用户名: 密码: 验证码:
山东沂水县龙泉站金矿成矿作用与找矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在成矿分析基础上,采用遥感蚀变提取、构造地球化学测量、EH-4电磁测量等技术,开展了龙泉站金矿成矿作用与找矿预测研究。主要成果包括:
     1.龙泉站金矿主矿体产于沂水-汤头断裂蚀变糜棱岩和碎裂岩带内。矿石中SiO2含量相对较高,与黄铁绢英岩蚀变过程中Si的聚集有关,CaO、MgO、MnO、TiO2、P2O5等组分在所有测试对象中为最低,显示这些组分在蚀变矿化过程中被显著带出。据La/Yb-REE含量图解分析,本区岩矿石物质成分主要来自沉积岩,混合岩及绿片岩的初始物质中可能混有基性火山岩成分。成矿地质条件可以归纳为成矿构造、成矿物源和成矿热源等3个方面。成矿时代在白垩统马郎沟组地层形成之后。成矿作用与大气水参与的热液对流成矿系统有关。
     2.利用美国陆地卫星LANDSAT-7ETM数据,对龙泉站及其外围地区约1200km2蚀变异常信息进行提取。遥感泥化蚀变与铁化蚀变异常的分布与花岗斑岩、花岗闪长岩、二长花岗岩及寒武系地层分布地区空间关系密切。根据遥感蚀变的分布特征,结合地质条件分析,圈定找矿远景区4处。
     3.完成龙泉站测区地表构造地球化学扫面16km2,发现3处连续Au元素异常。相关分析、聚类分析及因子分析显示,Au的聚集与Pb、Ag、Cu、Mo、Bi、As、Ba等元素关系密切。结合地质分析,本区金矿找矿的最佳指示元素组合可厘定为Au-Ag-Pb-Cu-As-Ba。
     4.根据构造地球化学异常的分布及地表矿化情况,选择16线和111线开展了EH-4电磁测量。根据龙泉站测区构造地球化学异常分布及EH-4电磁测量成果,共圈定找矿靶位2处。
Based on the metallogenic analysis, the mineralization and ore prediction in Longquanzhan gold deposit were studied by means of extraction of remote sensing alteration information, tectonic geochemistry, EH-4 geophysical sounding etc. The main conclusions were made as follows:
     1. The main orebodies of Longquanzhan gold deposit occurred in altered mylonite and cataclasite of Yishui-Tangtou fault. The higher content of SiO2 in ores related to the aggregation of Si in the process of beresitization. The lower content of CaO, MgO, MnO, TiO2, P2O5 in ores showed these compositions were brought out in the process of alteration and mineralization. According to the La/Yb-REE content scheme, the material compositions in ores and rocks came mainly from sedimentary rocks, and the initial materials of chorismite and greenschist possibly contained the composition of basic lava. The geological condition of mineralization included ore-controlling structure, material source and heat source of mineralization. Metallogenic epoch of Longquanzhan gold deposit was the time after the formation of Malanggou group stratum in Cretaceous. The mineralization of Longquanzhan gold deposit related to the hydrothermal covection metallogenic system in which meteoric water participated
     2.The remote sensing alteration information was extracted according to USA LANDSAT-7ETM data in 1200km2 of Longquanzhan and its periphery. The distribution of iron and argillic alteration related closely to the areal area of granite porphyry, granodiorit, monzogranite and Cambrian system. Four ore-finding perspective areas were determined according to the distribution of remote sensing alteration information and geological condition.
     3. Three successive abnormities of Au element were found through surficial tectonic geochemistry survey of 16km2 in Longquanzhan. The aggregation of Au related closely to Pb, Ag, Cu, Mo, Bi, As, Ba according to correlation analysis, cluster analysis and factor analysis. Combined with geological analysis, the optimal indicator elements association of ore prediction were determined as Au-Ag-Pb-Cu-As-Ba.
     4. Based on the distribution of tectonic geochemistry abnormity and surficial ore occurrence, EH-4 geophysical sounding were carried out in 16 and 111 exploratory lines. Two prospecting targets were delineated according to the abnormity of tectonic geochemistry and EH-4 geophysical sounding.
引文
[1]Berman R G. Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 [J]. J Petrology,1988, 29:445~522
    [2]Brown M. Migmatites-Evidences of fugitive magma frozen during migration [A]. Abstracts for 30th International Geological Congress[C]. Beijing, China,1996,2:610
    [3]D. I. Groves, M. E. Borley.太古宙脉金矿床地壳规模热液系统的产物[J].地质调查与研究,1992,3(9):76~80
    [4]De Paolo D J, Perry F V, Baldridge W S. Crustal versus mantle sources of granitic magmas:a two-parameter model based on Nd isotopic studies [J]. Trans Roy Soc Edinb Earth Sci,1992,83:439~446
    [5]Droop G T R, CL Emens J D, Dalrympl E D J. Processes and conditions during contact anatexis, melt escape and restite formation:The Huntly Gabbro Complex, NE Scotland [J]. Journal of Petrology,2003,44(6):995~1029
    [6]Johannes W, Hol TZ F. Petrogenesis and Experimental Petrology of Granitic Rocks [M]. Berlin, Heidelberg, Germany:Springer2Verlag,1996,231-331
    [7]M.Fish,K.Roller, M.KU ster,et al. Open fissure mineralization at 2600m depth in long Valley Exploratory Well(California):insight into the history of the hydrothermal system[J].Journal of Volcanology and Geothermal Research,2003,127:347~380
    [8]Mark GDoyle, Rodney L.Allen. Subsea-floor replacement in volcanic-hosted massive sulfide deposits[J]. Ore Geology Reviews,2003, Vol.23:183~222
    [9]Newton R C. Charnockitic alteration:evidence for CO2 infiltration in granulite facies metamorphism[J]. Journal of Metamorphic Geology,1992,10(3):383~400
    [10]R.W.博伊尔.金的地球化学与金矿床[M].北京:地质出版社,1984,556~565.
    [11]Sengupta P, Karmaka R, Dasgupta S. Petrology of spinel granulites from Araku, Eastern Ghats, India, and a petrogenetic grid for sapphirine2free rocks in the system FMAS[J]. Metamorphic Geol,1991,9:451~459
    [12]Skjerlie K P, Patino D, Johnson A D. Fluid absent melting of a layered crustal protolith:implications for the generation of anatectic granites[J]. Contrib Mineral Petrol,1995,122:62~78
    [13]Stevens G, Clemens J D, Droop G T R. Hydrous cordierite in granulites and crust magma production[J]. Geology,1995,23:925~928
    [14]Valdecir D A J. Elemental and Sr-Nd isotope geochemistry of two Neoproterozoic mangerite suites in SE Brazil:Implications for the origin of the mangerite-charnockite-granite series[J]. Precambrian Research,2003 ,119(1-4):301~327
    [15]W. S. Fyfe, R. Kerrich金的自然富集作用[J].地质调查与研究,1985,4(4):42~66
    [16]Zen E A. Using granite to image the thermal state of the source terrane[J]. Trans Roy Soc Edinb Earth Sci,1992,83:107~114
    [17]曹国权,王致本,张成基等.鲁西早前寒武纪地质[M].北京:地质出版社,1996,0~210
    [18]晁洪太,李家灵,崔昭文等.郯庐断裂带中段全新世活断层的特征滑动行为与特征地震[J].内陆地震,1994,8(4):297-304
    [19]陈国达,黄瑞华.关于构造地球化学的几个问题[J].大地构造与成矿学,1984,1(8):7-18
    [20]陈永清,夏庆霖.应用地质异常单元圈定矿产资源体潜在地段[J].地球科学—中国地质大学学报,1999,24(5):459~463
    [21]程裕淇.华北地台早前寒武纪地质研究论文集[M].北京:地质出版社,1998,137~145
    [22]崔炳富,程志忠.鲁西中太古代表壳岩系-沂水岩群[C].山东地质矿产研究文集.山东科学技术出版社,1996,14~21
    [23]董旭光,周翠英,李红.沂沭断裂带及其两侧块体现今构造应力场与地震活动[J].内陆地震,1999,13(4):332~336
    [24]方仲景,计凤桔,向宏发等.郯庐带中段第四纪断裂活动特征与地震地质条件述评[J].地质科学,976,(4):354~365
    [25]高维明,李家灵,孙竹友.沂沭大陆裂谷的生成与演化[J].地震地质,1980,2(3):11~18
    [26]顾德林,胡玲,张雪亭等.山东沂水峨山口韧性剪切带糜棱岩类质量平衡分析[J].中国区域地质,1998,2(17);149~155
    [27]管延新,翟正宏等.沂水—汤头断裂大盛以北段空间分布与活动性研究[J].海洋地质动态,2007,23(1):6~9
    [28]国家地震局地质研究所.郯庐断裂带[M].北京:地震出版社,1987,9~11
    [29]胡华斌,毛景文,刘敦一等.鲁西铜石岩体的锆石SHR IMP U-Pb年龄及其地质意义[J].地学前缘,2004,11(2):453~459
    [30]胡华斌,毛景文,牛树银等.鲁西平邑地区磨坊沟金矿床流体包裹体研究[J].现代地质,2004,18(4):529~535
    [31]胡思颐.蒙阴金伯利岩的形成温度和压力[J].山东地质,1985,1(1):79~84
    [32]胡文宣,孙睿,张文兰等.金矿成矿流体特点及深浅部流体相互作用成矿机制[J].地学前沿,2001,8(4):281~288
    [33]金隆裕,阎守民,周志胜等.山东沂水汞丹山凸起麻粒岩相岩石特征及其地质意义[J].山东地质,1989,4(2):13~27
    [34]李洪奎,李英平,田京祥等.沂水县龙泉站金矿地质特征及找矿前景[J].山东国土资源,2005,21(6-7):69~72
    [35]李洪奎,杨永波,李英平等.沂沭断裂带中段地质特征与金矿成矿作用[J].地质调查与研究,2004,27(4):255~260
    [36]李洪奎,杨永波,田京祥等.山东沂沭断裂带中段金矿床地质特征[J].地质与勘探,2004,40(4):27~31
    [37]李洪奎,张玉琴,杨永波等.山东沂水龙泉站金矿床地球化学特性[J].山东国土资源,2007,23(6-7):9~15
    [38]李惠,张国义,禹斌.金矿区深部盲矿预测的构造叠加晕模型及找矿效果[M].北京:地质出版社,2006,9~32
    [39]李杰,韩海华,闫德桥等.沂沭断裂带垂直形变与断层活动特征分析[J].大地测量与地球动力学,2002,22(2):106~111
    [40]林景仟,谭东娟,于学峰等.鲁西归来庄金矿成因[M].济南:山东科学技术出版社,1997,4(12):98~99
    [41]刘建明,叶杰,徐九华等.初论华北东部中生代金成矿的地球动力学背景—以胶东金矿为例[J].地球物理学进展,2001,1(1):39~46
    [42]刘涛.山东铜井岩体稀土元素特征及矿源研究[J].能源与环境,2008,20:132~133
    [43]刘永祥,张宝福.沂沭断裂与鲁东金矿床的成生关系[J].黄金,2001,9(22):5~10
    [44]满红敏.沂沭断裂带内部的差异活动[J].华北地震科学,2005,23(3):13~21
    [45]山东省地质矿产局.山东省区域地质志[M].北京:地质出版社,1991,443~454
    [46]山东省第四地质矿产勘查院.山东省区域地质[M].济南:山东省地图出版社,1987,1~100
    [47]沈保丰,孙继源.五台山-恒山绿岩带金矿床地质[M].北京:地质出版社,1998,5~120
    [48]沈昆、徐惠芬、沈其韩.山东沂水麻粒岩杂岩中的变质流体及地质意义[J].华北地质矿产杂志,1996,10(2):154~166
    [49]沈其韩,沈昆,耿元生等.山东沂水杂岩的组成与地壳演化[M].北京地质出版社,2000,1~200
    [50]沈其韩,徐惠芬,张宗清等.中国早前寒武纪麻粒岩[M].北京:地质出版社,1992,69~109
    [51]沈其韩,张宗清,徐惠芬.山东沂水杂岩中变质基性岩类Sm-Nd同位素年龄及其地质意义[J].矿物岩石学杂志,1993,12(4):289~296
    [52]苏尚国,邓晋福.山东沂水紫苏花岗岩中残晶相矿物的发现及紫苏花岗岩的形成过程[J].地学前沿,2003,10(3):257~267
    [53]苏尚国,顾德林,朱更新.山东沂水地区麻粒岩相变质作用演化及大地构造意义[J].岩石学报,1997,13(3):331~345
    [54]苏尚国,周询若,顾德林等.山东沂水紫苏花岗岩特征形成时代及成因探讨[J].地球科学,1999,24(1):57~62
    [55]田洪水,李洪奎,王金光等.沂沭断裂带及其近区的地震成因岩石新认识[J].2007,28(5):496~505
    [56]王关玉.论紫苏花岗岩成因[C].华北北部麻粒岩带地质演化论文集.北京:地震出版社,1994,176~186
    [57]王先美,钟大赉,张进江.沂沭断裂带晚白垩世-早古新世左行走滑的低温年代学约束.2007,81(4):454-465
    [58]卫万顺,张宇辉.金矿床模型[M].北京:中国大地出版社,2008,2~27
    [59]徐德利,李文良,卿敏等.EH-4电法测量在峪耳崖金矿区的应用[J].地球学报,2004,25(1):79~82
    [60]徐惠芬,程裕淇.山东沂水太古宙黑云二辉斜长片麻岩和紫苏花岗闪长岩的岩石学特征及其成因关系[C].华北地台早前寒武纪地质研究论文集.北京:地质出版社,1998,137~145
    [61]于万里,张基敏.冀东地区都山花岗岩基的成因探讨[J].矿物岩石,1996,16(4):1~7
    [62]于学峰,李洪奎,唐好生.鲁西下寒武统层状贵金属矿成矿地质特征及找矿方向[J].前寒武纪研究进展,2002,25(3-4):139~141
    [63]翟裕生.关于构造—流体—成矿作用研究的几个问题[J].地学前缘,1996,3(3-4):230~236
    [64]张德会.矿物包裹体液相成分特征及其矿床成因意义[J].地球科学,1992,17(6):677~688
    [65]张国仁,陈建强,胡明花等.山东沂水地区早中寒武世露头层序地层及地层格架[J].辽宁地质,1996,9(3):195~209
    [66]张微,陈汉林,姚琪等.遥感技术在孝丰-三门湾活动断裂调查中的应用[N].浙江大学学报,2008,35(1):111~116
    [67]赵国春,贺同兴.冀东太平寨紫苏花岗岩类深熔成因的矿物学标志[J].长春地质学院学报,1991,21(2):143~150
    [68]朱光,王道轩,刘国生等.郯庐断裂带的伸展活动及其动力学背景[C].地质科 学,2001,36(3):269~278
    [69]邹为雷,沈远超.浅议沂沭断裂系及其邻区金矿成矿作用演化[J].地质与勘探,2001,37(1):20~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700