用户名: 密码: 验证码:
澜沧江火山弧云县段铜矿床地质特征、成矿模式与找矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南澜沧江弧火山岩带属全球特提斯构造成矿域的一部分,是中国极具潜力的铜多金属找矿远景区之一。本文在详细研究区域成矿地质背景及其演化和全面收集研究区内矿床(点)的地质、遥感、物探、化探、勘探、开采资料的基础上,以区域成矿学和弧火山岩成矿理论为指导,以构造—岩浆—成矿作用为主线,首次对区内的典型矿床——官房铜矿、有代表性的花岗质小岩体及中晚三叠世富钾火山岩进行深入剖析和系统研究。取得的主要成果与认识如下:
     (1)研究区内晚三叠世小定西组基性火山岩为高钾钙碱性—钾玄岩系列,富集轻稀土元素,无Eu或弱的负Eu异常。火山岩的微量元素配分分布模式显示大离子亲石元素(LILE)K、Rb、Ba、Th强烈富集而高场强元素(HFSE)Nb、Ti、Ta等则明显亏损。大量的常量和微量元素构造环境判别图解及岩石组合等地质特征表明小定西组基性火山岩具活动大陆边缘的弧火山岩的特征。同位素研究显示小定西组火山岩具高~(87)Sr/~(86)Sr值,其平均值为0.708,高于均一储集库(~(87)Sr/~(86)Sr)_(UR)的现代值0.7045;ε(Nd)值均为负值,介于-2.48~-1.21之间;~(143)Nd/~(144)Nd值低,小于未分异的球粒陨石地幔值。微量元素和Sr、Nd同位素特征表明小定西组富钾基性火山岩既显示出一些壳源岩石的特点,但同时具有幔源岩石的特征。这种具有双重特征的岩石与来源于EMⅡ富集地幔的岩石一致,显示其源区具有壳幔混源性质,即存在部分大洋沉积物、陆壳物质和地幔岩的深部混合作用,这种源区的形成与特提斯澜沧江洋板块向东的俯冲消减作用有必然的因果关系。
     (2)研究区内中三叠世忙怀组流纹质火山岩的化学成分具有高硅、高钾、低钛、中等Al_2O_3、CaO<1%、ALK<8%、铝饱和指数A/CNK>1.1、里特曼指数σ小于3.3,但K_2O>Na_2O的特征,属于弱碱质流纹岩中的钾质流纹岩,为钙碱性系列,与晚三叠世小定西组玄武质火山岩共同构成两个大的喷发旋回。忙怀组酸性火山岩也富集轻稀土元素和大离子亲石元素,具强的Eu负异常,但贫高场强元素Ta、Nb、Ti和亲铁元素。火山岩的~(87)Sr/~(86)Sr平均值为0.755,高于下地壳的上限值0.710;ε(Nd)均为负值,介于-3.63~-1.66之间,远大于大陆地壳的平均值-15。岩石的地质地球化学特征表明忙怀组酸性火山岩的岩浆来源以壳源为主,主要为陆壳物质的重熔产物,同时有消减带物质的参与,从而表现出“碰撞型”弧火山岩的特点。
     (3)小定西组基性火山岩中所夹硅质岩化学成分以SiO_2为主,含量为96.28%~97.92%,其次为FeO和Al_2O_3,其它成分含量都很低。硅质岩主要属于生物成因,其常量和稀土元素判别图解表明,硅质岩形成于大陆边缘区,这与中晚三叠世火山岩形成于大陆边缘弧构造环境的结论一致。
     (4)老毛村岩体的岩石类型主要为二长花岗岩,具有高硅、富钾、过铝、钙碱性“S”型花岗岩特征。岩体的常量元素、稀土元素和微量元素特征与其围岩之一的中三叠世忙怀组“碰撞型”高钾流纹质弧火山岩有很大的相似性,体现了它们之间的演化关系。成岩物质主要为壳源,多种氧化物与微量元素构造环境判别图解结果表明,老毛村岩体兼具有火山弧花岗岩和后造山花岗岩的特征,为特提斯澜沧江洋板块向东与思茅地块碰撞之后转入伸展引张体制下地幔底辟上隆发生地壳深融作用的产物。老毛村岩体形成的构造环境为“后造山”,岩体的Rb-Sr同位素年龄为169Ma±5Ma,形成时代为晚侏罗世。
     (5)官房铜矿的矿体严格受断裂构造和火山岩岩性双重控制,脉状矿体切割地层,穿切小定西组不同亚段的地层,矿石中脉状、角砾状构造发育等特征充分表明矿床的形成时代晚于小定西组基性火山岩的形成年代。小定西组各分段在区域地层剖面中均无铜的初始富集,矿石与围岩的稀土元素地球化学特征有着显著的差别,这表明官房铜矿在形成过程中小定西组富钾基性火山岩不能作为初始矿源层,虽然地层中的铜对成矿可能有一定的贡献,但主要成矿物质应该来源于深部,不过需要指出的是小定西组火山岩每一次喷发旋回顶部由气孔杏仁熔岩和角砾岩组成的高渗透区域是矿床尤其是似层状矿体形成的良好容矿空间,对似层状矿体的形态具有控制作用。
     (6)官房铜矿与典型的“火山红层铜矿”相比,有一些共同点,但官房铜矿玄武质火山岩的铜背景值低,基本上没有发生绿片岩相的变质作用,黄铁矿化和硅化等围岩蚀变十分发育且与成矿关系密切等特征又清楚地显示官房铜矿有自己鲜明的特点。矿区H、O、S、Pb同位素、稀土元素、微量元素和包裹体等地球化学特征表明矿床成矿物质主要来源于深部下地壳或上地幔;成矿流体为低—中盐度的H_2O-NaCl-CO_2体系;成矿流体主要为岩浆水和大气降水的混合流体;矿床形成于一种相对开放的体系。结合矿床产出构造环境、围岩蚀变类型、控矿要素、流体包裹体和同位素特征等分析,笔者认为官房铜矿属浅成中—低温火山次火山热液矿床,成矿与同火山机构有关的次火山岩体或中酸性隐伏岩体的岩浆作用有密切的成因联系。
     (7)南澜沧江带火山岩的演化历史表明,晚三叠世是区域应力场转折时期。晚三叠世时大规模的伸展作用、高钾钙碱性—钾玄岩系列岩石的大量发育以及后来的成矿作用事件不是偶然孤立的,而是受某种统一的深部作用机制的制约,而岩石圈拆沉作用可能是一种合理的深部作用机制。晚三叠世之后,由于印度板块向北冲挤,引发弧后陆内产生大规模下切地幔的逆冲推覆—走滑—伸展构造(澜沧江超壳断裂)的重新活动,可能导致滞留于构造带内地幔中的大洋板块残片(可能具有Cu、Ag等矿化元素的高背景值)部分熔融,沿构造薄弱部位(如古火山机构、大断裂交汇部位等)上侵。熔融形成的初始富Cu等矿化元素的富挥发份和钾质的中酸性岩浆,经多次上侵、不断分异演化,到晚期阶段演变成富含Cl~-和HS~-等挥发份和Cu~(2+)、Pb~(2+)、Ag~+等矿化元素的中酸性熔融体。在构造动力和本身挥发份的作用下成矿流体不断沿断裂运移,上侵至小定西组基性火山岩或忙怀组酸性火山岩中的有利部位淀积成矿。因此,南澜沧江带的构造背景演化与岩浆作用,岩浆演化与成矿作用是一个统一作用的整体,成矿作用只是其中最后的一个环节。
     (8)通过研究和总结官房铜矿的地质特征和成矿规律,阐述了铜矿体与火山岩的时空关系和成因联系,突破了“顺层鸡窝矿”的观点,提出了“矿带陡倾斜矿体成层”的“层楼结构”成矿规律,并首次建立了官房铜矿的成矿模式和南澜沧江弧火山岩带云县段铜矿床的综合找矿模型,明确了地质找矿标志,肯定了研究区的找矿前景,优选了找矿靶区和找矿远景区。与此同时,官房铜矿的地质找矿也实现了历史性的突破现,已初步控制121+333+334级铜金属资源量近50万吨,银资源量1500吨,产生了巨大的经济和社会效益。
South Lancangjiang arc volcanic rock belt belongs to part of SanjingTethyan tectonic metallogenic domain, which is one of the most potentialcopper polymetal exploration prospective areas. Based on the study ofregional metallogery, geological setting and its evolution in detail and thegeneral gathering of geology, remote sensing, geophysical prospecting,geochemical exploration, prospecting and production data of the oredeposits(spot) in the study area, and guided by regional metallogeny andarc volcanic rock mineralization theory, this paper has studied the typicalore deposit——Guanfang copper deposit and representative granitoidsmall rock body and middle-late Triassic potassium-high volcanic rocksin the study area intensively and systematically for the fisrt time. Themain results and some new viewpoints can be summarized as following:
     (1) Late Triassic Xiaodingxi Formation basic volcanic rocks belongto potassium-high cacl-alkali basalt series-shoshonite series with theirRittmann index varying in the range of 2.23~9.24 (σ=6.27 on average)in the study area, which are enriched in LREE and potassium(K_2O=2.68% on average). The REE distribution pattern is slightly rightoblique with an average∑REE of 171.83×10~(-6), and they exist no orvery weak negative Eu anormalies. The rocks show evident LILE like K,Rb, Ba, Th positive anomalies and HFSE such as Nb, Ti, Ta negativeanormalies in the trace element distribution pattern. According to a lot oftectonic setting discrimination diagrams of the rocks as well as geologicalcharacteristics of the rock assemblage, it is suggested that the late TriassicXiaodingxi Formation basic volcanic rocks along South Lancangjiangbelt should be composed of active epicontinental arc-volcanic rocks. The characteristics of radiogenic Sr, Nd isotope show that XiaodingxiFormation basic volcanic rocks have a relatively high value of ~(87)Sr/~(86)Srwith an average of 0.708, which is higher than the (~(87)Sr/~(86)Sr)_(UR) presentvalue 0.7045 of chondrite uniform reservoir. The values ofε(Nd) arenegative, which vary from -2.48 to -1.21, and the values of~(143)Nd/~(144)Nd are obviously lower than the present value of chondriteuniformless reservoir. The characteristics of geochemistry and isotopicgeochemistry infer that the source of late Triassic Xiaodingxi Formationbasic volcanic rocks has the feature of crust-mantle mixed material,which is consistent with EMⅡ. So the potassium-high basic volcanicrocks in the study area were not directly from the remelting of normalmantle or crust material, but it's from the partial melting of mantle source,enriched in large-ion lithophile elements and LREE, in which continentalcrust material and oceanic sediments are largely involved and inevitablyrelated to the subduction eastward of Tethyan Lancangjiang oceanic plate.
     (2) Middle Triassic acid volcanic rocks of Manghuai Formationbelong to potassium-rich calc-alkali rhyolitic volcanic rock series, whichis characteristic of high silica(SiO_2=75.49% on average), medium Al_2O_3,CaO<1%, ALK<8%, rich potassium(K_2O=3.38% on average), lowtitanium(TiO_2=0.136% on average), Rittmann index (σ)<3.3, K_2O>Na_2O and A/CNK higher than 1.1(1.53 on average). The rocks also havehigh LILE like K, Rb, Ba, Th and LREE concentrations with obvious Euanomalies but poor in HFSE such as Nb,Ti, Ta and siderophile element.The ~(87)Sr/~(86)Sr values of these acid potash-rich volcanic rocks are higherthan 0.710 (0.755 on average) andε(Nd) values of them are all less thanzero but far and away greater than the average of the crust(-15), whichvary from -3.63 to -1.66. Based on a comprehensive analysis of thetectonic setting and geochemical characteristics, it is concluded that thesepotash-rich volcanic rocks of Manghuai Formation are mainly originatedfrom the remelting of continental crust materials, accompanied with theparticipation of subduction zone materials, which made them have thecharacteristic of collision type arc volcanic rocks.
     (3) The chemical composition of siliceous rocks among late TriassicXiaodingxi Formation basic volcanic rocks is mainly SiO_2 in the range of 96.28%~97.92, secondly is FeO and Al_2O_3, other ingredient is very low.The siliceous rocks mostly belong to organic origin and formed in thecontinental margin according to some discrimination diagrams, which isin accord with the conclusion that the tectonic setting of middle-lateTriassic volcanic rocks in the study area is epicontinental arc.
     (4) The Laomaocun rock body in South Lancangjiang belt is mainlymonzonite granite-porphyry. Chemical composition of the rock body isSiO_2=77% on average, Al_2O_3=12.08%~14.33%, A/CNK (molecule ratio)>1.1(1.68 on average), K_2O/Na_2O=4.54 on average, Rittmann index(σ)=0.75~1.34 (1.14 on average), DI=84.0~87.7,∑REE=204.27×10~(-6)~274.17×10~(-6),∑LREE/∑HREE=3.43~5.44 andδEu=0.47~0.60.The rock body shows obvious negative Sr, P, Ti and Eu anomalies as wellas positive K, Rb, Ba, Th, U anomalies in the primitivemantle-normalized trace element spider diagrams, suggesting evidentfractional crystallization. According to its lithofacies and petrological andgeochemical characteristics, the Laomaocun rock body is silica-high,potassium-rich and belongs to peraluminous calc-alkaline S type granite,which is similar to collision type acid volcanics of Manghuai Formationin the middle Triassic period. Rb-Sr age of the rock body is 169Ma±5Ma.Various oxide and trace element diagrams for discrimination of tectonicsetting reveal that the Laomaocun rock body is post-orogenic granite(POG) formed in a post-orogenic extensional structural environment.
     (5) The ore bodies of Guanfang copper deposit are strictly controlledby the faults that radiate toward the outside and lithologic characters ofpotassium-high volcanic rocks, the vein orebodies cut off the strata ofdifferent sub-section of Xiaodingxi Formation basic volcanic rocks,brecciated structure and vein structure are widespread in the ore. Thementioned features of Guanfang copper deposit show that the forming eraof the ore deposit is posterior to that of Xiaodingxi Formation basicvolcanic rocks. Each subsection of Xiaodingxi Formation has no initialcopper enrichment in the regional section and the REE characteristic ofthe ore is quite different from that of the host rocks. Therefore theore-forming materials of Guanfang copper deposit should have comefrom the lower crust and upper mantle instead of Xiaodingxi Formation basic volcanic rocks in the process of mineralization. The zone of highpermeability is the best position for mineralization composed ofvolcanicclastics, breccias, amygdules and fractures on the top of eacheruption gyration of subaerial flood basalt, which is one of the major orecontrols of orebodies, especially quasi-strata-bound ore bodies.
     (6) Compared to the typical 'Volcanic redbed copper deposit' (VRC),Guanfang copper deposit is characterized by its low Cu background valueand its absence of low greenschist facies metamorphism of the hostvolcanic rocks although they have some common points. Coppermineralization is close related to silicification and pyritization, which iswidespread in the ore deposit. It is suggested that the ore-formingmaterials mostly derived from the lower crust and uppermantle, themetal-bearing fluid is H_2O-NaCl-CO_2 system with low-middle salinity,the ore-forming fluid is of hybrid type that is composed of magma waterand meteoric water according to the study of trace elements, fluidinclusions and isotopes of the copper ores and ore-beating rocks. Thesulfur isotope composition of the main sulfides is within the range of-11.88‰~-5.67‰δ~(34)S_(V-CDT). In combination with tectonic setting,wallrock alteration type and ore control element, it is concluded thatGuanfang copper deposit is hydrothermal Cu ore deposit that is ofgenetically low to medium temperatures and formed in a relatively opensystem and closely related to the evolution of the magmatic activity ofthe concealed intermediate-acidic rock or Indosinian sub-volcanic rock inthe volcanic apparatus.
     (7) The evolution history of volcanic rocks in South Lancangjiangbelt indicates that late Triassic epoch is a turn time of regional stress field,and the massive extensional activity and the eruption of potassium-highcacl-alkali basalt series-shoshonite series volcanic rocks and thesubsequent mineralization event are not insular and occasional, which isconstrained by some mechanism, and lithosphere delamination maybe is arational deep mechanism. The remobilization of the thrust-nappe andstrike-slip and extensional structure such as Lancangjiang major faultwithin the continental on a large scale that incise down to mantle owingto Indian plate's northward impact and extrasion after late Triassic epoch perhaps result in the partial melting of the oceanic plate relic (maybe havehigh background value of the mineralization elements of Cu, Ag and soon) leaving in the mantle in the tectonic zone and intrude upwardsfollowing the dotty structure position such as volcanic mechanism and theconvergence of two major faults. Thus the formative magma withabundant initial Cu element and volatile flux and potassium became theintermediate-acidic fusant that is rich in fugitive constituent such as Cl~-and HS~(--) and metallogenic elements such Cu~(2+), Pb~(2+), Ag~+ and so on in thelate stage after ceaselessly differential evolution, the ore-forming fluidbeing drived by the power of structure and volatile flux through thefracture zone deposited in favorable place of Xiaodingxi Formation basicvolcanic rocks. So the evolution of tectonic setting of South Lancangjiangbelt and magma activity, the magmatic evolution and the mineralizationactivity is the all and the one, and the mineralization activity is the onlylast link among them.
     (8) Based on the study and summary of the geological features andmineralization law of Guanfang copper deposit, the relation of spacetimeand genesis between the copper orebodies and potassium-rich volcanicrocks is expounded, the metallogenic model of Guanfang copper depositand the comprehensive prospecting model of copper deposits in YunXiansection of Lancangjiang volcanic arc are set up, the prospecting signs aredesignated, the prospecting perspective is confirmed and the prospectingtargets are optimized in the study area. In the meantime the prospectingwork of Guanfang copper deposit obtained a great success and createdhuge economic and social benefit.
引文
[1] 莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿(地质专报第20号).北京:地质出版社,1993,1~233
    [2] 莫宣学,沈上越,朱勤文,等.三江中南段火山岩—蛇绿岩与成矿.北京:地质出版社,1998,5~46
    [3] 陈毓川.中国主要成矿区带资源远景评价.北京:地质出版社,1999
    [4] 李定谋, 王立全, 须同瑞,等.金沙江构造带铜金矿成矿与找矿.北京: 地质出版社,2002
    [5] Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980, 13: 97~108
    [6] Foley S F, Peccerillo A. Potassic and ultrapotassic magmas and its origen. Lithos, 28: 181~195
    [7] Muller D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic setting: A pilot study. Mineral Petrol, 1992, 46:259~289
    [8] Muller D, Groves D I. Potassic igneous rocks and associated gold-copper mineralization. 3rd eds. Berlin: Springer-Verlag, 2000, 1~252
    [9] 邱检生,徐夕生,蒋少涌.地壳深俯冲与富钾火山岩成因.地学前缘,2002,10(3):192~199
    [10] 朱勤文,等.澜沧江带火山岩构造—岩浆类型与特提斯演化.青藏高原地质文集(21),北京:地质出版社,1991
    [11] 朱勤文.滇西南澜沧江带云县三叠纪火山岩大地构造环境.岩石矿物学杂志,1993, 12(2):134~142
    [12] 方宗杰,等.关于滇西地质的若干新认识.科学通报,1990,第35卷,第5期
    [13] 方宗杰,等.从地层学角度探讨昌宁—孟连缝合线的若干问题.地层学杂志,1992,16(4)
    [14] 从柏林.等.中国滇西地区古特提斯演化的岩石学纪录.见:亚洲的增生.北京:地震出版社,1993
    [15] 刘本培,冯庆来,方念乔,等.滇西南昌宁—孟连和澜沧江古特提斯多岛洋构造演化.地球科学——中国地质大学学报,1993,18(5):529~539
    [16] 李兴振,许效松,潘桂棠.泛华夏大陆群与东特提斯构造演化.岩相古地理,1996,15(1)
    [17] 李兴振,刘文均,王义昭,等.西南三江特提斯构造演化与成矿.北 京:地质出版社,1999
    [18] 王义昭,李兴林,段丽兰,等.三江地区南段火山构造与成矿.北京:地质出版社,2000,1~140
    [19] 罗君烈.滇西特提斯造山带的演化及基本特征.云南地质,1990,9(4)
    [20] 段锦荪,侯增谦,张罡,等.滇西地区晚古生代裂谷作用与成矿.北京:地质出版社,2000,1~58
    [21] 潘桂棠,陈知冠,李兴振,等.东特提斯构造形成演化.北京:地质出版社,1997
    [22] 徐晓春,黄震,谢巧勤,等.云南景谷宋家坡铜矿床成岩成矿的Sm-Nd和~(40)Ar-~(39)Ar同位素年龄.地质论评,2004,50(1):99~104
    [23] 许东,李文昌,赵志芳,等.云南铜矿成矿规律与遥感预测.云南地质,2004,23(1):38~46
    [24] Mitchell A H G and Garson M S. Mineral deposits and global tectonic setting. Academic Press, London, 1981
    [25] 范承均,张翼飞.云南西部地质构造格局.云南地质,1993,12(2)
    [26] 阙梅英,陈敦模,张立生,等.兰坪—思茅盆地铜矿床.北京:地质出版社,1998,1~109
    [27] 陈吉琛.滇西花岗岩类时代划分及同位素年龄值选用的讨论.云南地质,1987,6(2):1~12
    [28] 尹汉辉.滇西地洼构造与成矿.长沙:中南工业大学出版社,1993
    [29] 冯庆来,刘本培.滇西南晚二叠世,早中三叠世放射虫研究。地球科学,1993,第18卷,第5期
    [30] Binard N. Morphostructural study and type of vocanism of submarine volcanoes over the Pitcarin hot spot in the south Pacific. Tectonophysics, 1992, 206: 245~264
    [31] 李继亮.滇西三江带的大地构造演化.地质科学,1988,第4期
    [32] 陈吉琛.滇西花岗岩类形成的构造环境及岩石特征.云南地质,1989,第8卷,第3、4期
    [33] 刘昌实等.滇西临沧复式岩基特征研究.云南地质,1989,第8卷,第3、4期
    [34] England P C,Thompson A B.区域变质作用的压力-温度-时间轨迹,Ⅰ陆壳增厚区演化过程中的热传递.国外地质科技,1987,第8期
    [35] 邓晋福,赵海玲,莫宣学,等.1996.中国大陆根—柱构造——大陆动力学的钥匙,北京:地质出版社
    [36] 黄汲清,陈蔚然.特提斯—喜马拉雅构造域初步分析.地质学报,1984,58(11)
    [37] 段嘉瑞,等.滇西澜沧裂谷.大地构造与成矿学,1991,3:156~167
    [38] 彭头平,王岳军,范蔚茗,等.澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义.中国科学D辑地球科学,2006,36(2):123~132
    [39] Le Maitre R W, Bateman P, Dudek A, et al. A Classification of Igneous Rocks and Glossary of Terms: Recommendation of the International Union of the Geological Subcommission on the Systematic of Igneous Rocks. Oxford: Blackwell Scientific, 1989
    [40] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 1989, 22:247~263
    [41] 王焰,钱青,刘良,等.不同构造环境中双峰式火山岩的主要特征.岩石学报,2000, 16(2):169~173
    [42] Boynton W V. Cosmochemistry of the rare earth elements: meteoraie studies. In: Hederson P, eds. Rare Earth Element Geochemistry. Amsteradam: Elsevier Science, 1984, 63~114
    [43] Pearce J A, Harris N B W and Tindle A G.. Trace element discrimination diagrams for the tectonic interpretation of granite rock. Petrol., 1984, 25:956~983
    [44] 刘红涛,张旗,刘建民,等.埃达克岩与Cu-Au成矿作用:有待深入研究的岩浆成矿关系.岩石学报,2004,20(2):205~218
    [45] 张旗,王焰,钱青,等.中国东部埃达克岩的特征及其构造成矿意义.岩石学报,2001b,17(2):236~244
    [46] 董申保,田伟.埃达克岩的原义、特征与成因.地学前缘,2004,11(4):585~594
    [47] 武占祖,陈勇,梁旭辉.埃达克岩的研究现状及其趋势.地质找矿论从,2005,20(3):204~208
    [48] Defant M J, Drummond M S. Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature, 1990, 347:662~665
    [49] Drunmond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modem comparisons. Journal of Geophysical Research, 1990, 95(13): 21503~21521
    [50] Drummond M S, Neilson M J, Kepezhinkas P K. The petrogenesis of slab derived trondhjemite-tonalite-dacite/adakite magmas. Transact R. Soc. Edinb. Earth Sci., 1996, 87:205~216
    [51] 王焰,张旗,钱青.埃达克岩(adakite)的地球化学特征及其构造意义.地质科学,2000,35(2):251~256
    [52] Kay S M, Mpodozis C, Munizaga F. Magma source variation for mid-late Teriary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes(28° to 33°S) Argentina, in Harmon RS and Rapela CW(eds.), Andean magmatism and its tectonic setting, Boulder, Colorado, Geological Society of America Special Paper 265, 1991, 113~117
    [53] Sajona F G, Maury R. Association of adakites with gold and copper mineralization in the Philippines. Earth & Planetary Sciences, 1998, 326:27~34
    [54] Kay S M and Mpodozis C. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 2001, 11(3): 4~9
    [55] Pearce J A. Trace element characteristics of Lavas from destructive plate boundaries. In: Thorpe R S. ed. Andesite: Orogenic andesites and related rocks. Chichester: Wiley, 1982, 525~548
    [56] Wilson M. Igneous Petrogenesis: A Globe Tectonic Approach. London: Unwin Hyman. 1989
    [57] 夏林圻.造山带火山岩研究.岩石矿物学杂志,2001,20(3):223~232
    [58] Norman M D, Leeman W P. Geochemical evolution of Cenozoic-Cretaceous magrnatism and its relation to tectonic setting, southwestern Idaho, U. S. A.. Earth Planet. Sci. Lett., 1989, 94(1~2): 78~96
    [59] Rogers N W. Potassic magrnatism as a key to trace-element enrichment processes in the upper mantle. Volcanology and Geothermal Research, 1992, 50: 85~99
    [60] Pearce J A. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth C J and Norry M J, eds. Continental basalts and mantle xenoliths. Nantwich: Shiva, 1983, 230~249
    [61] Irvine T N. A guide to the chemical classification of the common volcanic rocks. Can.J. EarthSci., 1971, 8: 523~548
    [62] Frey F A, Prinz M. Ultramafic inclusion from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett., 1978.38: 129~176
    [63] 邓万明,孙宏娟.青藏北部板内火山岩的同位素地球化学与源区特征.地学前缘,1998,5(4):307~317
    [64] Kyser T K. Stable isotope variations in the mantle. In: Vlley J W, Taylor H P (eds.), Stable isotope in high temperature geological processes, reviews in mineralogy 16, mineralogy of society of America, 1986,141~163
    [65] Jacobsen S B, Wasserburg G J. The mean age of mantle and crustal reservoirs. J. Geophys, Res, 1979, 84:7411~7427
    [66] Brown G C, Thorpe R S and Webb P C. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Soc., London, 141: 1984, 413~426
    [67] Depaolo D J. Crustal growth and mantle evolution: inference from models of element transport and Nd isotopes. Geochim Cosochim A cta, 1980, 44: 1185~1196
    [68] 李昌年.火成岩微量元素地球化学.武汉:中国地质大学出版社,1992,1~195
    [69] Hart S R. A large-scale isotope anomaly in the southern Hemisphere mantle. Nature, 1984, 309:753~757
    [70] Zindle A, Hart S R. Chemical geodynamics. Annu Rev Earth Planet, Sci, 1986,14:493~573
    [71] Neumarm E R, Andersen T and Meatus E W. Olivinec linopyroxenite x enoliths in the Oslo rift, SE Norway, Contribution to Mineralogy and Petrology, 1988, 98:184~193
    [72] Beccaluva L, Di G irolamo P, Serri G. Petroenesis and tectonic setting of theR oman Province, Italy. Lithos, 1991, 26:191~261
    [73] Vame R. Ancient subcontinental mantle: a source for k-rich orogenic volcanics. Geology, 1985, 13:405~408
    [74] Hawkesworth C J, Vollmer R. Crustal contamination versus enriched mantle: ~(143)Nd/~(144)Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib Min Petrol, 1979, 69:151~165
    [75] Foley S, Peccerillo A. Potassic and ultrapassic magmas and their origin. Lithos, 1992, 28:181~185
    [76] Muller D, Grove D I. Potassic Igneous Rocks and Associated Gold-Copper Mineralization. 3rded. Berlin: Springer-Verlag, 2000, 252
    [77] Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 1980, 13:97~108
    [78] Turib, Talor H P J. Oxygen isotope studies ofpotassic volcanic rocks of the Roman Province, Central Italy. ContribMin Petrol, 1976, 59:1~33
    [79] Taylor H P, Giannetti B, Turib. Oxygen isotope geochemistry of the potassie igneous rocks from Roccam onfina volcano, Roman co-magrnatic region, Italy. Earth Planet Sci Lett, 1979, 46: 81~106
    [80] Beccaluval, Digirolam O P, Serri G. Petrogenes and tectonic setting of the Roman Province, Italy. Lithos, 1991, 26:191~261
    [81] Nelson D R. Isotopic characteristics of potassic rocks: Evidence for the involvement of subducted sediments in the magma genesis.Lithos, 1992, 28:403~420
    [82] Alici P, Temel A, Gourgaud A, et al. Petrology and geochemistry ofpotassic rocks in the Golcuk area (Isparta, SW Turkey): Genesis of enriched alkaline magmas. J Volcano Geotherm Res, 1998, 85: 423~446
    [83] Muller D, Franz L, Herzig P M, et al. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea. Lithos, 2001, 57:163~186
    [84] Gregoire M, Mcinne B I A, O' Reilly S Y. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea, Part2. Trace element characteristics of slab-derived fluids. Lithos, 2001, 59:91~108
    [85] 刘洪,邱检生,罗清华,等.安徽庐枞中尘代富钾火山岩成因的地球化学制约.地球化学,2002,31(2):129~138
    [86] Jamieson R A. P-T-t paths of collision orogens. Geologische Rundschau, 1991, 80: 321~332.
    [87] Richard S P. Collision-related alkalie magrnatism and associated gold mineralization: early magmatic fluids in the meso-epithermal Porgera gold deposit, Papua New Guinea. EOS, 1992, 73:372
    [88] Seltmann R, Kampf H, Moiler P. Metallogensis in collisional orogens. Geo-Forschungs Zentrum Postdam, 1994, 1~434
    [89] Bostrom K, Peterson M N A. The origin of Al-poor ferromagmanoan sediments in areas of high heat flow on the East Pacific Rise. Mar. Geol., 1969, 7: 427~447
    [90] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the Northern Pacific, their geological significance as indication of ocean ridge activity. Sedimentary geology, 1986, 47:125~148
    [91] Yamamoto K. Geochemical characteristics and depositional environment of cherts and associated rocks in the Franciscan and Shimanto Ten'anes. Sedimentary geology, 1987, 52: 65~108
    [92] Murray R W. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment Geol., 1994, 90:213~232
    [93] Ormiston A E, Lane H R. A unique radiolarian fauna from the Sycamore limestone (Missippippian) and its biostratigraphic significance. Palaeontographica Abt.A, 1976, 154(4~6): 158~80
    [94] White A J R and Chappell B W. Granitoid types and their distribution in the Lacklan foldbelt, southeast Australia. Roddick Circum Pacific Plutonic Terranes. Mem, Geol. Soc. Am., 1983,159:21~34
    [95] Chappell B W, White A J R. Two constrasting granite type. Pacific Geologe, 1974, 8:173~174
    [96] Chappell B W, White A J R and Wybom D. The importance of residual source material (retite) in granite petrogenesis, Journal of Petrology, 1987, 28: 1111~1136
    [97] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull., 1989, 101: 635~643
    [98] Pearce J A, Harris N B W and Tindle ACt. Trace element discrimination diagrams for the tectonic interpretation of granite rock. J. Petrol., 1984, 25:956~983
    [99] White A J R and Chappell B W. Granitoid types and their distribution in the Lacklan foldbelt, southeast Australia. Roddick Circum Pacific Plutonic Terranes. Mem, Geol. Soc. Am., 1983, 159:21~34
    [100] Batchelor R A, Bow den P. Petrogenitic interpretation of granitiod rock series using multication parameters. Chem. Geol, 1985, 48:43-55
    [101] Pitcher W S. Granite type and tectonic environment. Hsuk. Mountain Building Processes. 1983, London: Academic Press, 19~40
    [102] 涂绍雄,汪雄武.20世纪90年代国外花岗岩类研究的某些重大进展.岩石矿物学杂志,2002,21(2):107~118
    [103] Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998, 45:29~44
    [104] Barbarin B. Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geol. J., 1990, 25:227~238
    [105] Barbarin B. Genesis of the two main types of peraluminous granitoids. Geology, 1996, 24: 295~298
    [106] Barbarin B. A rewiew of the relationships between granitod types, their origins and their geodynamic environment. Lithos, 1999, 46:605~626
    [107] Whalen J B, Currie K L and Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenisis. Contrib. Minerral. Petrol., 1987, 95:407~419
    [108] 中南工业大学.南澜沧江东带火山岩铜矿遥感地质调查报告.1986
    [109] 黎彤,倪守斌.中国大陆岩石圈的化学元素丰度.地质与勘探,1997,33(1):31~37
    [110] 鄢明才,迟清华,顾铁新,等.中国火成岩化学元素的丰度与分布.地球化学,1996,25(5):409~424
    [111] Roedder E. Fluid inclusion: rewiews in mineralogy. Mineralogical Society of America, 1984, 12: 644~649
    [112] Ohmoto H and Rye R O. Isotopes of surfer and carbon. In: Geochemistry of hydrothermal ore deposits. John Wiley and sons, New York, 1979, 509~567
    [113] 朱炳泉.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化.北京:科学出版社,1998
    [114] Tayer H P. The application of oxygen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposit. Econ. Geol, 1974, 69:843~883
    [115] Zartman R E and Doe B R. Plumbtectonics: the model. Tectonophysics, 1991.75(1~2): 135~162
    [116] Southland Brown A, Cathro R J and Panteleyev A. Metallogeny of the Canadian Metallurgy, Cordillera. In: Canadian Institute of Mining and Metallurgy Transanction, 1971, 74: 121~145
    [117] Cox D P. Descriptive Model of Basaltic Cu. In: Minerral Deposit Models, Cox D P and Singer D A., Editor, U.S. Geological Survey, 1986, Bulletin 1693:130
    [118] Lorite R H and Clark A H. Statrabound fumarolic copper deposits in rhyolitic lavas and ash-flow tufts, Copiapo District, Atacama, Chile. In: Problems of Ore Deposition, Fourth International Association on the Genesis of Ore Deposits Symposium, Varna, 1974, 1:256~264
    [119] Lorite R H and Clark A H. Strata-bound cupriferous sulphide mineralization associated with continental rhyolitic volcanic rocks, northern Chile: 1. The Jardin copper-siver deposit, Economic Geology, 1987, 82:546~570
    [120] Kirkham R V. NH. In: Lode Metals, British Columbia Ministry of Mines and Petroleum Resources, Annual Report for the year ended December 31,1968, 121~124
    [121] Weege R J and Pallack. The geology of two new mines in the native copper district of Michigan. Economic Geology, 1972, 67:622~633
    [122] Jefferson C W, Nelson W E and Kirkham. Geology and copper occurrences of the Natkusiak basalts, Victoria Island, District of Franklin, In: Current Research, Part A, Geological Survey of Canada, 1985, Paper 85-1A: 203~214
    [123] Lincoln T N. The redistribution of copper during low-grade metamorphism of the Karmutsen volcanics, Vancover Island, British Columbia. Economic Geology, 1981, 76:2147~2161
    [124] Ruiz C, Aguilar A and Egert E. Strata-bound copper sulphide deposits of Chile. The Society of Mining Geologists of Japan, Special Issue 3, 1971,252~260
    [125] Khadem N. Types of copper ore deposits in Iran. In: Symposium on Mining Geology and the Base Metals. Central Treaty Organization, Ankara, 1964, 101~115
    [126] Kirkham R V. Volcanic Redbed Copper. In: Canadian Mineral Deposit Types, Ageological Synopsis, Geological Survey of Canada, 1984, Economic Geology Report 36:37
    [127] Kirkham R V. (in Press): Volcanic Redbed Copper; In:Geology of Canadian Mineral Deposit Type, Geological Survey of Canada, Geology of Canada, 1996, 8:243~254
    [128] Lefebure D V, Church S L. Volcanic redbed Cu. In: Lefebure D V. Select British Columbia Mineral Deposit Profiles, Volumn 1-Metallic Deposits. 1996, 13:5~7
    [129] Surdam D C. Origin of native copper and hematite in the Karmutsen Group, Vancouver Island, B.C. Economic Geology, 1968, 63:961~966
    [130] Leblanc M and BiUaud P. A volcano-sedimentary copper deposit on a continental margin of upper Preterozoic age: Bleida (anti-Atlas, Morocco). Economic Geology, 1978, 73:1101~1111
    [131] Jolly W T. Behaviour of Cu, Zn, and Ni during prehnite-pumpellyite rank metamorphism of the Keweenawan basalts, northern Michigan. Economic Geology, 1974, 13:1118~1125
    [132] Harper G Geology of the Sustut copper deposit in B.C. The Canadian Institute of Mining and Metallurgy, Bulletin, 1977, 70:97~104
    [133] Wilton D H C and Sinclair A J. Ore petrology and genesis of a strata-bound disseminated copper deposit at Sustut, British Columbia. Economic Geology, 1988, 83:30~45
    [134] Kindle E D. Classfication and Description of Copper Deposits. Coppermine River; Geological Survey of Canada, 1972, Bullitin 214:109
    [135] Sato T. Manto Type Copper Deposit in Chile. Bullitin of the Geological Society of Japan, 1984, 35: 565~582
    [136] White W S. The native-copper deposits of northern Michigan; In:Ore Deposits of the United States, 1933-1967; The Graton-sales Volume, (ed.)J.D. Ridge; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc,New York, 1968, 303~325
    [137] Klohn E, Holmgren C and Ruge H. E1 Soldado, a startabound copper deposit associated with alkaline volcanism in the cental Chilean Costal Range. In: Stratabound Ore Deposits in the Andes, Springer-Verlag, Berlin, 1990,435~448
    [138] Pearson W N, Bretzlaff R E and Carriere J J. Copper deposits and occurrences in the north shore of Lake Huron, Ontario. Geological Survey of Canada, 1985, 83:8~34
    [139] 王砚耕,王尚彦. 峨眉山大火面岩省与玄武岩型铜矿——以贵州二叠纪玄武岩分布区为例.贵州地质,2003,20(1):5~10
    [140] 朱炳泉,常向阳,胡耀国,等.滇黔边境鲁甸沿河铜矿床的发现与峨眉山大火山岩省找矿新思路.地球科学进展,2002a,17(6):912~917
    [141] 朱炳泉.大陆溢流玄武岩成矿体系与基韦诺(Keweenaw)型铜矿床.地质地球化学,2003,31(2):1~8
    [142] 罗孝桓,刘巽锋,汪玉琼,等.贵州威宁地区玄武岩铜矿地质特征.贵州地质,2002,19(4):215~220
    [143] 李厚民,毛景文,张长青,等.滇黔交界地区玄武岩铜矿同位素地球化学特征.矿床地质,2004,23(2):232~240
    [144] 廖震文,胡光道.一种非传统铜矿资源——黔西北地区峨眉山玄武岩铜矿地质特征及成因探讨.地质科技情报,2006,25(5):47~51
    [145] 李厚民,毛景文,张冠,等.滇黔交界地区玄武岩铜矿蚀变分带和有机包裹体特征及其地质意义.2006,80(7):1027~1034
    [146] 张贻侠.矿床模型导论.北京:地质出版社,1993,162~170
    [147] 张均.矿床定位预测的研究现状与趋向.地球科学进展,1997,12(3):242~246
    [148] Thomas M D and Parkhill M. Gravity and magnetic prospecting for massive sulfided eposits. AtlanticGeology, 1996, 32(1): 87~88
    [149] Cooke D R and Large R R. Practical uses of chemical modeling; defining new exploration in sedimentary basins. A GSO J.Australian Geology and Geophysics, 1998, 17(4): 259~275
    [150] Zaw K, Huston D L and Large R R. A chemical model of the Devonian remobilization process in the Cambrian volcanic_hosted massive sulfide Rosebery Deposit, western Tasmania. Economic Geology and the Bulletin of the Society of Economic Geologists, 1999, 94(4): 529~546
    [151] 翟裕生.走向21世纪的矿床学.矿床地质, 2001,20(1):10~14
    [152] 董树文.造山带构造岩浆演化与成矿作用.见:陈毓川.主编,当代矿产资源勘查评价的理论和方法.北京:地震出版社,1999,74~82
    [153] Kay S M. 1994. Yound mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Pona plateau, Central Andes. Jour. Geophys. Res., 99: 24323~24339
    [154] Kay R W, Kay S M. 1994. Delamination and delamination magmatism. Tectonophysics, 219:177~189
    [155] Crerar D A, Wood S A, Brantley S, et al. Chemical controls on solubility of ore-forming minerals in hydrothemical solution. CAN. Miner, 1985(23): 333~352
    [156] Kudrin A V, Varyash L N, Pashkov Y N, et al. The geochemical behaviour of copper and molebde-num in ore-forming processes. Geology and Metallogeny of Copper Deposit. Heidelberg: Spring-Verlag, 1996, 209~215
    [157] Candela P A and Holland H D. A mass tranfer model for Copper and molybdenum in magrnatic hydrothermal system: the origin of porhyry type ore deposit. Econ Geol, 1986, 81:1~19
    [158] Candela P A. Physics of aqueous phase evolution in plutonic environment. Amer Minerral, 1991, 76:1091~1099
    [159] Kepper H and Willie. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the system haplogranite-H_2O-HCl and hyplogranite-H_2O-HF, Contrib Mineral Petrol, 1991, 109: 139~150
    [160] Bames H L. Geochemistry of hydrothermal ore deposit. 2nd edition, John willy, New York, 1979
    [161] Meschede M. A method of discriminating between different type of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol, 1986, 56: 207~218
    [162] 朱勤文,张双全,谭劲.确定南澜沧江缝合带带的火山岩地球化学证据.岩石矿物学杂志,1998,17(4):298~307
    [163] 莫宣学,路凤香, 沈上越,等.三江特提斯火山作用与成矿.北京: 地质出版社,1993,128~157
    [164] 薛春纪,陈毓川,杨建民,等.滇西兰坪盆地构造体制和成矿背景分析.矿床地质,2002,21(1):36~43
    [165] 翟裕生,邓军,李晓波.区域成矿学.北京:地质出版社,1999
    [166] 罗君烈.滇西特提斯的演化及主要金属矿床的形成作用.云南地质,1991.10(1)
    [167] Sillitoe R H. A plate tectonic model for the origin of porphyrycopper deposits. Econ. Geol., 1972, 67: 184~197
    [168] 杨岳清,杨建民,徐德才,等.云南澜沧江南段火山岩演化及其铜多金属矿床的成矿特点.矿床地质,2006,25(4):447~462
    [169] 张洪涛,陈仁义,韩芳林.重新认识中国斑岩铜矿床的成矿地质条件.矿床地质,2004,23(2):150~163
    [170] 刘继顺,舒广龙,高珍权.鄂东丰山矿田卡林型金矿地质地球化学特征.地学前缘,2004,11(2):380~384
    [171] 刘继顺,马光,舒广龙.湖北铜绿山矽卡岩型铜铁矿床中隐爆角砾岩型金铜矿体的发现及其找矿前景.矿床地质,2005,24(5):527~536
    [172] 高合明.斑岩铜矿矿床研究综述.地球科学进展,1995,10(1):40~46
    [173] Oyuyzun R and Marquez A. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkalline magatasm. Mineralium Deposita, 2001, 36: 794~798
    [174] 曾普胜,王海平,莫宣学,等.中甸岛弧带构造格架及斑岩铜矿前景.地 球学报,2004,25(5):535~540
    [175] 高珍权.东天山铜金多金属成矿学及找矿系统工程学:[博士学位论文].长沙:中南大学,2002
    [176] 黄震.云南澜沧江火山—侵入岩带的区域成岩成矿地质地球化学:[博士学位论文].合肥:合肥工业大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700