用户名: 密码: 验证码:
海石湾井田CO_2成藏演化机制及防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
窑街矿区是目前我国唯一开采的具有煤与CO2突出危险性的矿区,突出灾害严重,井田主采煤层中赋存瓦斯以CO2为主,且国内外对煤田中CO2的成因赋存演化以及防治煤与CO2突出技术研究的相对较少,现有的对窑街矿区CO2的认识与CO2治理技术措施尚不能有效保证矿区的安全高效生产。本文以窑街海石湾井田为研究背景,以海石湾井田煤二层中CO2为主要研究对象,运用地球化学、岩石学、构造地质学、表面物理化学、岩石力学、采矿工程、渗流力学、数值模拟等多学科理论,采用理论分析、实验室实验与现场工程实践的研究方法,系统地开展了井田CO2成因、CO2成藏规律、CO2的赋存状态、海石湾煤对CO2的吸附解吸特性、孔隙压力对煤层卸压作用机制以及工程实践等多方面的研究,并取得了一定的创新成果,本文的主要研究结论如下:
     1)根据对海石湾井田煤二层中CO2的碳同位素与氦同位素测定结果,实测海石湾井田主要测点的CO2含量均大于60%,实测δ13CcO2变化范围主要为+1.00~-5%‰,3He/4He测定值均为10-8数量级,R/Ra为0.0042~0.185,分析认为海石湾煤田中CO2为无机地壳来源。并根据F19断裂构造岩性质、多期运动性以及实验分析,提出了海石湾井田CO2为F19韧-脆性剪切带的动力变质成因;且F19断裂在井田CO2成藏过程中起到了成气断裂、输气断裂和封气断裂的多重作用。
     2)建立了修正的D-A模型,该模型对现有的高压吸附实验数据具有较高的拟合精度,并对海石湾煤对超临界CO2吸附等温线进行了分析,引入了聚合物的自由体积理论对异常吸附等温线进行了理论分析,并得到了解吸曲线的初步验证。
     3)海石湾井田煤二层埋深600~1000m时,地温为31.72℃-43.88℃、实测最大瓦斯压力为7.3MPa、井田东部CO2浓度超过90%,计算海石湾井田东部区域的混合瓦斯含量达到50-60m3/t,现场测定、实验测定以及理论计算结果表明,海石湾井田煤二层中赋存超临界CO2。
     4)数值模拟结果表明,随着保护层工作面推进,下伏煤岩体的采动卸压范围、及煤二层的膨胀变形量均随着孔隙压力的升高而增大,最大绝对变形量为328mm,最大相对变形量可达5‰,随着保护层推进与孔隙压力的增大,被保护层发生塑性破坏并随之增大,并进行了理论分析,结果表明孔隙压力在增强被保护层卸压中起着重要作用。
     5)远距离上保护层开采及卸压瓦斯抽采实践验证了高孔隙压力在煤层卸压中的作用,抽采单孔流量达到2m3/min以上,煤层透气性增大878倍,煤层瓦斯含量由53m3/t降至12m3/t,消除了煤二层的突出危险性,同时工程实践也验证了本文提出的相关结论。
     本论文有图110幅,表20个,参考文献158篇。
The Yaojie Coalfield is the only mining area with coal and CO2 outbursts in China. The CO2 is featured as the dominant gas component in coal seam. This paper takes the Haishiwan Coalfield as the background and the No.2 Haishiwan mine area as the main study object, systematically carrying out study of various aspects on the causes of CO2, CO2 enrichment regularity, CO2 occurrence in coal seam of the Yaojie Coalfield, adsorption and desorption of CO2 in coal, numerical simulation and engineering practice applied to eliminate the risk of coal and CO2 outburst regionally. The main conclusions are as follows:
     1) The CO2 originates from inorganic crust sources according to carbon isotope and helium isotope in the Haishiwan Coalfield. The dynamic-thermal metamorphism of the F19 ductile-brittle shear zone is believed to result in the CO2 release. The F19 fault plays multiple roles in the generation, transportation, and trapping of gas during the CO2 formation.
     2) Studies on the characteristics of coal absorbing CO2 or CO2/CH4 mixture are carried out under low pressure. The D-A model fits the adsorption isotherms of CO2 well under low pressure. The modified D-A model is applied to analyze the supercritical CO2 adsorption isotherms of Haishiwan coal and free volume theory is used to explain abnormal adsorption isotherms.
     3) Taking the temperature, pressure of supercritical CO2 occurrence and the change of critical point of CO2 and CH4 mixed gas occurrence into consideration, and combining the basic parameters consist of earth temperature, gas pressure, gas content, gas concentration and so on, we raised the hypothesis that occurrence of supercritical CO2 occurs in the No.2 of Haishiwan coal field.
     4) Numerical simulation is used to analyze the stress and strain, damage characteristics, and evolution of protected coal seam under different pore pressure in the stope. The mechanism obtained that pore pressure helpful to pressure relief in protected coal can be used for pressure relief CO2 drainage of protected coal seam.
     5) High pore pressure acts on pressure relief of coal seam, which has been verified in practice of remote protective coal seam mining and pressure-relief gas drainage. The singe gas drainage flow reaches more than 2m3/min. The coal seam permeability increases by 878 times. The gas content decreases from 53m3/t to 12m3/t. The risk of outburst has been eliminated with regard to the No.2 coal seam.
引文
[1]Lama, R.D. Bodziony, J. Management of outburst in underground coal mines[J].International Journal of Coal Geology,1998(35):83-115.
    [2]Beamish, B.B. Crosdale, P.J. Instantaneous outbursts in underground coal mines:an overview and association with coal type[J]. International Journal of Coal Geology,1998(35):27-55.
    [3]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:133-138.
    [4]李树刚,常心坦,徐精彩.煤(岩)与CO2突出特征及其预防技术研究[J].西安科技学院学报,2000,20 (1):1-4.
    [5]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [6]国家煤矿安全监察局.保护层开采技术规范(AQ1050-2008)[M].北京:煤炭工业出版社,2008.
    [7]唐中驭.天然二氧化碳气藏的地质特征及利用[J].天然气工业,1983,3(2):22-251.
    [8]沈平.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991:1243.
    [9]戴金星,宋岩,戴春森等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社,1995:1-231.
    [10]魏菊英,工关玉.同位素地球化学[M].北京:地质出版社,1988:140-141.
    [11]上官志冠,张仲禄.滇西实验场区温泉的稳定同位素地球化学,现代地壳运动研究[M].北京:地震出版社,1991:87-95.
    [12]Wycherley H, Fleet, A. Shaw, H. Some observations on the origins of large volumes of carbon dioxide accumulations in sedimentary basins[J]. Mar. Petrol. Geol,1999,16(6):489-494.
    [13]Dai J.X, Yang S.F, Chen H.L, et al. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins[J]. Organic Geochemistry,2005 (36):1664-1688.
    [14]俞启香,工绍章,陆国桢等.甘肃窑街矿务局皮带斜井突出二氧化碳的来源与赋存[R]内部报告,1982.
    [15]陶明信.窑街煤矿二氧化碳突出的地球化学及构造研究[D].兰州:中国科学院兰州地质研究所,1993.
    [16]卫平生,张虎权,陈启林等.民和盆地多种能源矿产共存成藏机理[M].北京:石油工业出版社,2007:131~141.
    [17]Gilfillan S. M. V., Lollar B S, Holland G, et al. Solubility trapping in formation water as dominant CO2 sink in natural gas fields[J]. Nature,2009(458):614-618.
    [18]Kusakabe M, Ohsumi T, Aramaki S. The Lake Nyos gas disaster:chemical and isotopic evidence in waters and dissolved gases from three Cameroonian crater lakes, Nyos, Monoun and Wum[J]. Journal of Volcanology and Geothermal Research,1989(39):167-185.
    [19]Chivas, A.R. Barnes, I. Evans, W.C, et al. Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions[J]. Nature,1987(326):587-589.
    [20]Mckirdy, D.M. Chivas, A.R. Nonbiodgraded aromatic condensate associated with volcanic supercritical carbon dioxide,Otway Basin:On implication for primary migration from terrestrial organic matter[J]. Organic Geochemistry,1992 (5):611-627.
    [21]朱岳年.二氧化碳地质研究的意义及全球高含二氧化碳天然气的分布特点[J].地球科学进展,1997,12(1):26-31.
    [22]戴春森,宋岩,孙岩.中国东部二氧化碳气藏成因特点及分布规律[J].中国科学,1995,25(7):764-771.
    [23]陶士振,刘德良,杨晓勇等.无机成因二氧化碳气的类型分布和成藏控制条件[J].中国区域地质,1999,18(2):218-222.
    [24]鲁雪松,宋岩,柳少波等.幔源CO2释出机理、脱气模式及成藏机制研究进展[J].地学前缘,2008,15 (6):293-301.
    [25]Sibson, R.H. Fluid involvement in normal faulting[J]. Journal of Geodynamics,2000(29):469-499.
    [26]迟元林,云金表,庞庆山.徐家围子断陷CO2气藏形成地质机制研究[J].大庆石油地质与开发,2000,19 (3) ():1-3.
    [27]云金表,庞庆山,徐佰承等.松辽盆地南部CO2气藏的形成条件[J].大庆石油学院学报,2000,24(2):82-84.
    [28]郭栋,工兴谋,张金功.山东济阳坳陷二氧化碳气成藏模式分析[J].现代地质,2006,20(3):441-448.
    [29]丁巍伟,戴金星,陈汉林等.黄骅坳陷新生代构造活动对无机成因CO2气藏控制作用的研究[J].高校地质学报,2004,10(4):615-623.
    [30]崔永君.煤对CH4、N2和CO2及多组分气体吸附的研究[D].西安:煤炭科学研究总院西安分院,2003.
    [31]Krooss, B.M. Bergen, F. V. Gensterblum,Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology,2002(51):69-92.
    [32]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报,2001,32(1):18-20.
    [33]Clarkson C.R. Bustin R.M. Binary gas adsorption/desorption isotherms:effect of moisture and coal composition upon carbon dioxide selectivity over methane [J]. International Journal of Coal Geology,2000(42):241-271.
    [34]Stefanska, C.G, Zarebska,K. Sorption of carbon dioxide-methane mixtures[J]. International Journal of Coal Geology,2005(62):211-222.
    [35]唐书恒,汤达祯,杨起.二元气体等温吸附-解吸中气分的变化规律[J].中国矿业大学学报,2004,33(4):448-451.
    [36]于洪观.煤对CH4、CO2、N2及其二元混合气体吸附特性、预测和CO2驱替CH4的研究[D].青岛:山东科技大学,2005.
    [37]Day, S. Sakurovs, R. Weir, S. Supercritical gas sorption on moist coals[J]. International Journal of Coal Geology,2008(74):203-214.
    [38]Li, D.Y. Liu, Q. F. Weniger, P. High-pressure sorption isotherms and sorption kinetics of CH4 and CO2 on coals[J]. Fuel,2010(89):569-580.
    [39]He, J.W. Shi, Y. Ahn, S. et al. Adsorption and desorption of CO2 on Korean coal under subcritical to supercritical conditions[J]. J. Phys. Chem,2010(B114):4854-4861.
    [40]Busch, A. Alles, S. Gensterblum, Y. et al. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control,2008(2):297-308.
    [41]Goodman, A.L. et al. Inter-laboratory comparison II; CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55 degrees C and up to 15 MPa[J]. International Journal of Coal Geology,2007(72):153-164.
    [42]Yu, H.G. Guo, W.J. Cheng, J.L. et al. Impact of experimental parameters for manometric equipment on CO2 isotherms measured:comment on "Inter-laboratory comparison II:CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55℃ and up to 15 MPa" by Goodman et al. (2007) [J]. International Journal of Coal Geology,2008(74):250-258.
    [43]Sakurovs, R. Day, S. Weir, S. Causes and consequences of errors in determining sorption capacity of coals for carbon dioxide at high pressure[J]. International Journal of Coal Geology,2009(77):16-22.
    [44]Sakurovs, R. Day, S. Weir, S. et al. Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions[J]. Energy Fuels,2007(21):992-997.
    [45]Pini, R. Ottiger, S. Burlini, L. Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature [J]. International Journal of Greenhouse Gas Control,2010(4):90-101.
    [46]Liu,C.J. Wang, GX. Sang, S.X. et al. Changes in pore structure of anthracite coal associated with CO2 sequestration process[J]. Fuel,2010(89):2665-2672.
    [47]Massarotto, P. Golding, S.D. Bae, J.S. et al. Changes in reservoir properties from injection of supercritical CO2 into coal seams-A laboratory study[J]. International Journal of Coal Geology,2010(82):269-279.
    [48]A.T.艾鲁尼.唐修义,宋德淑,工荣龙译.煤矿瓦斯动力现象的预测和预防[M].北京:煤炭工业出版社,1992.
    [49]Reucroft, P.J. Sethuraman, A.R. Effect of pressure on carbon dioxide induced coal swelling[J]. Energy and Fuels,1987(1):72-75.
    [50]Walker, J. P.L. Verma, S.K. Rivera-Utrilla, J. A direct measurement of expansion in coals and macerals induced by carbon dioxide and methanol[J]. Fuel,1988(67):719-726.
    [51]Levine, J. R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J].Coalbed Methane and Coal Geology,Geologic Society Special Publication.1996(109):197-212.
    [52]Siemons, N. Busch, A. Measurement and interpretation of supercritical CO2 sorption on various coals[J]. International Journal of Coal Geology,2007(69):229-242.
    [53]Day, S. Fry, R. Sakurovs, R. Swelling of Australian coals in supercritical CO2[J]. International Journal of Coal Geology,2008(74):41-52.
    [54]Painter, P. Shenoy, S. A new model for the swelling of coal[J]. Energy & Fuels,1995(9):364-371.
    [55]Vandamme, M. Brochard, L. Lecampion, B. et al. Adsorption and strain:The CO2-induced swelling of coal[J]. Journal of the Mechanics and Physics of Solids,2010(10):1489-1505.
    [56]Pan, Z.J. Connell, L.D. A theoretical model for gas adsorption-induced coal swelling[J]. International Journal of Coal Geology,2007(69):243-252.
    [57]Viete, D.R. Ranjith, P.G The effect of CO2 on the geomechanical and permeability behaviour of brown coal:Implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology,2006(3):204-216.
    [58]Aziz, N. I. Ming, L.W. The effect of sorbed gas on the strength[J].Geotech. Geolog. Eng,1999(3-4):387-402.
    [59]Viete, D.R. Ranjith, P.G. The mechanical behaviour of coal with respect to CO2 sequestration in deep coal seams[J].Fuel,2007 (17-18):2667-2671.
    [60]Gray, I. Reservoir engineering in coal seams:Part Ⅰ-The physical process of gas storage and movement in coal seams[J].SPE Reservoir Engineering Journal,1987(2):28-34.
    [61]Harpalani, S. Chen, G Influence of gas production induced volumetric strain on permeability of coal[J].Geotechnical and Geological Engineering,1997(15):303-325.
    [62]Palmer, I. Mansoori, J. How permeability depends on stress and pore pressure in coalbeds:A new model[J].SPE Reservoir Evaluation and Engineering,2005(8):291-299.
    [63]Shi, J.Q. Durucan, S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J].SPE Reservoir Evaluation and Engineering,2005(8):291-299.
    [64]Zhang, H.B. Liu,J. Elsworth,D. et al. How sorption-induced matrix deformation affects gas flow in coal seams:A new FE model[J].International Journal of Rock Mechanics and Mining Science,2008(45):1226-1236.
    [65]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [66]程远平,俞启香等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [67]工海锋.采场下伏煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用[D].中国矿业大学博士学位论文,2008.
    [68]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2005.
    [69]李建新,林柏泉,李国旗等.深孔松动控制爆破卸压增透理论与实践[J].煤矿安全,2010,11:52-54.
    [70]周红星.突出煤层穿层钻孔诱导喷孔孔群增透机理及其在瓦斯抽采中的应用[D].中国矿业大学博士学位论文,2009.
    [71]Ballentine, C.J. Schoell, M. Coleman, D. et al. Magmatic CO2 in natural gases in the Permian Basin, West Texas:identifying the regional source and filling history[J]. Journal of Geochemical Exploration, 2000(69-70):59-63.
    [72]Horita, J. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures [J]. Geochimica et Cosmochimica Acta,2001(65):1907-1919.
    [73]Strapoc, D. Schimmelmann, A. Maria Mastalerz. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal[J]. Organic Geochemistry,2006(37):152-164.
    [74]Clayton, J.L. Geochemistry of coalbed gas-a review[J]. International Journal of Coal Geology1998(35):159-173.
    [75]Gaus, I. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J]. International Journal of Greenhouse Gas Control,2010(4):73-89.
    [76]Xu, T.F. John, A.A. Karsten, P. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology,2005(217):295-318.
    [77]Liu, L. Gao, Y.Q. Qu, X.Y. et al. Petrology and carbon-oxygen isotope of inorganic CO2 gas reservoir in Wuerxun depression, Hailaer basin[J]. Acta Petrologica Sinica,2006(22):2229-2236.
    [78]李兆兴,陶明信,徐永昌等.窑街煤田碳酸盐与突出气体的同位素组成特征[J].沉积学报,1992,10(1):93-101.
    [79]Hellevan, H. Aagard, P. Oelkers, E.H. et al. Can dawsonite permanently trap CO2? [J]. Env. Sci. Technol,2005(21):8281-8287.
    [80]朱岳年,吴新年.二氧化碳地质[M].兰州:兰州大学出版社,1994.
    [81]Zheng, Y.F. Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2-a quantitative evaluation and application to the Kushikino gold mining area in Japan[J]. Mineral Deposita,1990(25):246-250.
    [82]Valkiers, S. Varlam, M. Ru(3e, K. et al. Quantification of the degree-of-isotopic-equilibrium of carbon and oxygen isotopes in mixtures of CO2 gases[J]. International Journal of Mass Spectrometry2007(263):195-203.
    [83]Fyfe, W.S. Fluids in deep continental crust [J]. American Geophysics Union, Geodynamics series,1986(14):33-39.
    [84]Kerrick, D.M. Caldeira, K. Metamorphic CO2 degassing from orogenic belts [J]. Chemical Geology,1998(3-4):213-232.
    [85]陶士振,刘德良,杨晓勇等.动力变质作用形成的天然气分析[J].大地构造与成矿学,2000,24(1):24-30.
    [86]丁燕云,李占奎.从重磁资料分析民和盆地的构造特征[J].地球学报,2000,21(3):254-259.
    [87]许志琴,张建新,徐惠芬等.中国主要大陆山链韧性剪切带及动力学[M]北京:地质出版社,1997.
    [88]杨晓勇,刘德良,张交东等.郯庐断裂带南段双山韧-脆性剪切带物质迁移与CO2释放研究[J].地质学报,2002,76(3):335-346.
    [89]O'Hara, K.D. Fluid-rock interaction in crustal shear zones:a directed dislocation approach[J]. Geology,1994(22):843-846.
    [90]O'Hara, K.D. William, H.B. Volume-loss model for trace-element enrichments inmylonites[J]. Geology,1989(17):524-527.
    [91]陶士振,卫延召,刘德良等.造山带超高压变质流体中气体组成及成藏条件初探[J].地质科学出,2001,36(1):96-100.
    [92]陶明信,陈发源,徐永昌.窑街F19断裂带地质构造特征与演化分析[J].煤田地质,1995,7(3):12-16.
    [93]朱小宁,耿红敏.窑街煤田F19断裂带特征及找煤方向推断[J].煤炭科学技术,2007,35(7):27-30.
    [94]孙岩,徐士进,刘德良,林爱明,陆建军.断裂构造地球化学导论[M].北京:科学出版社,1998.
    [95]俞鸿年、卢华复.构造地质学原理[M].北京:地质出版社,1986,83-123.
    [96]Fleitout, L. Frouidevaux, C. Thermal and mechanical evolution of shear zone[J]. Journal of Structural Geology,1980(2):159-164.
    [97]Sibson,R.H. Fault rocks and fault mechanisms[J]. J.Geol.Soc.London,1977(133):191-213.
    [98]Scholz, C.H. Shear heating and the state of stress on faults [J] Journal of geophysical research, 1980(B11):6174-6184.
    [99]Ramsay. J.G Shear zone geometry:a review[J]. Journal of Structural geology,1980(2):83-99.
    [100]孙岩,沈修志,刘寿和.江西大余压性断裂带一些化学测试数据的初步分析[J]地球化学,1982,347-355.
    [101]工奎仁.地球与宇宙成因矿物学[M]合肥:安徽出版社,1989,397-487.
    [102]张金亮,常象春.民和盆地致密砂岩油藏油气充注史及含油气系统研究[J]特种油气藏,2000(7):5-8.
    [103]Bottinga, Y. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor[J]. Geochimica et Cosmochimica Acta, 1969(1):49-64.
    [104]Wintsch. R. P. Christoffersen. R. Kronenberg. A. K. Fluid-rock reaction weakening of fault zones[J] Journal of Geophysical Research,1995(100):13021-13032.
    [105]Cox. S.F. Faulting processes at high fluid pressures:An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia[J] Journal of Geophysical Research,1995(100):12841-12859.
    [106]Hooper, E.C.D. Fluid migration along growth faults in compacting sedimentary basins[J]. Journal of Petroleum Geology,1991(4):161-180.
    [107]邱春海.海石湾煤矿地温分布规律及热害的地质成因分析[J].江苏煤炭,1997,2:42-44.
    [108]郑希民,工多云,李凤杰等.兰州-民和断陷盆地地热地质条件分析及热储概念模型[J].西北地震学报,2003,25(3):215-220.
    [109]Hildenbrand, A. Krooss, B.M. CO2 migration processes in argillaceous rocks:pressure-driven volume flow and diffusion[J]. Journal of Geochemical Exploration,2003 (78-79):169-172.
    [110]近藤精一,石川达雄,安部郁夫,等.吸附科学[M].北京:化学工业出版社,2006:32-85.
    [111]迪安等.兰氏化学手册[M].北京:科学出版社,1991:1664-1666.
    [112]Larsen, J.W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology,2004(57):63-70.
    [113]Fitzgerald, J.E. Pan, Z. Sudibandriyo, M. et al. Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal[J]. Fuel,2005(84):2351-2363.
    [114]Fox, T.G. Flory, P.J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight[J]. Journal of Applied Physics,1950(21):581-591.
    [115]李良训高分子物理学[M].北京:中国石化出版社,1990.
    [116]Smith, P.B. Moll, D.J.2H NMR investigation of the plasticization effects induced by high-pressure carbon dioxide gas on the molecular dynamics of polymers[J]. Macromolecules,1990(23):3250-3256.
    [117]Wang, W. C. Kramer, V. Sachse, E.J. Effects of high-pressure CO2 on the glass transition temperature and mechanical properties of polystyrene[J]. J. Polym. Sci., Polym. Phys. Ed,1982(20):1371-1384.
    [118]Opaprakasit, P. Painter, P. C. Concerning the glass transition temperature of coal[J]. Energy and Fuels,2003(17):354-358.
    [119]Karacan, C. O. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J]. International Journal of Coal Geology,2007(72):209-220.
    [120]Peppas, N. A Swelling and dissolution of the macromolecular structure of bituminous coals[J]. Polymer,1997(38):3425-3427.
    [121]Romanov, V. Coal Chemistry for Mechanical Engineers:From Macromolecular Thermodynamics to Reservoir Simulation[J]. Energy Fuels,2007 (3):1646-1654.
    [122]Alfrey, T. Gurnee, E. F. Lloyd, W. G. Diffusion in glassy Polymers[J]. Journal of Polymer Sciences(C),1966 (12):249-261.
    [123]Ritger, P. L. Peppas, N. A. Transport of penetrants in the macromolecular structure of coals[J]. Fuel,1987(66):815-826.
    [124]Reucroft, P.J. Sethuraman, A.R. Effect of pressure on carbon dioxide induced coal swelling [J]. Energy and Fuels,1987(1):72-75.
    [125]Harpalani, S. Chen, G. Estimation in changes of fracture porosity of coal with gas emission[J]. Fuel,1995(74):1491-1498.
    [126]Hayashi, J.I. Takeuchi, K. Kusakabe, K et al. Removal of calcium from low rank coals by treatment with CO2 dissolved in water [J]. Fuel,1991(70):1181-1186.
    [127]Iwai, Y, Amiya, M. Murozono, T. et al. Drying of coals by using supercritical carbon dioxide[J] Ind. Eng. Chem. Res,1998(37):2893-2896.
    [128]Iwai,Y. Murozono, T. Koujina, Y. et al. Physical properties of low rank coals dried with supercritical carbon dioxide [J] Journal of Supercritical Fluids,2000(18):73-79.
    [129]Konynenburg van, P. H, Scott, R. L. Critical lines and phase equilibria in binary van der Waals mixtures.Philos[J]. Trans. R. Soc. London, Ser. A,1980(1442):495-540.
    [130]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [131]李腊梅,谢玉玲,杨竹森等.西藏马攸木金矿富CO2超临界流体特征及矿床成因探讨[J].地质与勘探,2009,45(5):502-508.
    [132]White, C. M. An initial set of working hypotheses concerning some chemical and physical events when CO2 is injected into a coalbed[J]. Fuel Chemistry Division Preprints,2003 (1):114-116.
    [133]Kusakabe, M. Ohsumi, T. Aramaki, S. The Lake Nyos gas disaster:chemical and isotopic evidence in waters and dissolved gases from three Cameroonian crater lakes, Nyos, Monoun and Wum[J]. Journal of Volcanology and Geothermal Research,1989(39):167-185.
    [134]唐忠驭.二水盆地二氧化碳气藏地质特征及成因探讨[J]石油实验地质,1980,3:10-18.
    [135]徐龙君吴江李洪强.重庆开县井喷事故的环境影响分析[J]中国安全科学学报,2005,15(5):84-87.
    [136]NIST Thermodynamic and transport properties of refrigerants and refrigerant mixture-NIST Standard Reference Data,USA,2008.
    [137]魏东.二氧化碳跨临界循环换热与膨胀机理的研究[D].天津大学博士学位论文,2002.
    [138]于不凡.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [139]蒋承林.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [140]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[A].力学生产与建设,1982,5:128-137.
    [141]李国君.铁法矿区高瓦斯低透气性煤层群煤层气产业化研究与工程实践[D].中国矿业大学博士学位论文,2007.
    [142]高延法,李白英.受奥灰承压水威胁煤层采场底板变形破坏规律研究[J].煤炭学报,1992,17(1):25-27.
    [143]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [144]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报,1988,1:1-7.
    [145]赵阳升,胡耀青.孔隙瓦斯压力作用下煤体有效应力规律的实验研究[J]岩土工程学报,1995,17(3):26-31.
    [146]Borisenko, A. Effect of gas pressure in coal strata[J].Soviet Mining Science,1985(5):88-91.
    [147]李传亮,孔祥言,徐献芝等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):288-292.
    [148]冯增朝,吴海,赵阳升.裂隙岩体有效应力规律数值试验研究[J].太原理工大学学报,2003,34(6):713-715.
    [149]孙培德,鲜学福.煤体有效应力规律的实验研究[J].矿业安全与环保,1999,2:16-18.
    [150]李祥春,郭勇义,吴世跃等.考虑吸附膨胀应力影响的煤层瓦斯流-固耦合渗流数学模型及数值模拟[J].岩石力学与工程学报,2007,26(增1):2743-2748.
    [151]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,18(4):419-426.
    [152]张玉军.基于固流耦合理论的覆岩破坏特征及涌水量预计的数值模拟[J].煤炭学报,2009,34(5):610-613.
    [153]施龙青,韩进.底板突水机理及预测预报[M].徐州:中国矿业大学出版社,2004.
    [154]梁冰,章梦涛,潘一山等.瓦斯对煤的力学性质及力学相应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [155]章梦涛,潘一山,梁冰等.煤岩流体力学[M].北京:科学出版社,1995.
    [156]赵瑜,李晓红,卢义玉等.瓦斯压力对非均质煤岩抗压强度尺寸效应的影响[J].煤炭学报,2009,34(8):1081-1085.
    [157]胡国艺,李谨,马成华等.沁水煤层气田高阶煤解吸气碳同位素分馏特征及其意义[J].地学前缘,2007,14(6):267-272.
    [158]Dariusz Stapoc, Arndt Shimmelmann, Mria Mastalerz, et al. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal [J]. Organic Geochemistry,2006(37):152-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700