH-responsive gels of hydrophobically modified poly(acrylic acid) [J]. Macromolecules 1997, 30:8278-8285.
    [19] Torres-Lugo, M.; Peppas, N.A. Molecular design and in vitro studies of novel pH-sensitive hydrogels for the oral delivery of calcitonin [J]. Macromolecules 1999, 32:6646-6651.
    [20] Tonge, S.R.; Tighe, B.J. Responsive hydrophobically associating polymers: a review of structure and properties [J]. Adv. Drug Deliv. Rev. 2001, 53:109-122.
    [21] Murthy, N.; Robichaud, J.R.; Tirrell, D.A.; Stayton, P.S.; Hoffman, A.S. The design and synthesis of polymers for eukaryotic membrane disruption [J]. J. Controlled Release 1999, 61:137-143.
    [22] Lee, A.S.; Bütün, V.; Vamvakaki, M.; Armes, S.P.; Pople, J.A.; Gast, A.P. Structure of pH-dependent block copolymer micelles: charge and ionic strength dependence [J]. Macromolecules 2002, 35:8540-8551.
    [23] Pinkrah, V.T.; Snowden, M.J.; Mitchell, J.C.; Seidel, J.; Chowdhry, B.Z.; Fern, G.R. Physicochemical properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels [J]. Langmuir 2003, 19:585-590.
    [24] Gohy, J.; Lohmeijer, B.G.G.; Varshney, S.K.; Decamps, B.; Leroy, E.; Boileau, S.; Schubert, U.S. Stimuli-responsive aqueous micelles from an ABC metallo-supramolecular triblock copolymer [J]. Macromolecules 2002, 35:9748-9755.
    [25] Sutton, R.C.; Thai, L.; Hewitt, J.M.; Voycheckand, C.L.; Tan, J.S. Microdomain characterization of styrene–imidazole copolymers [J]. Macromolecules 1988, 21:2432-2439.
    [26] Dai, S.; Ravi, R.; Tam, K.C.; Mao, B.V.; Gan, L.H. Novel pH-responsive amphiphilic diblock copolymers with reversible micellization properties [J]. Langmuir 2003, 19:5175-5177.
    [27] Anderson, B.C.; Cox, S.M.; Bloom, P.D.; Sheares, V.V.; Mallapragada, S.K. Synthesis and characterization of diblock and gel-forming pentablock copolymers of tertiary amine methacrylates, poly(ethylene glycol), and poly(propylene glycol) [J]. Macromolecules 2003, 36:1670-1676.
    [28] Agarwal, A.; Unfer, R.; Mallapragada, S.K. Novel cationic pentablock copolymers as non-viral vectors for gene therapy [J]. J. Controlled Release 2005, 103:245-258.
    [29] Bütün, V.; Billingham, N.C.; Armes, S.P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: formation of micelles and reverse micelles in aqueous solution [J]. J. Am. Chem. Soc. 1998, 120:11818-11819.
    [30] Bütün, V.; Armes, S.P.; Billingham, N.C.; Tuzar, Z.; Rankin, A.; Eastoe, J.; Heenan, R.K. The remarkable“flip-flop”self-assembly of a diblock copolymer in aqueous solution [J]. Macromolecules 2001, 34:1503-1511.
    [31] Vamvakaki, M.; Papoutsakis, L.; Katsamanis, V.; Afchoudia, T.; Fragouli, P.G; Iatrou, H.; Hadjichristidis, N.; Armes, S.P.; Sidorov, S.; Zhirov, D.; Zhirov, V.; Kostylev, M.; Bronstein, L.M.; Anastasiadis, S.H. Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles [J]. Faraday Discussions 2005, 128:129-147.
    [32] Ma, Y.; Tang, Y.; Billingham, N.C.; Armes, S.P.; Lewis, A.L.; Lloyd, A.W.; Salvage, J.P. Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media [J]. Macromolecules 2003, 36:3475-3484.
    [33] Giacomelli, C.; Le Men, L.; Borsali, R.; Lai-Kee-Him, J.; Brisson, A.; Armes, S.P.; Lewis, A.L. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments [J]. Bioacromolecules 2006, 7:817-828.
    [34] Castelletto, V.; Hamley, I.W.; Ma, Y.; Bories-Azeau, X.; Armes, S.P.; Lewis, A.L. Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer [J]. Langmuir 2004, 20:4306-4309.
    [35] Ma, Y.; Tang, Y.; Billingham, N.C.; Armes, S.P.; Lewis, A.L. Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers [J]. Biomacromolecules 2003, 4:864-868.
    [36] Licciardi M.; Tang Y.; Billingham N.C.; Armes S.P.; Lewis A.L. Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs [J]. Biomacromolecules 2005, 6:1085-1096.
    [37] Tang, Y.; Liu, S.; Armes, S.P.; Billingham, N.C. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers [J]. Biomacromolecules 2003, 4:1636-1645.
    [38] Gohy, J.F.; Willet, N.; Varshney, S.; Zhang, J.; Jér?me, R. Core–shell-corona micelles with a responsive shell [J]. Angew. Chem. Int. Ed. 2001, 40:3214-3216.
    [39] Bütün, V.; Wang, X.; de Paz Banez M.V.; Robinson K.L.; Billingham, N.C.; Armes, S.P. Synthesis of shell cross-linked micelles at high solids in aqueous media [J]. Macromolecules 2000, 33:1-3.
    [40] Liu, S.; Weaver, J.V.M; Tang, Y.; Billingham, N.C.; Armes, S.P.; Tribe, K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers [J]. Macromolecules 2002, 35:6121-6131.
    [41] Liu, S.; Weaver, J.V.M.; Save, M.; Armes, S.P. Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles [J]. Langmuir 2002, 18:8350-8357.
    [42] Liu, H.; Jiang, X.; Fan, J.; Wang, G.; Liu, S. Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme [J]. Macromolecules 2007, 40:9074-9083.
    [43] Jiang, X.; Ge, Z.; Xu, J.; Liu, H.; Liu, S. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability [J]. Biomacromolecules 2007, 8:3184-3192.
    [44] Miyamoto, M.; Sawamoto, M.; Higashimura T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system [J]. Macromolecules 1984, 17:265-268.
    [45] Faust, R; Kennedy, J.P. Living carbocationic polymerization demonstration of the living polymerization of isobutylene [J]. Polym. Bull. 1986, 15:317-323.
    [46] Webster, O.W.; Herder, W.R.; Sogah, D.Y. Group-transfer polymerization, a new concept for addition polymerization with organosilicon initiators [J]. J. Am. Chem. Soc. 1983, 105:5706-5708.
    [47] Otsu, T.; Yoshida, M; Tazalci, T. A model for living radical polymerization [J]. Makromol Chem. Rapid Commun. 1982, 3:133-140.
    [48] Otsu, T.; Yoshida, M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters [J]. Makromol. Chem. Rapid Commun. 1982, 3:127-132.
    [49] Georges, M.K.; Veregin, R.P.N.; Kazmaier, P.M.; Hamer, G.K. Narrow molecular weight resins by a free-radical polymerization process [J]. Macromolecules 1993, 26:2987-2988.
    [50] Wang, J.; Matyjaszewski, K. Controlled/“living”radical polymerization, atom transfer radical polymerization in the presence of transition-metal complexes [J]. J. Am. Chem. Soc. 1995, 117:5614-5615.
    [51] Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/ methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization [J]. Macromolecules 1995, 28:1721-1723.
    [52] Percec, V.; Narboiu, B.“Living”radical polymerization of styrene initiated by arenesulfonyl chlorides and Cu(bpy)nCl [J]. Macromolecules 1995, 28:7970-7972.
    [53] Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; Rizzardo, E.; Thang, S.H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process [J]. Macromolecules 1998, 31:5559-5562.
    [54] Chong, Y.K.; Le, T.P.T.; Moad, G.; Rizzardo, E.; Thang, S.H. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process [J]. Macromolecules 1999, 32:2071-2074.
    [55] Shim, S.E.; Jung, H.; Lee, H.; Biswas, J.; Choe, S. Living radical dispersion photopolymerization of styrene by a reversible addition–fragmentation chain transfer (RAFT) agent [J]. Polymer 2003, 44:5563-5572.
    [56] Quinn, J.F.; Barner, L.; Rizzardo, E.; Davis, R.P. Living free-radical polymerization of styrene under a constant source ofγ-radiation [J]. J. Polym. Sci. Part A: Polym. Chem. 2002, 40:19-25.
    [57] You, Y.; Hong, C.; Bai, R.; Pan, C.; Wang, J. Photo-initiated living free radical polymerization in the presence of dibenzyl trithiocarbonate [J]. Macromol. Chem. Phys. 2002, 203:477-483.
    [58] Chen, G.; Zhu, X.; Zhu, J.; Cheng, Z. Plasma-initiated controlled/living radical polymerization of methyl methacrylate in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) [J]. Macromol. Rapid Commun. 2004, 25:818-824.
    [59] Mayadunne, R.T.A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S.H. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: triblock copolymers by radical polymerization in two steps [J]. Macromolecules 2000, 33:243-245.
    [60] Lord, H.T.; Wittaker, M.R.; Quinn, J.F.; Barner-Kowollik, C.; Stenzel, M.H.; Heuts, J.P.A.; Davis, T.P. New molecular architectures and microgel stars from RAFT polymerization-a facile route to macroporous membrance [J]. Polym. Prepr. 2002, 43:118-119
    [61] Arotcarena, M.; Heise, B.; Ishaya, S.; Laschewsky, A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity [J]. J. Am. Chem. Soc. 2002, 124:3787-3793.
    [62] Schilli, C.M.; Zhang, M.; Rizzardo, E.; Thang, S.H.; Chong, Y.K.; Edwards, K.; Karlsson, G.; Müller, A.H.E. A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)-block-poly(acrylic acid) [J]. Macromolecules 2004, 37:7861-7866.
    [63] Li, Y.; Lokitz, B.S.; McCormick, C.L. RAFT Synthesis of a thermally responsive ABC triblock copolymer incorporating N-Acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media [J]. Macromolecules 2006, 39:81-89.
    [64] Sumerlin, B.S.; Lowe, A.B.; Thomas, D.B.; McCormick, C.L. Aqueous solution properties of pH-responsive AB diblock acrylamido copolymers synthesized via aqueous RAFT [J]. Macromolecules 2003, 36: 5982-5987.
    [65] Stenzel-Bosenbaum, M.H.; Davis, T.P.; Chen, V.; Fane, A.G. Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization [J]. J. Polym. Sci, Part A: Polym. Chem. 2001, 39:2777-2783.
    [66] Stenzel-Bosenbaum, M.H.; Davis, T.P; Fane, A.G.; Chen, V. Porous polymer films and hoeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques [J]. Angew. Chem. Int. Ed. 2001, 40:3428-3432.
    [67] Stenzel-Bosenbaum, M.H.; Davis, T.P. Star polymer synthesis using trithiocarbonate functionalβ-cyclodextrin cores (reversible addition-fragmentation chain-transfer polymerization) [J]. J. Polym. Sci, Part A: Polym. Chem. 2002, 40:4498-4512.
    [68] Wang, Z.; He, J.; Tao, Y.; Yang, L.; Jiang, H.; Yang, Y. Controlled chain branching by RAFT-based radical polymerization [J]. Macromolecules 2003, 36:7446-7452.
    [69] Raula, J.; Shan, J.; Nuopponen, M.; Niskanen, A.; Jiang, H.; Kauppinen, E.I.; Tenhu, H. Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization [J]. Langmuir 2003, 19:3499-3504.
    [70] Hong, C.; You, Y.; Pan, C. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization [J]. Chem. Mater. 2005, 17:2247-2254.
    [71] Quinn, J.F.; Rizzardo, E.; Dais, T.P. Ambient temperature reversible addition fragmentation chain transfer polymerization [J]. Chem. Commun. 2001, 1044-1045.
    [72] Convertine, A.J.; Lokitz, B.S.; Lowe, A.B.; Scales, C.W.; Myrick, L.J.; McCormick, C.L. Aqueous RAFT polymerization of acrylamide and N, N-dimethylacrylamide at room temperature [J]. Macromol. Rapid Commun. 2005, 26:791-795.
    [73] Quinn, J.F.; Barner, L.; Barner-Kowollik, C.; Rizzardo, E.; Davis, T.P. Reversible addition-fragmentation chain transfer polymerization initiated with ultraviolet radiation [J]. Macromolecules 2002, 35:7620-7627.
    [74] Lu, L.; Yang, N.; Cai, Y. Well-controlled reversible addition–fragmentation chain transfer radical polymerisation under ultraviolet radiation at ambient temperature [J]. Chem. Commun. 2005, 5287-5288.
    [75] Lu, L.; Zhang, H.; Yang, N.; Cai, Y. Toward rapid and well-controlled ambient temperature RAFT polymerization under UV-Vis radiation: effect of radiation wave range [J]. Macromolecules 2006, 39:3770-3776.
    [76] Yin, H.; Zheng, H.; Lu, L.; Liu, P.; Cai, Y. Highly efficient and well-controlled ambient temperature RAFT polymerization of glycidyl methacrylate under visible light radiation [J]. J. Polym. Sci. Part A: Polym. Chem. 2007, 22:5091-5102.
    [77] Jiang, W.; Lu, L.; Cai, Y. Highly efficient and well-controlled ambient temperature RAFT polymerization under solar radiation [J]. Macromol. Rapid Commun. 2007, 28:725-728.
    [78] Zhang, H.; Deng, J.; Lu, L.; Cai, Y. Ambient-temperature RAFT polymerization of styrene and its functional derivatives under mild long-wave UV-vis radiation [J]. Macromolecules 2007, 40:9252-9261.
    [79] Eccleston, M.E.; Kuiper, M.; Gilchrist, F.M.; Slater, N.K.H. pH-responsive pseudo-peptides for cell membrane disruption [J]. J. Controlled Release 2000, 69:297-307
    [80] Siegel, R.A. Hydrophobic weak polyelectrolyte gels: studies of swelling equilibria and kinetics [J]. Adv. Polym. Sci. 1993, 109:233–236.
    [81] Rosenson, R.S. Antiatherothrombotic effects of nicotinic acid [J]. Atherosclerosis 2003, 171:87-96.
    [82] Meyers, C.D.; Liu, P.; Kamana, V.S.; Kashyap, M.L. Nicotinic acid induces secretion of prostaglandin D2 in human macrophages: an in vitro model of the niacin flush [J]. Atherosclerosis 2007, 192:253-258
    [83] Guyton, J.R.; Bays, H. Safety considerations with niacin therapy [J]. Am. J. Cardiol. 2007, 99:22C-31C.
    [84] Kim, S.Y. Lee, Y.M. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers [J]. Biomaterials 2001, 22:1697-1704.
    [85] Lin, H.; Yu, T.; Cheng, C. Dynamic light scattering from sol-gel transition of unsaturated polyester resins [J]. Macromolecules 1999, 32:690-696.
    [86] Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance [J]. Adv. Drug Deliv. Rev. 2001, 47:113-131.
    [87] Xu, F.; Cai, Q.; Li, Y.; Kang, E.; Neoh, K.G. Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization [J]. Biomacromolecules 2005, 6:1012-1020.
    [88] Yamamoto, S.; Moriya, O.; Endo, T. Efficient fixation of carbon dioxide into poly(glycidyl methacrylate) containing pendant crown ether [J]. Macromolecules 2003, 36:1514-1521
    [89] Kang, E.; Zhang, Y. Surface modificationof fluoropolymers via molecular design [J]. Adv. Mater. 2000, 12:1481-1494.
    [90] Xu, F.; Li, Y.; Kang, E.; Neoh, K.G. Heparin-coupled poly(poly(ethylene glycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces [J]. Biomacromolecules 2005, 6:1759-1768.
    [91] Tao, L.; Mantovani, G.; Lecolley, F.; Haddleton, D.M.α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation“Pegylation”[J]. J. Am. Chem. Soc. 2004, 126:13220-13221.
    [92] Allen, C.; Maysinger, D.; Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery [J]. Colloids and Surfaces B: Biointerfaces 1999, 16:3-27.
    [93] Zhao, B.; Brittain, W. J. Polymer brushes: surface-immobilized macromolecules [J]. Prog. Polym. Sci. 2000, 25: 677-710.
    [94] Otsuka, H.; Nagasaki, Y.; Kataoka, K. Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications [J]. Current Opinion in Colloid & Interface Science 2001, 6:3-10.
    [95] Kwon, G.; Naito, M.; Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Micelles based on AB block copolymers of poly(ethylene oxide) and poly(β-benzyl L-aspartate) [J]. Langmuir 1993, 9:945-949.
    [96] Hagan, S.A.; Coombes, A.G.A.; Garnett, M.C.; Dunn, S.E.; Davies, M.C.; Illum, L.; Davis, S.S.; Harding, S.E.; Purkiss, S.; Gellert, P.R. Polylactide-poly(ethylene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems [J]. Langmuir 1996, 12:2153-2161.
    [97] Bronich, T.K.; Kabanov, A.V.; Kabanov, V.A.; Yu, K.; Eisenberg, A. Soluble complexes from poly(ethylene oxide)-block- polymethacrylate anions and N-alkylpyridinium cations [J]. Macromolecules 1997, 30:3519-3525.
    [98] Lysenko, E.A.; Bronich, T.K.; Eisenberg, A.; Kabanov, V.A.; Kabanov A.V. Block ionomer complexes from polystyrene-block-polyacrylate anions and N-cetylpyridiniun cations [J]. Macromolecules 1998, 31:4511-4515.
    [99] Yokoyama, M.; Okano, T.; Sakurai, Y.; Suwa, S.; Kataoka, K. Introduction of cisplatin into polymeric micelle [J]. J. Controlled Release 1996, 39:351-356.
    [100] Nishiyama, N.; Yokoyama, M.; Aoyagi, T.; Okano, T.;Sakurai, Y.; Kataoka, K. Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiamine platinum (II) and poly(ethylene glycol)-poly(α,β-aspartic acid) block copolymer in an aqueous medium [J]. Langmuir 1999, 15:377-383.
    [101] Kataoka, K.; Ishihara, A.; Harada, A.; Miyazaki, H. Effect of secondary structure of poly(L-lysine) segments on the micellization of poly(ethylene glycol)-poly(L-lysine) block copolymer partially substituted with hydrocinnamoyl-group at the Nε-position in aqueous milieu [J]. Macromolecules 1998, 31:6071-6076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700