用户名: 密码: 验证码:
新疆阿尔泰南缘乌吐布拉克铁矿床成矿机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆阿尔泰南缘多金属成矿带是我国重要的成矿带之一,其中铁矿主要产在麦兹和克兰火山沉积盆地中。乌吐布拉克中型铁矿床位于麦兹盆地中,与其它铁矿地质特征相似,是该类铁矿的典型代表,该矿赋矿围岩为上志留-下泥盆统康布铁堡组下亚组第二岩性段黑云母变粒岩、条带状角闪变粒岩、浅粒岩、斜长角闪片岩、斜长角闪岩及大理岩透镜体。矿体呈似层状、透镜状及不规则状产于矽卡岩带中,矿区内发育花岗岩。本论文在充分收集前人资料和野外地质调查的基础上,着重对乌吐布拉克铁矿床地质特征、矽卡岩矿物组合、流体包裹体、稳定同位素、成岩成矿时代、成矿机制方面进行了研究,取得了以下几点认识:
     (1)矿体呈似层状、透镜状赋存于上志留-下泥盆统康布铁堡组火山-沉积岩系中,矿体内部及周围发育大量矽卡岩。矿石矿物相对简单,主要为磁铁矿其次为磁赤铁矿,少量黄铁矿、磁黄铁矿、黄铜矿、辉钼矿等。脉石矿物主要为石榴石、透辉石、角闪石、绿帘石、绿泥石,其次为黑云母、长石、石英、方解石等。
     (2)根据野外及室内镜下观察矿物的组合与穿插关系,将成矿作用划分为2期,即矽卡岩期与表生氧化期。矽卡岩期进一步分为3个阶段,即早期矽卡岩阶段、退化蚀变阶段、石英-硫化物-碳酸盐阶段。
     (3)石榴石端元组分以钙铁榴石-钙铝榴石系列为主,辉石端元组分以透辉石为主,角闪石端元组分主要为铁镁钙闪石,均表现出钙质矽卡岩特点。磁铁矿为岩浆热液型磁铁矿,形成与矽卡岩化密切相关。
     (4)早期矽卡岩阶段成矿流体属高-中温、高-中盐度、高-中密度的NaCl-H2O体系;退化蚀变阶段成矿流体为中温、中-低盐度、高-中密度的NaCl-H2O体系;石英-硫化物-碳酸盐阶段成矿流体以NaCl-H2O型为主,局部混合有CO2-H2O型流体。
     (5)早期矽卡岩阶段成矿流体主要来源于岩浆水,而石英-硫化物-碳酸盐阶段成矿流体为岩浆水混合大气降水。硫同位素及岩石和矿石稀土元素特征表明,成矿物质于上志留-下泥盆统康布铁堡组斜长角闪岩。
     (6)与磁铁矿共生的辉钼矿Re-Os同位素模式年龄为243.6±4.1 Ma与244.2±4.2 Ma,限定铁矿形成时代为早三叠世,首次确定阿尔泰存在三叠纪成矿作用。
     (7)矿区英云闪长岩和黑云母英云闪长岩锆石LA-ICP-MS U-Pb年龄分别为385.6±2.3 Ma和387.7±2.1 Ma,为中泥盆世早期岩浆活动的产物,早于成矿时代,形成环境为活动大陆边缘的陆缘弧。
     (8)矿床成因为矽卡岩型,成矿机制可能为早三叠世岩浆热液交代上志留-下泥盆统康布铁堡组火山岩形成矽卡岩矿物,在矽卡岩退化蚀变过程中形成了磁铁矿体。
The polymetallic mineralization belt of South Altay is an important metallogenetic belt in Xinjiang, China. The iron deposits are mainly located in the Kelan and Maizi volcaniclastic-sedimentary basin. The medium-sized Wutubulake iron deposit is located in the Maizi basin, its geological characteristics is similar to other deposits, is the typical one of this kind of deposits. The host rocks is biotite granulite, striped hornblende granulite, leptite, amphibolite and marble lense, which is belong to the metamorphosed volcaniclastic-sedimentary sequence of the Upper Silurian-Lower Devonian Kangbutiebao Formation. The ore bodies is hosted in skarns, which occurs as stratoids or lenses, and granite is existed in district. Based on collecting predecessors material and detailed field survey of geological background, focused on the study of geological characteristics, skarn minerals assemble, fluid inclusion, stable isotope, the age of diagenetic and metallogenetic, mineralization mechanism, achieving the summaries as follows.
     (1) The orebodies which occur as stratoids or lenses is hosted in the metamorphosed volcaniclastic-sedimentary sequence of the Upper Silurian-Lower Devonian Kangbutiebao Formation, surrounding by the skarns minerals. Ore minerals are mainly magnetite, with minor pyrite, pyrrhotite, chalcopyriteand molybdentite etc. Gangue minerals are mainly garnet, chinopyoxene, actinolite, epitote, chlorite, with minor biotite, feldspar, quartz, calcite etc.
     (2) Filed evidence and petrographic observation indicate two periods of metallogensis, including skarns period and supergene oxidation period. Skarns period is also devide into three stages, including early stage, retrogressive metamorphism stage, quartz-sulfide-carbonate stage.
     (3) The analytical results of electron microprobe show that the end member of garnet is mainly andradite-almandite, the composition of pyroxene is mainly diopside and the composition of amphibole is mainly ferrotschermakite, all of them show the characteristics of calcic skarn. Magnetite is belong to magmatic hydrothermal type, which is closely related to the skarns.
     (4) The ore-forming fluids in early stage of skarn period is high-middle temperature, high-middle salinity and high-middle density, which is belong to NaCl-H2O system; The ore-forming fluids in retrogressive metamorphism stage of skarn period is middle temperature, middle-low salinity and high-middle density, which is belong to NaCl-H2O system; The ore-forming fluids in quartz-sulfide-carbonate stage of skarn period is dominantly NaCl-H2O type fulid, locally mixed with CO2-H2O type fluid.
     (5) The ore-forming fluids in early and retrogressive metamorphism stage of skarn period are mainly derived from magmatic water, while the ore-forming fluids in quartz-sulfide-carbonate stage of skarn period is derived from mixing of magmatic water and meteoric water. The sulfide and rare earth element data of rocks and ores suggest that the ore-forming materials is mainly derived from the amphibolite, which is belong to the metamorphosed volcaniclastic-sedimentary sequence of the Upper Silurian-Lower Devonian Kangbutiebao Formation.
     (6) Based the Re-Os model ages of molybdentite in magnetite ore rang from 243.6±4.1 Ma to 244.2±4.2 Ma, we concluded that the mineralization age is in the Early Triassic, while have pioneered the the Triassic Mineralization in Altay.
     (7) LA-ICP-MS U-Pb zircon dating on the tonalite and biotite tonalite in the district, yielded concordant ages of 385.6±2.3 Ma and 387.7±2.1 Ma, indicates that the two plutons were formed at the beginning of the Middle Devonian in continental arc at active extensional continental margin setting, which is earlier than the mineralization age.
     (8) The Wutubulake iron deposit is belong to skarn type, and the mineralization mechanism is Triassic magmatic hydrothermal interacting with metamorphic volcanic, the formation of magnetite is related to the retrogressive metamorphism of the skarns.
引文
[1]Aksyuk A M, Zharikov V A.1988. The phlogopite skarn deposits:physical-chenical conditions of formation. In Zachrisson E, ed. Proceedings of the 7the Quadrennial IAGOD Symposium, Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung,321-326
    [2]Annikova I Y, Vladimirov A G, Vystavnoi S A, et al.2006. U-Pb and 39Ar/40Ar dating and Sm-Nd and Pb-Pb isotopic study of the Kalguty Molybdenum-Tungsten-magmatic system. Southern Altai Petrologiya,14(1):90-108
    [3]Auwera J V and Andre L.1988. O,C and Sr isotopes as tracers of metasomatic fluids: Application to the skarn deposit (Fe,Cu,W) of Traversella (Ivrea, Italy). Chenical Geology, 70:137
    [4]Baker T and Lang J R.2003. Reconciling fluid inclusions, fluid processes and fluid source in skarns:An example from the Bismark skarn deposit, Mexico. Mineralium Deposita,38: 74-495
    [5]Baker T, van Achterberg E, Ryan C G, et al.2004. Composition and evolution of orefulids in a magmatic-hydrothermal skarn seposits. Geology,32:117-120
    [6]Baker T.2002. Fulid inclusion insights into pressure fluctuations in a fault controlled magmatic-hydrothermal skarn system. In:McLellan J G and Brown M C, ed. Deformation, fulid flow and mineralization. Contributions of the Economic Geology Resarch Unit,95-102
    [7]Barrie C T, Hannington M D.1999. Classification of volcanic-associated massive sulfide deposits based on the host-rock composition. Reviews in Economic Geology,8:1-11
    [8]Bau M.1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and significance of the oxidation state of europium. Chemical Geology,93:219-230
    [9]Belousova E A, Griffin W L, O Reilly SY, et al.2002. Igneous zircon:trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143:602-622
    [10]Berzin N A, Coleman R G, Dobretsov N L, et al.1994. Geodynamic map of the western of the Paleo-Asian Ocean. Russian Geology and Geophysics,35:2-22
    [11]Berzin N A, Dobretsov N L.1994. Geodynamic evolution of Southern Siberia in Late Precambrian-Early Paleozoic time. In:Coleman R G(Ed). Reconstruction of the Paleo-Asian Ocean.VSP International Sciences Publishers, Utrecht.The Netherlands,53-70
    [12]Bibikova Y E, Kirnozova T I, Kozakov I K, et al.1992.U-Pages for polymetamorphic complexes on the southern Flank of the Mongolian and Gobi Altai. Geotectonics,26: 166-172
    [13]Bingen B, Stein H.2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth and Planetary Science Letters,208: 181-195
    [14]Bodnar R J.1983. A method of calculateing fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Economic Geology,78:535-542.
    [15]Bodnar R J.1993. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta,57:683-684
    [16]Bowman J R, Covert J J, Clark A H, et al.1985. The CanTung E zone scheelite skarn orebody, Tungsten, Northwest Territories:Oxygen, hydrogen, and carbon isotope studies. Econimic Geology,80:1872-1895
    [17]Bowman J R.1998a. Basic aspects and applications of phase equilibria in the analysis of metasomatic Ca-Mg-Al-Fe-Si skarns. Mineralogical Association of Canada Short Course Series,26:1-49
    [18]Bowman J R.1998b. Stable-isotope systematics of skarns. Mineralogical Association of Canada Short Course Series,26:99-145
    [19]Burruss R C.1981. Analysis of phase equilibria in C-O-H-S fluid inclusions. In:Hollister, L S, Crawford, M L. (Eds.). Short Course Handbook. Mineralogical Association of Canada.6: 39-74
    [20]Choi S G, Kim S T, Lee J G.2003. Stable isotope systematics of Ulsan Fe-W skarn deposit, Korea. Journal of Geochemical Exploration,78-79:601-606
    [21]Claesson S, Vetrin V, Bayanova T, et al.2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia; a record of geological evolution from the Archaean to the Palaeozoic. Lithos,51(1-2):95-108
    [22]Clayton R N, Mayeda T K.1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27:43-52
    [23]Clayton R N, O'Neil J R, Mayeda T K.1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research,77:3057-3067
    [24]Clout J M F.2005. Iron formation-hosted ores in the Hamersley Province of Western Australia. Proceedings of Iron Ore,9-19
    [25]Coleman M L, Sheppard T J, Durham J J, et al.1982. Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry,54:993-995
    [26]Collins P L F.1979. Gas hydrates in CO2-bearing fluid inclusions and use freezing data for estimation of salinity. Economic Geology,74:1435-1444
    [27]Condie K C.1986. Geochemistry and tectonic setting of early proterozoic supercrustal rocks in the southwestern United States. Journal of Geology,94:845-864
    [28]Daukeev S Z, Uzhkenov B S, Bespaev K A, et al.2004. Atlas of mineral deposit models of the republic of Kazakhstan. Almaty:Printing House "Center for geoinformation of the Military Forces of the Republic of Kazakhstan",1-141
    [29]DeBaar H J W, BaconM P, Brewer P G.1985. Rere earth elements in the Pacific and Atlantic oceans. Geochimica et Cosmochimica Acta,49:1943-1959
    [30]Demin A N, Demin P A, Andreev V V.2001. Early Mesozic ore-bearing granitoids and their tectonic setting in the Mongolian Altay. Postcollisional Evolution of Mobile Belts. Irkutsk: Abstracts, International Conf
    [31]Drew L J.2003. Model of the porphyry copper and polymetallic vein family of deposits-applications in Slovakia, Hungary, and Romania. International Geology Review,45: 143-156
    [32]Du A D, Wu S Q, Sun D Z, et al.2004. Preparation and certification of Re-Os dating reference materials:molybdenite HLP and JDC. Geostandard and Geoanalytical Research, 2004,28:41-52
    [33]Einaudi M T, Meinert L D, Newberry R J.1981. Skarn deposits. Economic Geology 75th. Annicersary Volume,317-391
    [34]Francalanci L, Taylorsr S R, Mcculloch M T.1993. Geochemical and isotopic variations in the calcalkaline rocks of Aeolian arc,southern Tyrrhenian Sea,Italy:constraints on magma genesis. Contribution to Mineralogy and Petrology,113:300-313
    [35]Franklin J M, Gibson H L, Jonasson I R, et al.2005. Volcanogenic Massive Sulfide deposits. In:Enconmic Geology 100th Annicersary Volume. Society of Economic Geologists,523-560
    [36]Friedman I, O'Neil J R.1977. Complication of stable isotope fractionation factors of geochemical interest in data of geochemistry. In:Fleischer M, ed. Geological Professional Paper. U S Geological Survey.6th ed,440
    [37]Frietsch R, Perdahl J A.1995. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geology Reviews,9:489-510
    [38]Frietsch R, Tuisku P, Martinsson O, et al.1997. Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geology Reviews,12:1-34
    [39]Fulignati P, Kamenetsky V S, Marianelli P, et al.2001. Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts:applications to skarn genesis at the Mount Vesuvius. Geology,29:1043-1046
    [40]Fulignati P, Marianelli P, Santacroce R, et al.2000. The skarn shell of the 1944 Vesuvius magma chamber:genesis and P-T-X conditions from melt and fulid inclusion data. European Journal of Mineralogy,12:1025-1039
    [41]Garza R A P, Title S R, Pimentel F B.2001. Geology of the Escodida poyphyry copper deposit, Antofagasta region, China. Economic Geology,96:307-324
    [42]Gas'kov I V, Distanov E G, Kalugin I A, et al.1999. Metallogeny and petrochemical features of Devonian volcanism in Rudny Altai and Gorny Altai. Russian Geology and Geophysics, 40(5):686-699
    [43]Gemmell, J B, Fulton R,2001. Geology, genesis and exploration implications of the footwall and hanging-wall alteration associated with the Hellyer volcanic-hosted massive sulfide deposit, Tasmania, Australia. Economic Geology,96:1003-1035
    [44]Hall D L, Cohen L H, Schiffman P.1988. Hydrothermal alatertion associated with the Iron Hat iron skarn deposit, eastern Mojave Desert, San Bernardino County, California. Economic Geology,83:568-587
    [45]Hanson G N.1980. Rare earth elements in petrogenetic studies of igneous systems. Ann. Rev. Earth & Planet Scil,8:371-406
    [46]Hass J R, Shock E L, Sassani D C.1995. Rare earth elements in hydrothermal systems: Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59(21):4329-4350
    [47]Hedenquist J W, Arribas A, Reynolds T J.1998. Evolution of an intrusion centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposit. Economic Geology,93:373-404
    [48]Heinrich C A, Ryan C G, Mernagh T P, et al.1992. Segregation of ore metals between magmatic brine and vapor:A fluid inclusion study using PIXE microanalysis. Economic Geology,87:1566-1583
    [49]Henderson P.1984. Rare Earth Element Geochemistry. New York:Elsevier Science Publishers B.V,10
    [50]Hoefs J.1997. Stable isotope geochemistry.4rd ed. Berlin:Spring Verlag:1-250
    [51]Jahn B M.1998. Continental growth in the Phanerozoic:Evidence from the East-Central Asia orogenic belt.//Abstracts of IGCP-420 First Workshop. Urumqi, Xinjiang, China,1-2
    [52]Jinsong Z, Bin Z, Zhaolin L.2000. Discovery of melt inclusions in skarn minerals from the Daye iron deposit, Hubei, China, and their geological and geochemical significance. Geochimica,29:500-503
    [53]Klinkhammer G P, Elderfield, Edmond J M et al.1994. Geochemical implications of rare earth element patterns in hydrothermal fluid from mid-ocean ridges. Geochimica et Cosmochimica Acta,58 (23):5105-5113
    [54]Kravchuk I F, Malinin S D, Varezhkina N S.1989. Experimental study of the partitioning of europium between silicate melt and fluid at 800℃ and 1.5 kbar. Geokhimiya,12:1771-1781
    [55]Kwak TAP, Tan T H.1981. The importance of CaCl2in fluid composition trends-evidence from the King Island (Dolphin) skarn deposit. Economic Geology,76:955-960
    [56]Large R R.1992. Australian volcanic-hosted massive sulfide deposits:Features, styles and genetic models. Economic Geology,87:479-510
    [57]Lascelles Desmond F.2006. The genesis of the Hope Downs iron ore deposit, Hamersley Province, Western Australia. Economic Geology and the Bulletin of the Society of Enconmic Gelogists.101(7):1359-1376
    [58]Layne G D, Longstaffe F J, Spooner E T C.1991. The JC tin skarn deposit, southern Yukon Territory:II. A carbon, oxygen, hydrogen, and sulfur stable isotope study. Economic Geology, 86:48-65
    [59]Leake B E, Woolley A R, Arps C E S.1997. Nomenclature of amphiboles:report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Mineral and Mineral Names. American Mineralogical,82:1019-1037
    [60]Lee C H, Lee H K, Kim S J.1998. Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita,33: 379-390
    [61]Liu Y S, Hu Z C, Gao S, et al.2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,257: 34-43
    [62]Mao J W, Wang Y, Ding T, et al.2002. Dashuiguo tellurium deposit in Sichuan province, China:S, C, O, and H isotope data and their implications on hydrothermal mineralization. Resource Geology,52:15-23
    [63]Markey R, Stein H, Morgan J.1998. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS. Talanta,45:935-946
    [64]McCrea M.1950. The isotopic chemistry of carbonates and a paleotemperature scale. Chemical. Physics.,18:849-857
    [65]Meinert L D, Dipple G M, Nicolescu S.2005. World skarn deposits. In:Enconmic Geology 100th Annicersary Volume. Society of Economic Geologists,299-336
    [66]Meinert L D, Hedenquist J W, Satoh H et al.2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Econimic Geology,98:147-156
    [67]Meinert L D.1983. Variability of skarn deposits-guides to exploration. In:Boardman S J ed. Revolution in the earth science. Debuque, Iowa, Kenall-Hunt,301-316
    [68]Meinert L D.1989. Gold skarn deposits-geology and exploration critera. In:R Keays, R Ramsay, D. Groves (Eds.) The Geology of Gold Deposits. Economic Geology, Monogr,6: 537-552
    [69]Meinert L D.1992. Skarns and skarn deposits. Geoscience Canada.19:145-162
    [70]Meinert L D.1997. Applicaton of skarn deposits zonation models to mineral exploration. Exploration and Mining Geology,6:185-208
    [71]Meinert L D.1998. A review of skarn that contain gold. In:Lentz D R, ed. Mineralized intrusion-related skarn systems. Quebec:Short Course Series,26:359-414
    [72]Meza-Figueroa D, Alencia-MorenoM, Valencia V A, et al.2003. Major and trace element geochemistry and 40Ar/39Ar geochronology of Laramide plutonic rocks associated with gold-bearing Fe skarn deposits in Guerrero state, southern Mexico. South American Earth Sciences,16:205-217
    [73]Misra K C.2000. Understanding mineral deposits. London:Kluwer Academic Publishers, 414-449
    [74]Morimoto N, Fabries J, Ferguson A K.1988. Nomenclature of pyroxenes. Mineralogical Magazine,52:535-550
    [75]Naito K, Fukahori Y, He P, Sakurai W, et al.1995. Oxygen and carbon isotope zonations of wall rocks around the Kamioka Pb-Zn deposits, central Japan. Applicaton to prospecting Journal of Geochemical Exploration,54:199-211
    [76]Nasdala L, Norberg N, Schaltegger U, et al.2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology,249:1-35
    [77]Niiranen T, Manttari I, Poutiainen M.2005. Genesis of Palaeoproterozoic iron skarns in the Misi region, northern Finland. Mineralium Deposita,40:192-217
    [78]O'Neil J R, Clayton R N, Mayada T K.1969. Oxygen isotope fractionation in divalent metal carbonates. Chemistry Geophysics,51:5547-5558
    [79]Ohmoto H and Rye R O.1979. Isotopes of sulfur and carbon [M]. In:Barnes HL (ed.). Geochemistry of hydrothermal ore deposits. New York:John Wiley & Sons.509-567
    [80]Pearce J A, Harris N B L, Tindle A G.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25:956-983
    [81]Peccerillo R, Taylor S R.1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Tuekey. Contribution to Mineralogy and Petrology,58:63-81
    [82]Purtov V K, Kholodnov V V, Anflilogov V N, et al.1989. The role of chlorine in the formation of magnetite skarns. International Geology Review,31:63-71
    [83]Ray G E, Dawson G L, Webster I C L.1996. The stratigraphy of the Nicola Group in the Hedley district, British Columbia, and the chemistry of its intrusions and Au skarns. Canadian Journal of Earth Sciences,33:1105-1126
    [84]Rickwood P C.1989. Boundary lines within petrologic diagrams which use oxides major and minor elements. Lithos,22:247-263
    [85]Rollinson H R.1993. Using geochemical data:Evaluation, presentation, interpretation. New York:Longman Scientific and technical Limited,1-343
    [86]Rubatto D.2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and netamorphism. Chemical Geology,184:123-138
    [87]Sangster D F.1968. Relative sulphur isotope abundances of ancient seas and stratabound sulfide deposits:Geological Association of Canada, Annual Metting, Proceedings,19:79-81
    [88]Sengor A M C, Natal'in B A, Burtman V S.1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature,364:209-304
    [89]Sengor A M C, Natalin B A.1996. Paleotectonics of Asia:fragments and synthesis. In:Yin A, Harrison M,eds. The tectonic evolution of Asia. Cambridge University Press,486-640
    [90]Sharpe R, Gemmell J B.2002. The Archean Cu-Zn magnetite-rich Gossan Hill volcanichosted massive sulfide deposit, Western Australia;Genesis of a multistage hydrothermal system. Economic Geology,97(3):517-539
    [91]Sheppard S M F.1986. Characterization and isotopic variations in natural waters. Reviews in Mineralogy,16:165-183
    [92]Shimazaki H, Kusakoabe M.1990. Oxygen isotope study of the Kamioka Zn-Pb skarn deposits, central Japan. Mineralium Deposita,25:221-229
    [93]Shimazaki H, Sakai H.1984. Regional variation of sulfur isotope composition of skarn deposits in the westernmost part of the inner zone of Southwest Japan. Mining Geology,34: 419-424
    [94]Shimazaki H, Shimizu M, Nakano T.1986. Carbon and oxygen isotopes of calcites from Japanese skarn deposits. Geochemical Journal,20:297-310
    [95]Shimazaki H, Yamamoto M.1979. Sulfur isotope ratios of some Japanses skarn deposits. Geochemical Journal,13:261-268
    [96]Shimazaki H, Yamamoto M.1983. Sulfur isotope ratios of the Akatani, Iide and Waga Sennin skarn deposits, and their bearing on mineralizations in the "Green Iuff region", Japan. Geochemical Journal,17:197-207
    [97]Shimazaki H.1988. Oxygen, earbon and sulfur isotope study of skarn deposits in Japan. In Zachrisson E, ed. Proceedings of the 7the Quadrennial IAGOD Symposium, Stuttgart, E. Schweizerbart'sche Verlagsbuchhandlung,375-381
    [98]Sillitoe R H.2003. Iron oxide-copper-gold deposits:An Andean view. Mineralium Deposita, 38:787-812
    [99]Singoyi B, Zaw K.2001. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania:implications for ore genesis. Chemical Geology,173:239-253
    [100]Sokolov G A, Grigorev V M.1977. Deposits of iron. In Smirnov V I ed. Ore deposits of the USSR. London:1:1-113
    [101]Stein H J, Sundblad K, Markey R J, et al.1998. Re-Os ages for Archaean molybdenite and pyrite Kuittila-Kivisuo, Finland, and Proterozoic molybdenite, Lithuania:Testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita,33:329-345
    [102]Sun M, Yuan C, Xiao W J, et al.2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:Progressive acretionary history in the Early to Middle Paleozoic. Chemical Geology,247:352-383
    [103]Sun S S, McDonough W F.1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, 42:313-345
    [104]Taylor B E, O'Neil J R.1977. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada. Contributions to Mineralogy Petrology,63:1-49
    [105]Taylor B E.1976. Origin and significance of C-O-H fluids in the formation of Ca-Fe-Si skarn, Osgood Mountains, Humboldt County, Nevada. Unpublished PhD thesis, Stanford University:306
    [106]Taylor S R, Mclenann S M.1985. The continental crust:its composition and evolution. Blackwell:Oxford Press,1-312
    [107]Urabe T, Marumo K,1992. A new model for Kuroko-type deposits of Japan. Episodes,14, 246-251
    [108]Vladimirov A G, Kozlov M S, Shokalskii S P, et al.2001. Major epochs of intrusive magmatism of KuznestskAlatau, Altai, and Kalba (from U-Pb isotope dates). Russian Geology and Geophysics,42(8):1157-1178
    [109]Vladimirov A G, Kruk N N, Polyanskii O P, et al.2005. Correlation of Hercynian deformations, sedimentation and magmatism in the Altai collisional system as reflecting plate and plum tectonics. Problem of tectonic of the Central Asia,1277-1308
    [110]Vladimirov A G, Ponomareva A P, Shokalskii S P, et al.1997. Late Paleozoic-Early Mesozoic granitoid magmatism in Altai. Russian Geology and Geophysics,38(4):715-729
    [111]Wang T, Hong D W, Jahn B M, et al.2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China:implications for the tectonic evolution of an accretionary orogen. The Journal of Geology,114:735-751
    [112]Wang T, Jhan B M, Tong Y, et al.2008. Mesozoic anorogenic granitic magmatism in the Altai Paleozoic accretionary orogen, NW China, and tis implication for crustal architecture and growth. Abstract SE53-A010, AOGS 5th Annual General Meeting. Busan, Koeea
    [113]Wang T, Tong Y, Jahn B M, et al.2007. SHRIMP U-Pb Zircon geochronology of the Altai No.3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. The Ore Geology Reviews,32:325-336
    [114]Wang Y W, Wang J B, Wang S L, et al.2003. Geology of the Mengku iron deposit, Xinjiang, China-a metamorphosed VMS?. In:Mao J W, Goldfarb R J, Seltmann R, et al (Eds). Tectonic evolution and metallogeny of the Chinese Altay and Tianshan. Proceedings volume of the International Symposium of the IGCP-473 project in Urumqi and guidebook of the field excursion in Xinjiang, China:August 9-21,2003. London:Centre for Russian and Central Asian Mineral Studies, Natural History Museum,181-200
    [115]Wilson M.1989. Igneous petrogenesis..London:Unwin Hyman Press,295-323
    [116]Windley B F, Kroener A, Guo J, et al.2002. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China:new zircon age data and tectonic evolution. Journal of Geology, 110(6):719-737
    [117]Xiao W J, Windley B F, Badarch G, et al.2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids:implications for the growth of Central Asia. Journal of the Geological Society,161:339-342
    [118]Xiao W J, Windley B F, Yuan C, et al.2009. Palaeozoic multiple subduction-accretion processes of the southern Altaids. Journal of Science,309:221-270
    [119]Xu J F, Castillo P R, Chen F R, et al.2003. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwest China:implications for backarc mantle evolution. Chemical. Geology,193:137-154
    [120]Xu L G, Mao J W, Yang F Q, et al.2010. Geology, geochemistry and age constrsints on the Mengku skarn iron deposit in Xinjiang Altai, NW China. Journal of Asian Earth Sciences, 39:423-440
    [121]Yuan C, Sun M, Xiao W J, et al.2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology,242:22-39
    [122]Zhang Z C, Yan S H, Chen B L, et al.2006. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of east Junggar, Xinjiang. Chinese Science Bulletin,51(8):952-962
    [123]Zhu Y F, Zeng Y S, Gu L B.2006. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altai Mountains, northwest China. Journal of Asian Earth Sciences,27:61-77
    [124]Zonenshain L P, Kuzmin M I, Natapov L M.1990. Geology of the USSR:A plate tectonic synthesis. American Geophysical Union. Geodynamics Series Monograph,21:242
    [125]Zuercher L, Ruiz J Barton M D.2001. Paragenesis, elemental distribution, and stable isotopes at the Pena Colorada iron skarn, Colina, Mexico. Economic Geology,96:535-557
    [126]艾永德,李祥明,陈毓川.1985.谢尔塔拉铅锌矿床成因讨论.中国地质科学院矿产资源研究所所刊,3:62-88
    [127]曹荣龙,朱寿华,朱祥坤,等.1993.新疆北部板块与地体构造格局,见涂光炽主编:新疆北部固体地球科学新进展.北京:科学出版社,11-26
    [128]柴凤梅,董连慧,杨富全,等.2010.阿尔泰南缘克朗盆地铁木尔特花岗岩年龄、地球化学特征及成因.岩石学报,26(2):377-386
    [129]柴凤梅,毛景文,董连慧,等.2008.新疆阿尔泰南缘阿巴宫铁矿区康布铁堡组变质火山岩年龄及地质意义.地质学报,82(11):1592-1601
    [130]柴凤梅.2010.阿尔泰南缘与铁矿有关的泥盆纪火山岩特征研究.中国地质科学院博士后研究工作报告,1-178
    [131]陈光远,孙岱生,殷辉安.1987.成因矿物学与找矿矿物学.重庆:重庆出版社,234-235
    [132]陈毓川,毛景文,薛春纪,等.2006.矿床学研究面向国家重大需求新机遇与新挑战:第八届全国矿床会议论文集.北京:地质出版社,1-89
    [133]陈毓川,裴荣富,宋天瑞,等.1998.中国矿床成矿系列出论.北京:地质出版社,1-104
    [134]陈毓川,朱裕生.1993.中国矿床成矿模式.北京:地质出版社,1-367
    [135]陈岳龙,杨忠芳,赵志丹,等.2005.同位素地质年代学与地球化学.北京:地质出版社,262-270
    [136]陈哲夫,成守德,梁云海.1997.新疆开合构造与成矿.乌鲁木齐:新疆科技卫生出版社,1-300
    [137]陈哲夫,徐新.1995.中国阿尔泰陆缘开合构造系基本特征.新疆第三届天山地质矿产学术讨论会论文集.乌鲁木齐:新疆人民出版社,15-27
    [138]成守德,王元龙.1998.新疆大地构造演化基本特征.新疆地质,16(2):97-107
    [139]成守德,徐新.2001.新疆及邻区大地构造编图研究.新疆地质,19(1):33-37
    [140]程裕淇,赵一鸣,林文蔚.1994.中国铁矿床.宋叔和主编.中国矿床(中册).北京:地质出版社,386-479
    [141]仇仲学.2003.新疆富蕴县蒙库铁矿床地质特征与成因分析.地质找矿论丛,18(增刊):110-114
    [142]丁振举,刘丛强,姚书振,等.2003.东沟坝多金属矿床矿质来源的稀土元素地球化学限制.吉林大学学报(地球科学版),33(4):437-442
    [143]董连慧,赵树铭,粟永新.2006.新疆天山地区石炭纪碰撞造山期地质构造特征与成矿特点.第八届全国矿床会议论文集.陈毓川,毛景文,薛春纪主编.地质出版社,475-478
    [144]杜安道,赵敦敏,王淑贤,等Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252
    [145]冯京,高永宝,王磊,等.2008.新疆维权银多金属矿床地质特征及找矿方向.矿床地质,27(5):559-569
    [146]耿新霞.2008.新疆阿勒泰蒙库-阿巴宫铁矿成矿带岩石光谱特征、遥感信息提取及找矿靶区优选.中国地质科学院硕士学位论文,1-110
    [147]顾连兴.1999.块状硫化物矿床研究进展评述.地质论评,45(3):265-75
    [148]何国琦,成守德,徐新,等.2004.中国新疆及邻区大地构造图(1:2500000)说明书.北京:地质出版社,1-65
    [149]何国琦,韩宝福,岳永君,等.1990.中国阿尔泰造山带的构造分区和地壳演化.新疆地质科学(第2辑).北京:地质出版社,9-20
    [150]何国琦,李茂松,刘德权,等.1994.中国新疆古生代地壳演化及成矿.香港文化教育出 版社,1-437
    [151]侯可军,李延河,田有荣.2009LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质,28(4):481-492
    [152]侯增谦,韩发,夏林圻,等.2003.现代与古代海底热水成矿作用-以若干火山成因块状硫化物矿床为例.北京:地质出版社,1-423
    [153]侯增谦,浦边辙朗.1996.古代与现代海底黑矿型块状硫化物矿床矿石地球化学比较研究.地球化学,25(3):228-241
    [154]侯增谦,曲晓明,徐明基,等.2001.四川呷村VHMS矿床:从野外观察到成矿模型.矿床地质,20(1):44-56
    [155]胡兴平.2004.新疆富蕴县蒙库铁矿区地质特征及成因浅析.新疆有色金属,1:2-5,8
    [156]黄汲清,姜春发,王作勋.1990.新疆及邻区板块开合构造及手风琴式动动.新疆地质科学(第1辑).北京:地质出版社,3-15
    [157]Hutchinson R W.1982块状贱金属硫化物矿床.国外地质科技,(2):50-51
    [158]焦玉书,周伟.2004.世界铁资源开发利用和我国进口铁矿石的发展态势.中国冶金,84(11):15-18
    [159]李春昱,王荃.1983.我国北部边陲及邻区的古板块构造与欧亚大陆的形成.中国北方板块构造论文集,第1集,3-16
    [160]李厚民,沈远超,毛景文,等.2003.石英黄铁矿及其包裹体的稀土元素特征-以胶东焦家式金矿为例.岩石学报,19(2):267-274.
    [161]李厚民,王登红,张长青,等.2009.陕西几类重要铅锌矿床的矿物微量元素和稀士元素特征.矿床地质,28(4):434-448.
    [162]李厚民.2009.辽冀前寒武纪BIF型铁矿成矿规律和找矿评价.见:地质找矿改革发展大讨论-我国重要成矿区带主要矿床类型成矿规律和找矿评价.中国地质科学院矿产资源研究所:308-322
    [163]李嘉兴,姜俊,胡兴平,等.2003.新疆富蕴县蒙库铁矿床地质特征及成因分析.新疆地质,21(3):307-311
    [164]李锦轶,徐新.2004.新疆北部地质构造和成矿作用的主要问题.新疆地质,22(2):119-124
    [165]林新多.1999.岩浆-热液过渡型矿床.武汉:中国地质大学出版社.1-139
    [166]刘斌,段光贤.1987NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报,7(4):345-352
    [167]刘斌.1991.新疆阿勒泰海相火山岩铁矿带中流体包裹体特征和成矿作用的热力学条件.地质找矿论丛,6(2):71-82
    [168]刘峰标.1983.阿勒泰古板块与内生矿产.西北地质,4:14-21
    [169]刘锋,杨富全,李延河,等.2010.新疆阿尔泰南缘萨尔布拉克铁矿区花岗岩年代学及地球化学研究.地质学报,84(2):195-205
    [170]刘锋,杨富全,毛景文,等.2009.阿尔泰造山带阿巴宫花岗岩年代学及地球化学研究.岩石学报,25(6):1416-1425
    [171]刘家军,何明勤,李志明,等.2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,23(1):1-10.
    [172]刘建明,刘家军,顾雪祥.1997.沉积盆地中的流体活动及其成矿作用.岩石矿物学杂志,16(4):341-352
    [173]毛景文,Holly Stein,杜安道,等.2004.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报,78(1):121-131
    [174]毛景文,李红艳,宋学信,等.1998.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学.北京:地质出版社,1-215
    [175]毛景文,张招崇,杨建民,等.2003.北祁连山西段铜金铁钨多金属矿床成矿系列和找矿评价.北京:地质出版社,157-239
    [176]牛贺才,于学元,许继峰,等.2006.中国新疆阿尔泰晚古生代火山作用及成矿.北京:地质出版社,1-184
    [177]裴荣富.1995.中国模式.北京:地质出版社,1-357
    [178]钱大都,张淑伟,王志泰,等.1996.中国矿床发现史内蒙古卷.北京:地质出版社,137-138
    [179]任纪舜,姜春发,张正坤,等.1980.中国大地构造及其演化.北京:科学出版社,1-124
    [180]沈保丰,翟安民,杨春亮,等.2005.中国前寒武纪铁矿床时空分布和演化特征.地质调查与研究,28(4):196-206
    [181]沈其韩,宋会侠,赵子然.2009.山东韩旺新太古代条带状铁矿的稀土和微量元素特征.地球学报,30(6):693-699
    [182]沈其韩.1998.华北地台早前寒武纪条带状铁英岩地质特征和形成的地质背景.程裕淇等.华北地台早前寒武纪地质研究论文集.北京:地质出版社,1-30
    [183]盛继福.1985.新疆磁海铁矿蚀变特征.中国地质科学院矿床地质研究所所刊,第3号.北京:地质出版社,89-107
    [184]束学福.2004.安庆矽卡岩型铁铜矿床地质地球化学特征及其铁质来源研究.矿物岩石地球化学通报,23(3):219-224
    [185]孙景贵,胡受奚,沈昆,等.2001.胶东金矿区矿田体系中基性-中酸性脉岩的碳、氧同位素地球化学研究.岩石矿物学杂志,20(1):47-56
    [186]孙启祯.1993.论我国铁矿边缘成矿.地质与勘探,(8):13-18
    [187]汤蔡联.1990.符山铁矿磁铁矿的标型特征及其实际意义.河北地质情报,4:32-36
    [188]汤耀庆,肖序常,赵民等.1993.新疆北部大地构造研究的新进展.新疆地质科学(第四辑).北京:地质出版社,1-12
    [189]田毓龙,秦德先,林幼斌,等.1999.喷流热水沉积矿床研究的现状与进展.昆明理工大学学报,24(1):150-156
    [190]童英,王涛,Kovach V P,等.2006.阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义.岩石学报,22(5):1267-1278
    [191]童英,王涛,洪大卫,等.2005.阿尔泰造山带西段同造山铁列克花岗岩体锆石U-Pb年龄及其构造意义.地球学报,26(增刊):74-77
    [192]童英,王涛,洪大卫,等.2007.中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义.岩石学报,23(8):1933-1944
    [193]涂光炽.1981.地质学中的若干思维方法.地质与勘探,7:1-5
    [194]王登红,陈毓川,徐志刚,等.2002.阿尔泰成矿省的成矿系列及成矿规律.北京:原子能出版社,1-493
    [195]王登红,陈毓川,徐志刚.2003.新疆阿尔泰印支期伟晶岩的成矿年代学研究.矿物岩石地球化学通报,22(1):14-17
    [196]王广瑞.1996.新疆北部及邻区地质构造单元与地质发展史.新疆地质,14(1):12-27
    [197]王京彬,秦克章,吴志亮,等.1998.阿尔泰山南缘火山喷流沉积型铅锌矿床.北京:地质出版社,1-210
    [198]王京彬,王玉往,王莉娟.2000.大兴安岭中南段铜矿成矿北京及找矿潜力.地质与勘探,36(5),1-4
    [199]王奎仁.1989.地球与宇宙成因矿物学.合肥:安徽教育出版社,108-129
    [200]王莉娟,岛崎英彦,王京彬,et al.2001黄岗梁矽卡岩型铁锡矿床成矿流体及成矿作用.中国科学(D辑),31(7),553-562
    [201]王书来,王京彬,彭省临,等.2004.新疆可可塔勒铅锌矿床成矿流体稀土元素地球化学特征.中国地质,31(3):308-314
    [202]王涛,洪大卫,童英,等.2005.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义.岩石学报,21(3):640-650
    [203]工中刚,于学元,赵振华,等.1989.稀士元素地球化学.北京:科学出版社,1-535
    [204]王宗秀,周高志,李涛.2003.对新疆北部蛇绿岩及相关问题的思考.岩石学报,19(4):683-691
    [205]吴言昌,邵桂清,吴炼.1996.岩浆矽卡岩及其矿床.安徽地质,6(2):30-39
    [206]吴志亮.1992.新疆阿尔泰南缘下泥盆统火山沉积岩及其形成时限.昆明工学院学报,17:1-10
    [207]肖成东,刘学武.2002.东蒙地区矽卡岩石榴石稀土元素地球化学及其成因.中国地质,29(3):311-316
    [208]肖序常,汤耀庆,冯益民,等.1992.新疆北部及其邻区大地构造.北京:地质出版社,1-169
    [209]肖序常,汤耀庆,李锦轶,等.1990.试论新疆北部大地构造演化.新疆地质科学(第1辑).北京:地质出版,47-68
    [210]谢承祥,李厚民,王瑞江,等.2009.中国已查明的铁矿资源的结构特征.地质通报,28(1):80-84
    [211]谢桂青,毛景文,李瑞玲,等2008.鄂东南地区大型矽卡岩型铁矿床金云母40Ar-39A r同位素年龄及其构造背景初探.岩石学报,24:1917-1927
    [212]谢家亨,许超南,郑颖煜,等.1986.福建龙岩市马坑式铁矿地质特征及成矿地质条件.福建省地质矿产局闽西地质大队.
    [213]新疆维吾尔自治区地质矿产局.1978.阿勒泰幅地质图(1:20万)
    [214]徐国风,邵洁涟.1979.磁铁矿的表型特征及其实际意义.地质与勘探,3:30-37
    [215]徐林刚,毛景文,杨富全,等.2007a.新疆蒙库铁矿床矽卡岩矿物学特征及其意义.矿床地质,26(4):455-463
    [216]徐林刚,毛景文,杨富全,等.2007b.新疆富蕴县蒙库铁矿地质、地球化学特征.岩石学报,23(10):2653-2664
    [217]徐晓春,赵丽丽,谢巧勤,等.2009.安徽狮子山矿田金矿床和铜矿床稀土元素地球化学元素地球研究.高校地质学报,15(1):35-47
    [218]薛春纪,姬金生,杨前进.2000.新疆磁海铁(钴)矿床次火山热液成矿学.矿床地质,19(2):156-164
    [219]薛春纪,赵战锋,吴淦国,等.2010.中亚构造域多期叠加斑岩铜矿化-以阿尔泰东南缘哈腊苏铜矿床地质、地球化学和成岩成矿时代研究为例.地学前缘,17(2):53-82
    [220]闫升好,张招崇,王义天,等.2005.新疆阿尔泰南缘乔夏哈拉式铁铜矿床稀土元素地球化学特征及其地质意义.矿床地质,24(1):25-32
    [221]杨富全,毛景文,柴风梅,等.2008b.新疆阿尔泰蒙库铁矿床的成矿流体及成矿作用.矿床地质,27(6):659-680
    [222]杨富全,毛景文,徐林刚,等.2007.新疆蒙库铁矿床稀土元素地球化学及对铁成矿作用的指示.岩石学报,23(10):2443-2456
    [223]杨富全,毛景文,闫升好,等.2008a.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球 化学及其地质意义.地质学报,82(4):485-499
    [224]杨富全,毛景文,郑建民,等.2006.哈萨克斯坦阿尔泰巨型成矿带的地质特征和成矿模型.地质学报,80(7):963-983
    [225]杨富全,张志欣,屈文俊,等.2011.新疆阿尔泰蒙库铁矿床的辉钼矿Re-Os年龄及意义.地质学报,85(3):396-404
    [226]杨兴莲,朱茂炎,赵元龙,等.2008.黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征.地质论评,54(1):3-15
    [227]姚培慧,王可南,杜春林,等.1991.中国铁矿志.北京:冶金工业出版社,1-660
    [228]叶庆同.1982.粤东一些铁矿床中磁铁矿的表型特征及其成因意义.岩矿测试,1(1):44-51
    [229]易朝楷,曾行洪,莫怀毅,等.2009.新疆富蕴县蒙库铁矿区乌吐布拉克矿段补充详查及外围普查地质报告,1-67
    [230]应立娟,王登红,李健康,等.2008.新疆乔夏哈拉铁铜金矿床与国内外IOCG矿床的对比研究.大地构造与成矿学,32(3):338-345
    [231]应立娟,王登红,梁婷,等.2006.新疆阿尔泰乔夏哈拉铁铜金矿床磁铁矿的化学成分标型特征和地质意义.矿物学报,26(1):59-68
    [232]袁见齐,朱上庆,翟裕生.1985.矿床学.北京:地质出版社,1-345
    [233]曾乔松,陈广浩,王核,等.2007.阿尔泰冲乎尔盆地花岗质岩体的锆石SHRIMP U-Pb定年及其构造意义.岩石学报,23(8):1921-1932
    [234]翟裕生,邓军,李晓波.1999.区域成矿学.北京:地质出版社,1-287
    [235]翟裕生,邓军,汤中立,等.2002.古陆边缘成矿系统..北京:地质出版社,1-437
    [236]翟裕生,石准立,林新多,等.1982.鄂东大冶式铁矿成因的若干问题.地球科学,3:239-251
    [237]张建中,冯秉寰,金浩甲,等.1987.新疆阿尔泰阿巴宫-蒙库海相火山岩与铁矿的成生关系及成矿地质特征.中国地质科学院西安地质研究所所刊,20:89-180
    [238]张泾生.2007.我国铁矿资源开发利用现状及发展趋势.中国冶金,17(1):1-6
    [239]张良臣.1995.中国新疆板块构造与动力学特征.新疆第三届天山地质矿产学术讨论会论文集.乌鲁木齐:新疆人民出版社,1-14
    [240]张旗,王焰,李承东,等.2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报,25(9):2249-2269
    [241]张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社,1-182
    [242]张秋生,陈路,刘连登,等.1984.中国早前寒武纪地质及成矿作用.吉林:人民出版社,1-536
    [243]张湘炳,杨新岳.1993.阿尔泰地区大地构造演化体制及其形成机理.涂光炽主编:新疆北部固体地球科学新进展.北京:科学出版社,173-184
    [244]张秀林.2007.蒙库铁矿地质特征及成因探讨.新疆有色金属,(增刊):3-6
    [245]张振福.2003.新疆阿尔泰一带典型铁矿床特征、成因及找矿前景分析.地质找矿论丛,18(增刊):80-83
    [246]赵斌,Barton M D.1987接触交代矽卡岩型矿床中石榴石和辉石成分特点及其与矿化的关系.矿物学报,7(1):1-8
    [247]赵斌,李统锦,李昭平,等.1992.我国一些矿区矽卡岩中石榴石的研究.矿物学报,4:296-304
    [248]赵斌,赵劲松,刘海臣.1999.长江中下游地区若干Cu(Au)、Cu-Fe(Au)和Fe矿床中钙质矽卡岩的稀土元素地球化学.地球化学,28(2):113-125
    [249]赵劲松,邱学林,赵斌,等.2007.大冶-武山矿化矽卡岩的稀土元素地球化学研究.地球化学,36(4):400-412
    [250]赵一鸣,林文蔚,毕承思,等.1990.中国矽卡岩矿床.北京:地质出版社,1-351
    [251]赵一鸣,谭慧静,许振南,等.1983.闽西南地区马坑式钙矽卡岩型铁矿床.中国地质科学院矿产地质研究所所刊(专辑).北京:地质出版社,1-141
    [252]赵一鸣,吴良士,白鸽,等.2004.中国主要金属矿床成矿规律.北京:地质出版社,1-411
    [253]赵一鸣,张轶男,毕承思,等.1999.安徽淮北三铺地区镁矽卡岩金(铜,铁)矿床生成环境、分带和流体演化.矿床地质,18(1):1-10
    [254]赵一鸣,张轶男,林文蔚.1997.我国矽卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系.矿床地质,16(4):318-329
    [255]赵永鑫.1992.长江中下游地区接触带铁矿床形成机理.武汉:中国地质大学出版社,1-120
    [256]郑常青,徐学纯,’Takenori KATO,et al.2007新疆阿尔泰冲乎尔地区蓝晶石-夕线石型变质带独居石CHIME二叠纪年龄及其地质意义.高校地质学报,13(3):566-573
    [257]周刚,张招崇,罗世宾,等.2007a.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义.岩石学报,23(8):1909-1920
    [258]周刚,张招崇,王新昆,等.2007b.新疆玛因鄂博断裂带中花岗质糜棱岩锆石U-Pb SHRIMP和黑云母40Ar-39Ar年龄及意义.地质学报,81(3):359-369
    [259]周世泰.1986.鞍山本溪地区鞍山群变质岩岩石化学研究及其条带状铁矿的成矿条件.中国地质科学院院报,第16号:139-153
    [260]周振华,刘宏伟,常帼雄,等.2011.内蒙古黄岗梁矿床矽卡岩矿物特征及其成矿指示 意义.岩石矿物学杂志,30(1):97-112
    [261]朱笑青,王中刚.1994.冲绳海槽热水区沉积物的地球化学特征.胡瑞忠.矿床地球化学研究.北京:地质出版社,108-112
    [262]朱钟秀,李旭平.1989.大兴安岭地区矽卡岩铁矿石榴石的矿物学研究.世界地质,8(1):15-19
    [263]祝新友,邓吉牛,王京彬,等.2007.锡铁山喷流沉积矿床卤水与海水的相互作用.地质论评,53(1):52-64
    [264]庄玉勋.1994.中国阿尔泰造山带热动力时空演化和造山过程.长春:吉林科学技术出版社,70-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700