用户名: 密码: 验证码:
湖北阳新阮家湾钨—铜—钼矿床和银山铅—锌—银矿床地质特征及矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂东南矿集区是长江中下游铁-铜多金属成矿带的重要组成部分,区内矿产以铁和铜为主,其次有钼、金、铅、钨、锌等,是我国为数不多的富铜富铁成矿区之一。鄂东南矿集区内几乎所有的矿床与晚中生代中酸性侵入岩密切相关,其中主要的矿床类型为矽卡岩型和斑岩-矽卡岩型。阮家湾W-Cu-Mo矿床和银山Pb-Zn-Ag矿床位于阳新岩体南缘,是鄂东南地区最大的钨矿床和铅锌银矿床,对这些矿床的地质特征及矿床成因的研究是全面理解整个区域成矿系统和成矿作用的重要内容和关键所在,但目前对这两个矿床的研究还比较薄弱。鉴于此,本文以阮家湾和银山两个矿床为研究对象,在详细的野外观察及系统采样的基础上,利用X射线荧光光谱(XRF)、等离子光谱分析方法(ME-ICP)和电感耦合等离子体质谱(ICP-MS)对岩石和矿石的主量和微量元素进行准确分析,进而应用激光剥蚀ICP-MS技术分别对副矿物锆石和榍石U-Pb同位素和硫化物微量元素等进行分析,最后对岩石Sm-Nd同位素和矿石矿物的稳定同位素(S-C-O)开展了系统的分析,进而对矿床成因、成矿机制、成矿系统等进行深入讨论,并对矿区深部和外围的成矿远景进行评价。
     锆石U-Pb定年结果表明,阮家湾花岗闪长岩、犀牛山花岗闪长斑岩和银山矿区花岗斑岩的侵位时代分别为143±1Ma、147±1Ma和141±1Ma,阮家湾矿区的煌斑岩年龄为135±1Ma。榍定U-Pb定年结果表明,阮家湾花岗闪长岩中的岩浆榍石U-Pb年龄为132±4Ma,阮家湾煌斑岩中的岩浆榍石U-Pb年龄为131±2Ma,阮家湾矿床矽卡岩中的热液榍石U-Pb年龄为141±1Ma。矽卡岩中的热液榍石U-Pb年龄与阮家湾花岗闪长岩中的锆石U-Pb年龄和阮家湾矿床的辉钼矿Re-Os年龄一致,说明榍石U-Pb定年结果可靠,而花岗闪长岩中榍石U-Pb年龄与煌斑岩中锆石U-Pb年龄一致,表明在成岩成矿发生了另外一次热液活动,晚期热液活动可能与矿区及其外围大量脉岩的侵位及同时期内区域岩浆作用有关。研究区内岩浆活动时间与鄂东南地区大规模的岩浆活动时间一致,也与长江中下游成矿带内的大规模岩浆活动时间完全相同,说明岩浆活动受统一的地球动力学背景和深部过程控制。榍石微量元素分析结果表明,花岗闪长岩中被流体交代的榍石其球粒陨石标准化稀土元素配分模式、LREE/HREE及Th/U和Lu/Hf比值与岩浆榍石特征相似,而La/Ce比值则与热液榍石相似;相反,闪斜煌斑岩中受流体交代的榍石其REE组成、Th/U、Lu/Hf和La/Ce比值则具有典型的热液榍石特征,反映花岗闪长岩和闪斜煌斑岩中榍石受流体交代作用程度的不同。与此相反,花岗闪长岩和闪斜煌斑岩中的锆石却没有受到流体作用的影响,其稀土元素特征与典型的岩浆锆石相同。以上结果表明,与锆石相比,榍石的结构和化学组成更容易受到后期流体作用的影响。因此,榍石的原位U-Pb同位素和微量元素分析不仅可以精确限定热液事件和成矿作用的时代,而且可以提供榍石成因及受流体交代作用等方面的信息。
     阮家湾花岗闪长岩和犀牛山花岗闪长斑岩均为高钾钙碱性岩石,富集Rb、Ba、Th和La等大离子亲石元素,亏损Nb、Ta和Zr等高场强元素。岩石具有Sr含量高(分别为681×10.6~874×10.6和575×10.6~687×10-6)、Y含量低(分别为12.0×10.6~17.4×10.6和9.7×10.6~14.0×10-6)、Sr/Y比值大(分别为39.13~461.37和46.83~61.73)、轻重稀土分馏强烈(Yb含量分别为0.90×10-6~1.49×10-6和0.62×10-6~1.01×10-6;La/Yb比值高(分别为42.15~53.66和47.63~60.06)等特点。全岩Sr-Nd同位素和锆石Hf同位素组成表明,阮家湾花岗闪长岩的(87Sr/86Sr)t为0.70649~-0.70651,8Nd(t)为-5.9~-6.2,εHf(t)为-12.0--6.8;犀牛山花岗闪长斑岩的(87Sr/86Sr)t为0.70618-0.70627,εNd(t)为-5.6~-6.5。阮家湾煌斑岩的(87Sr/86Sr)i比值介于0.70555~0..70559,(143Nd/144Nd)i比值为0.51253~0.51254,E:Nd(t)为1.4。元素和同位素地球化学特征表明,阮家湾花岗闪长岩和犀牛山花岗闪长斑岩具有相似的岩浆来源,是由富集地幔部分熔融形成的岩浆同化混染少量地壳物质并发生分离结晶作用的产物。煌斑岩岩浆主要为深部地幔部分熔融的产物。
     阮家湾W-Cu-Mo矿床的硫化物δ34S值为-0.98‰~2.48‰,银山Pb-Zn-Ag多金属矿床中硫化物δ值为-0.50%o~5.70‰。两个矿床的硫同位素均具有岩浆硫的特点,说明硫主要来自岩浆,但银山矿床可能还有部分地层来源的硫。阮家湾矿床黄铜矿-磁黄铁矿矿物温度计温度为292~394℃,银山矿床方铅矿-闪锌矿硫同位素温度计温度为295~300℃,说明两个矿床的主成矿期温度相近,为中温热液矿床。阮家湾矿床蚀变矿物石榴石和石英氧同位素分析表明成矿流体的818O值为3.5%o-10.4%o,证明成矿流体以岩浆水为主,与硫同位素分析结果一致。阮家湾与银山矿床中硫化物LA-ICP-MS微量元素分析结果表明,阮家湾W-Cu-Mo矿床中磁黄铁矿和黄铁矿中Co、Ni、Se含量高于银山矿床,而As、Sb、Ag含量明显低于银山矿床,因此前者成矿系统的岩浆成分较后者更多。综上所述。阮家湾W-Cu-Mo矿床和银山Pb-Zn-Ag矿床的成矿均与岩浆作用有关,但两个矿床是岩浆流体不同演化阶段的产物。
     阮家湾W-Cu-Mo矿床的矿体主要产于岩体与奥陶系碳酸盐岩的接触带中,矿体呈似层状,具明显的围岩蚀变分带特征,蚀变矿物主要为透辉石、石榴石、透闪石、阳起石、绿泥石和绿帘石等,与鄂东南地区的矽岩型矿床特征相似,结合S、O同位素和黄铁矿微量元素特征,认为阮家湾W-Cu-Mo矿床为典型的矽卡岩型矿床。银山Pb-Zn矿体呈似层状赋存于石炭系中统的层间破碎带和石炭系与志留系不整合界面中,受构造和破碎带控制。银山矿床与国内典型的SEDEX型和MVT型铅锌矿床的地质特征、S同位素和成矿温度进行对比,表明其明显不同于SEDEX型和MVT型铅锌矿床,属于与岩浆有关的浅成低温热液矿床。结合矿田范围内其他典型矿床的地质和矿化特征,建立了矽卡岩型W-Cu-Mo矿床和浅成低温热液型Pb-Zn-Ag矿床成矿系列。该成矿系列具有很好的空间分带性,从岩体向外随着温度的降低,依次可分为斑岩型铜-钼→矽卡岩型铜-锌→角砾岩筒型铜-钼-钨→浸染型铜-铅-锌→脉型银-铅-锌→脉型银-金矿床。该系列的建立对区内W、Cu、Mo、Pb、Zn、Ag多金属矿的找矿工作具有较好的指导意义。
     本次研究依据区内的物化探异常和地层、构造、岩浆岩等成矿地质条件并结合已有工作程度,共圈出四个找矿靶区,分别为A级银山靶区和犀牛山靶区,B级阮家湾东靶区和C级银山郭靶区。银山靶区内已发现了浅成低温热液型的Pb-Zn-Ag矿床,根据矿床分带规律,指示在其深部有寻找斑岩型Cu-Mo矿床的潜力。对阮家湾矿区邻近的犀牛山岩体化学分析结果表明,犀牛山花岗闪长斑岩具有较高的氧逸度且岩体中挥发份的含量与鄂东南矿集区西南缘的铜山口斑岩铜钼矿床的含矿岩体(花岗闪长斑岩)类似,表明有利于斑岩型铜矿床的形成,岩体内部斑岩型铜矿点和铁帽的发育,也进一步说明犀牛山岩体具有较大的斑岩型铜矿床找矿潜力。阮家湾东和银山郭靶区均在已知矿床的外围,物化探异常表明这两个靶区有寻找阮湾型W-Cu-Mo矿床和银山型Pb-Zn-Ag矿床的可能。
The E'dong Fe-Cu pollymetallic distinct is located in southeast Hubei Province and west of the well-known middle and lower Yangtze Metallogenic Belt. Ore deposits in this district mainly consist of Fe-Cu deposits, with minor amounts of Mo, Au, Pb, W, and Zn deposits. These deposits are spatially related to the intrusive rocks, and mineralization mostly occurred at the contact between the intrusive rocks and marine carbonate rocks. The Ruanjiawan Cu-Mo-W deposit and Yinshan Pb-Zn-Ag deposit are located in southern margin of the Yangxin pluton, and are the biggest W deposits and Pb-Zn deposits in the E'dong district, respectively. Study of geological characteristics and genesis of these deposits potentially provide insights into metallogenesis and ore-forming processes in this district. In this thesis, the author caiesry out detailed mineralogical, geochemical, and geochronological investigations to provide a better understanding in the genesis of district-wide mineralization. Based on detailed and systematic field work, the ore deposits and related intrusive rocks were characterized by optical microscopy; X-ray fluorescence (XRF) and Inductively coupled plasma mass spectrometry (ICP-MS, zircon and titanite U-Pb dating, and (LA-ICPMS trace element analysis of sulfides; Sr-Nd and S-C-O isotope analysis. These results not only provide the basis for the evaluation of deep ore-bodies, but also provide information for the ore genesis, mineralization processes, and metallogenic system, which has important theoretical and practical significance.
     LA-ICPMS zircon U-Pb dating indicates that the Ruanjiawan and Xiniushan granodioritic porphyry stocks and granite porphyry dike in the Yinshan mine yield U-Pb ages of143±1Ma,135±1Ma,147±1Ma, and141±1Ma, respectively. LA-ICP-MS U-Pb titanite analyses results demonstrated that the formation of the Ruanjiawan granodiorite, lamprophyre and skarn occurred at132±4Ma,131±2Ma and141±1Ma respectively. The age of hydrothermal titanite form skarn (141±1Ma) is consistent with the molybdenite Re-Os age of mineralization and U-Pb zircon age of granodiorite (143±1Ma), indicating that the geochronology of hydrothermal titanite can represent the true age of mineralization. In addition, the titanite age of Ruanjiawan granodiorite is consistent with zircon and titanite U-Pb ages of lamprophyre, suggesting that the late stage hydrothermal event that is related to numerous intrusion of dikes cause the resetting of U-Pb isotopic system in titanite. The coeval magmatism and mineralization recognized in district regions of the southern Edong and Mid-Lower Yangtze River indicate that they had the same geodynamic setting. Trace elements results show that the altered titanite grains from granodiorite have similar chondrite-normalized REE patterns, and LREE/HREE and Th/U and Lu/Hf ratios with magmatic titanite, but La/Ce ratios are similar to hydrothermal titanite. In contrast, the REE composition, Th/U, Lu/Hf, and La/Ce ratios of altered titanite in lamprophyre are consistent with the classical hydrothermal titanite, demonstrating that the intensities of hydrothermal alteration are different between these titanites. However, the trace elements of zircon grains from the granodiorite and lamprophyre have similar geochemical characterizes with magmatic zircons, indicating that zircon grains are relative stable during the late stage hydrothermal events. These results demonstrated that the late stage hydrothermal alterations are facilitated to change the texture and chemical composition of titanite, thus U-Pb ages and trace elements analyses on altered titanite may provide the accurate time constraints on the hyrothermal events and mineralization.
     The major elements results show that Ruanjiawan granodiorite and Xiniushan granodioritic porphyry are high-K calc-alkaline. These intrusions display chemical characteristics of enrichment in large ion lithophile elements (eg. Rb, Ba, Th, and La) and relative depletion in high field strength elements (eg. Nb, Ta, and Zr). Geochemical features of Ruanjiawan and Xiniushan intrusions also have similar to adakites, such as high Sr (681×10-6~874×10-6and575×10-6~687×10-6), low Y (12.0×10-6~17.4×10-6and9.7×10-6~14.0×10-6), high Sr/Y ratios (39.13-61.37and46.83-61.73), low Yb (0.90×10-6~1.49×10-6and0.62×10-6~1.01×10-6) and La/Yb ratios (42.15-53.66and47.63-60.06)。The Sr-Nd-Hf isotopic results of these intrusion demonstrate that Sr, Nd, and Hf isotopes of Ruanjiawan granodiorite are (87Sr/86Sr)t=0.70649-0.70651, εNd(t)=-5.9~6.2, and sHf(t)=-12.0~6.8; and of Ruanjiawan lamprophyre are (87Sr/86Sr)t=0.70555-0.70559, εNd(t)=-1.4, and εHf(t)=-14.4~4.5. The Sr and Nd isotope of Xiniushan granodioritic porphyry are (Sr/Sr)t=0.70618-0.70627and εNd(t)=-5.6~6.5. Geochemical and Nd-Sr-Hf isotopic data demonstrate that granodiorites and granodioritic porphyry originated as partial melts of an enriched mantle source that experienced significant contamination of lower crust materials and fractional crystallization during magma ascent. In addition, Ruanjiawan lamprophyre is derived from deep mantle.
     The S isotope results show that the δ34S values are-0.98‰~2.48‰(Runjiawan W-Cu-Mo deposit),0.81%o~2.709‰(Xiniushan), and-0.50‰~5.70‰(Yinshan Pb-Zn-Ag deposits). These values are close to meteoriric sulfur, indicating that the sulfur maily come from magma and minor part of sulfur in Yinshan may have contamination of sediments sulfur. Mineralization temperature calculated from sulfur isotope geothermometer of chalcopyrite-pyrrhotite and Galena-sphalerite demonstrated that the metallogenic temperatures are292~394℃in Ruanjiawan deposit and295~300℃in Yinshan deposit. The oxygen isotope results show that the818O values of fluids rang from3.5%o to10.4%o, indicating that the mineralizing fluids are mainly magmatic water. The trace elements results of sulfides analyzed by the LA-ICPMS show that chalcopyrite and pyrite in Rujiawan deposit have higher contents of Co, Ni, Se,but relative lower As, Sb, Ag than Yinshan deposit. These results indicate that Rujianwan and Yinshan deposits are related with magmatism, and formed by different mineralization stages.
     The ore of Ruanjiawan deposit mainly occurred at the contact zone between Ordovician limestone and granodiorite. The occurrences of orebody are bedded, near-bedded and lenticular shapes. The hydrothermal alteration zonations are clear in Ruanjiawan deposit. Skarn minerals include diopside, garnet, tremolite, chlorite and epidote. Geologic characteristics combined with S and O isotopes and trace elements of pyrite demonstrated that Ruanjiawan W-Cu-Mo deposit is a skarn deposit. The occurrences of Yinshan Pb-Zn orebodie are related to the fractures and unconformity surface between Carboniferous and Silurian. These characteristics are different from SEDEX and MVT Pb-Zn deposits. The geological features combined with S isotope and mineralization temperatures suggest that Yinshsan Pb-Zn deposit belongs to epithermal deposit that related to magmatic activity. Based on these resluts, we proposed a metallogenic system model for this district. This metallogenic system is characterized by well spatial zonation of these deposits that decreased with mineralization temperatures (from porphyry Cu-Mo deposit, skarn Cu-Zn deposit, breccia W-Cu-Mo deposit, and vein Pb-Zn-Ag deposit) The building of minerogenetic series provide an important tool for mineralization prospecting.
     Based on strata, structural and magmatic and geophysical and geochemical characteristics, we divided four prospect targets in this district. Level A-C targets are Yinshan and Xiniushan, eastern Ruanjiawan, and Yinshanguo, respectively. The occurrence of epithermal Pb-Zn-Ag deposit in Yinshanguo target suggests that it is possible to find the porphyry Cu-Mo deposit in deep. The presence of magmatic anhydrite and high contents of volatile component in Xiniushan granodioritic porphyry demonstrated that Xiniushan porphyry has a great potential for finding the porphyry Cu-Mo deposits. This is also supported by the occurrence of porphyry Cu-Mo ore spots in Xiniushan intrusion. The targets of eastern Ruanjiawan and Yinshanguo have two known deposits distributed. The geophysical and geochemical anomalies suggest that these two targets have potential for finding the deposit that is similar to Ruanjiawan and Yinshan.
引文
Audetat A, Pettke T, Dolejs D.2004. Magmatic anhydrite and calcite in the ore-forming quartz-monzodiorite magma at Santa Rita, New Mexico (USA):genetic constraints on porphyry-Cu mineralization. Lithos,72 (3-4):147-161
    Atherton MP, Petford N.1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature,362 (6416):144-146
    Andersen, T.,2002, Correction of common lead in U-Pb analyses that do not report 204Pb: Chemical Geology, v.192, p.59-79.
    Barton Jr.P B et al.,Environment of deposition in the Creede mining district, San Juan Mountain, Colorado. Part II:process toward interpretation of the chemistry of the OH vein Econ.Geol.,1977,72:1-24
    Bau, M.,1991, Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium:Chemical Geology, v.93, p.219-230.
    Blichert-Toft J, Chauvel C, Albarede F.1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology,127 (3):248-260
    Borisova AY, Pichavant M, Polve M, Wiedenbeck M, Freydier R, Candaudap F.2006. Trace element geochemistry of the 1991 Mt. Pinatubo silicic melts, Philippines:Implications for ore-forming potential of adakitic magmatism. Geochimica et Cosmochimica Acta,70 (14): 3702-3716
    Cherniak, D. J.,1993, Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport:Chemical Geology, v.110, p.177-194.
    Cherniak, D. J., and Watson, E. B.,2003, Diffusion in Zircon:Reviews in Mineralogy and Geochemistry, v.53, p.113-143.
    Corfu, F., and Muir, T. L.,1989a, The Hemlo-Heron Bay greenstone belt and Hemlo Au-Mo deposit, Superior Province, Ontario, Canada; 1, Sequence of igneous activity determined by zircon U-Pb geochronology:Chemical Geology; Isotope Geoscience Section, v.79, p. 183-200.
    Corfu, F., and Muir, T. L.,1989b, The Hemlo-Heron Bay greenstone belt and Hemlo Au-Mo deposit,Superior Province, Ontario, Canada; 2, Timing of metamorphism, alteration and Au mineralization from titanite, rutile, and monazite U-Pb geochronology:Chemical Geology; Isotope Geoscience Section, v.79, p.201-223.
    Corfu, F., and Stone, D.,1998, The significance of titanite and apatite U-Pb ages; constraints for the post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area, northwestern Superior Province, Canada:Geochimica et Cosmochimica Acta, v.62, p. 2979-2995.
    Chambefort I, Dilles JH, Kent AJR.2008. Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits. Geology,36 (9):719-722
    Carmichael ISE.1991. The redox states of basic and silicic magmas; a reflection of their source regions, Contributions to Mineralogy and Petrology,106 (2):129-141
    Castillo PR.2012. Adakite petrogenesis. Lithos,134-135:304-316
    Castillo PR, Janney PE, Solidum RU.1999. Petrology and geochemistry of Camiguin Island, southern Philippines; insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology,134 (1):33-51
    Chang YF, Wu YC.1991. The Copper-iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing:Geological Publishing House,379 (in Chinese with English abstract)
    Chen, B., Jahn, B.-m. and Wei, C.2002. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China:trace element and Nd-Sr isotope evidence. Lithos,60(1-2):67-88.
    Chen F., Hegner E., Todt W.2000. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany-evidence for a Cambrian magmatic arc. International Journal of Earth Sciences,88:791-802.
    Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q.2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology,31 (11):1021-1024
    Corfu F.;Stone D,.1998,The significance of titanite and apatite U-Pb ages:constraints for the post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area, northwestern Superior Province, Canada-Implications for magmatic underplating and the, Geochimica et Cosmochimica Acta:Journal of the Geochemical Society and the Meteoritical Society,62(17):2979-2995
    Defant MJ, Drummond MS.1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,347 (6294):662-665
    Deng J, Liu W, Sun Z etal. Evidene of mantle-rooted fluids and multi-level circulation ore-for ming dynamics:A case study from the Xia dian gold deposit, Shandong Province, China.Sci ence in China, Ser.D,2003a,46 (s 2):124-134
    Deng J,Yang L Q,Sun Z S,etal.A metallogenic model of gold deposits of the Jiadong granite-greenstone belt. Acta Geologica Sinica,2003b,77(4)537-546.
    De Haller, A., Corfu, F., Fontbote, L., Schaltegger, U., Barra, F., Chiaradia, M., Frank, M., and Alvarado, J. Z.,2006, Geology, Geochronology, and Hf and Pb Isotope Data of the Raul-Condestable Iron Oxide-Copper-Gold Deposit, Central Coast of Peru:Economic Geology, v.101, p.281-310.
    Deer, W. A., Howie, R. A., and Zussman, J.,1982, Orthosilicates:London, Longman Group,919 p-
    Diwu C, Sun Y, Yuan H, Wang H, Zhong X, Liu X.2008. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chinese Science Bulletin,53 (18):2828-2839
    Einaudi, M.T., Meinert, L.D., and Newberry, R.J.,1981, Skarn deposits:Economic Geology 75Th Anniversary Volume, p.317-391.
    Fryer B J, TAYLOR R P. Sm-Nd direct dating of the Collins Bay hydrothermal uranium deposits, Saskatchewan [J]. Geology,1984,12:479-482.
    Frost, B. R., Chamberlain, K. R., and Schumacher, J. C.,2001, Sphene (titanite); phase relations and role as a geochronometer:Chemical Geology, v.172, p.131-148.
    Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH.2004. Recycling lower continental crust in the North China craton. Nature,432 (7019): 892-897
    Gao S, Zhang BR, Jin ZM, Kern H.1999. Lower crustal delamination in the Qinling-Dabie orogenic belt. Science in China Series D-Earth Sciences,42 (4):423-433
    Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu X, Zhou X.2002. Zircon chemistry and magma mixing, SE China; in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,61 (3-4):237-269
    Hoskin PWO, Schaltegger U.2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry,53 (1):27-62
    Hu Z, Gao S, Liu Y, Hu S, Chen H, Yuan H.2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry,23 (8):1093-1101
    Hulbert, L.J., Hamilton M.A.., Horan, M.F., Scoates, R.F.J.2005, U-Pb zircon and Re-Os isotope geochronology of mineralized ultramafic intrusions and associated nickel ores from the Thompson Nickel Belt, Manitoba, Canada. Economic Geology, v.100, p.29-41
    Jemielita, R. A., Davis, D. W., and Krogh, T. E.,1990, U-Pb evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism:Nature (London), v. 346, p.831-834.
    Johnson, V.Y., and Keith, J.D.,1991, Petrology and geochemistry of the Springer scheelite skarn deposit, Mill City, Nevada, in Raines, GL., Lisle, R.E., Schafer, R.W., and Wilkinson, W.H. eds., Geology and ore deposits of the Great Basin:Reno, Geological Society Nevada,, v.1, p. 553-578
    Ireland, T.R. and Williams, I.S.,2003, Considerations in Zircon Geochronology by SIMS. Reviews in Mineralogy and Geochemistry,53(1):215-241.
    Jugo PJ.2009. Sulfur content at sulfide saturation in oxidized magmas. Geology,37 (5):415-418
    Kang YF, Miao SP, Li CY, Gu JY, Li YD, Wu YL.1994. Tungsten ore deposits in China, ed. Editing committe of Chinese deposits 《Ore deposits of China》. Beijing:Geological Publishing House,1-104 (in Chinese)
    Konzett, J., Armstrong, R. A., Sweeney, R. J., and Compston, W.,1998, The timing of MARID metasomatism in the Kaapvaal mantle; an ion probe study of zircons from MARID xenoliths:Earth and Planetary Science Letters, v.160, p.133-145.
    Li JW, Zhao XF, Zhou MF, Ma CQ, de Souza ZS, Vasconcelos P.2009a. Late Mesozoic magmatism from the Daye region, eastern China; U/Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology,157 (3):383-409
    Li JW, Zhao XF, Zhou MF, Vasconcelos P, Ma CQ, Deng XD, de Souza ZS, Zhao YX, Wu G. 2008. Origin of the Tongshankou porphyry-skarn Cu-Mo deposit, eastern Yangtze craton, Eastern China:geochronological, geochemical, and Sr-Nd-Hf isotopic constraints. Mineralium Deposita,43 (3):315-336
    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,2010,55(3):1-10.
    Li WX, Li XH.2003. Adakitic granites within the NE Jiangxi ophiolites, South China: geochemical and Nd isotopic evidence. Precambrian Research,122 (1-4):29-44
    Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF, Yang YH.2009b. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2):117-128
    Li XH, Li WX, Eang XC, Li QL, Liu Y, Tang GQ, Gao YY, Wu FY.2010. SIMS U-Pb zircon geochronology of porphyry Cu-Au-(Mo) deposits in the YangtzeRiver Metallogenic Belt, eastern China:Magmatic response to early Cretaceous lithospheric extension. Lithos,119 (3-4):427-438
    Li, J. W., Deng, X. D., Zhou, M. F., Liu, Y. S., Zhao, X. F., and Guo, J. L.,2010, Laser ablation ICP-MS titanite U-Th-Pb dating of hydrothermal ore deposits:A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China:Chemical Geology, v.270, p.56-67.
    Ling WL, Duan RC, Xie XJ, Zhang YQ, Zhang JB, Cheng JP, Liu XM, Yang HM.2009. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China craton. Lithos,113 (3-4):640-658
    Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D.2010a. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology,51 (1-2):537-571
    Liu Y, Zong K, Kelemen PB, Gao S.2008a. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,247 (1-2): 133-153
    Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H.2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15):1535-1546
    Liu Y, Hu Z, Gao S, Guenther D, Xu J, Gao C, Chen H.2008b. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,257 (1-2):34-43
    Ludwig KR.2003. ISOPLOT 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California.
    Ma CQ, Ehlers C, Xu CH, Li ZC, Yang KG.2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane:constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research,102 (3-4):279-301
    Maniar PD, Piccoli PM.1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin,101:635-643
    Marchig V, Gundlach H, Moiler P, et al.. Some geochemical indicatorsfor discrimination between diagenestic and hydrothermal metalliferous sediments. Mar. Geol.,1982,50-. 241-256.
    Meinert LD, Dipple GM, Nicolescu S.2005. World skarn deposits. Economic Geology,100 anniversary volume:299-336
    Mungall JE.2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology,30 (10):915-918
    Newberry, R.J., and Layer, P.W.,1998, The Pine Creek W-Mo-Cu-Bi-Au skarn, California: Multiple skarns associated with a thermal, chemical, and isotopic anomaly in the central Sierra Nevada [abs.]:Geological Association of Canada Program with Abstracts, v.23, p. 135
    Newberry, R.J.,1983, The formation of subcalcic garnet in scheelite-bearing skarns:Canadian Mineralogist, v.21, p.529-544.
    Newberry, R.J., and Einaudi, M.T.,1981, Tectonic and geochemical setting of tungsten skarn mineralization in the Cordillera:Arizona Geological Society Digest, v.14, p.99-111.
    Pan, Y, Fleet, M. E., and MacRae, N. D.,1993, Late alteration in titanite (CaTiSiO5); redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal:Geochimica et Cosmochimica Acta, v.57, p.355-367.
    Pan, Y. and Dong, P.,1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews,15(4):177-242.
    Rapp RP, Watson EB.1995. Dehydration melting of metabasalt at 8-32 kbar; implications for continental growth and crust-mantle recycling. Journal of Petrology,36 (4):891-931
    Resor, P. G., Chamberlain, K. R., Frost, C. D., Snoke, A. W., and Ronald Frost, B.,1996, Direct dating of deformation:U-Pb age of syndeformational sphene growth in the Proterozoic Laramie Peak shear zone:Geology, v.24, p.623-626.
    Richards JP, Kerrich R.2007. Special Paper:Adakite-Like Rocks:Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology,102 (4):537-576
    Rollinson HR.1993. Using Geochemical Data:Evaluation, Presentation, interpretation. New York:Longman Scientific and Technical,352
    Rooney TO, Franceschi P, Hall CM.2011. Water-saturated magmas in the Panama Canal region; a precursor to adakite-like magma generation? Contributions to Mineralogy and Petrology, 161 (3):373-388
    Scott, D. J., and St-Onge, M. R.,1995, Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada:Implications for U-Pb geochronology and P-T-t path determinations:Geology, v.23, p.1123-1126.
    Shimazaki, H.,1977, Grossular-spessartine-almandine garnets from some Japanese scheelite skarns:Canadian Mineralogist, v.15, p.74-80.
    Shu QA, Chen PL, Chen JR.1992. Geology of Iron-copper deposits in Eastern Hubei Province, China. Beijing:Metallurgic Industry Press,530 (in Chinese)
    Smith, M. P., Storey, C. D., Jeffries, T. E., and Ryan, C.,2009, In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden; new constraints on the timing and origin of mineralization:Journal of Petrology, v.50, p.2063-2094.
    Stern CR, Funk JA, Skews MA.2007. Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit, Chile, and the role of sulfur-and copper-rich magmas in its formation. Economic Geology,102(7):1335-1344
    Stein, H. J., Sundblad, K., Markey, R. J., Morgan, J. W., and Motuza, G.,1998, Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania; testing the chronometer in a metamorphic and metasomatic setting: Mineralium Deposita, v.33, p.329-345.
    Storey, C. D., Jeffries, T. E., and Smith, M.,2006, Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite:Chemical Geology, v.227, p. 37-52.
    Storey, C. D., Smith, M. P., and Jeffries, T. E.,2007, In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden:Records of extended geological histories in complex titanite grains:Chemical Geology, v.240, p.163-181.
    Streck MJ, Dilles JH.1998. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology,26 (6):523-526
    Sun SS, McDonough W.1989. Chemical and isotopic systematic basalt, implication for mantle composition and processes. In:Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society Special Publication,42:313-345.
    Thieblemont D, Stein G., Lescuyer JL.1997. Epithermal and porphyry deposits; the adakite connection. Comptes Rendus de l'Academie des Sciences, Serie Ⅱ. Sciences de la Terre et des Planetes,325 (2):103-109
    Tiepolo, M., Oberti, R., and Vannucci, R.,2002, Trace-element incorporation in titanite; constraints from experimentally determined solid/liquid partition coefficients:Chemical Geology, v.191, p.105-119.
    Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT.2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting. Geology,33 (6):465-468
    Wang Q, Derek AW, Xu JF, Zhao ZH, Jian P, Xiong XL, Zhao ZW, Li CF and Bai ZH.2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rock in the Luzhong area, Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization. Lithos,89 (3-4):424-446
    Wang Q, Zhao ZH, Xu JF, Bai ZH, Wang JX, Liu CX.2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei: (delaminated) lower crustal melting and the genesis of porphyry copper deposit. Acta Petrologica Sinica,020 (02):352-360 (in Chinese with English abstract)
    Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W.1995.3 Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and Ree Analyses. Geostandards Newsletter,19 (1):1-23
    Wilson M.1989. Igneous petrogenesis; a global tectonic approach. London:Allen and Unwin, 466.
    Xie GQ, Mao JW, Li RL, Zhang ZS, Zhao WC, Qu WJ, Zhao CS, Wei SK.2006. Metallogenic epoch and geodynamic framework of Cu Au Mo (W) deposits in Southeastern Hubei Province:Constraints from Re Os molybdenite ages. Mineral Deposits,25 (1):43-52 (in Chinese with English abstract)
    Xie GQ, Mao F, Li R, Bierlein FP.2008. Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, Eastern China:Petrogenesis and tectonic setting. Lithos,104 (1-4):216-230
    Xie GQ, Mao J, Zhao H.2011a. Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of Late Mesozoic intrusions in the southeast Hubei Province, Middle-Lower Yangtze River belt (MLYRB), East China. Lithos,125 (1-2):693-710
    Xie GQ, Mao J, Li X, Duan C, Yao L.2011b. Late Mesozoic bimodal volcanic rocks in the Jinniu basin, Middle-Lower Yangtze River Belt (YRB), East China:Age, petrogenesis and tectonic implications. Lithos,127 (1-2):144-164
    Xie GQ, Mao JW, Li RL, Qu WJ, Pirajno F, Du AD.2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China. Mineralogy and Petrology,90 (3-4):249-270
    Xie GQ, Mao JW, R.-L. LiRe-Os molybdenite and Ar-Ar phlogopitedating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China
    Xu WL, Gao S, Wang QH, Wang DY, Liu YS.2006. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications. Geology, 34 (9):721-724
    Yan J, Chen J-F, Xu X-S.2008. Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region, eastern China:Characteristics and evolution of the lithospheric mantle. Journal of Asian Earth Sciences,33 (3-4):177-193
    Zhai YS, Yao SZ, Lin XD, Zhou XR, Wang TF, Jin FQ, Zhou ZG. 1992. Fe-Cu (Au) Metallogeny of the Middle-Lower Changjiang Region. Beijing:Geological Publishing House,235 (in Chinese)
    Zhao HJ, Mao JW, Xiang JF, Zhou ZH, Wei KT, Ke YF.2010. Mineralogy and Sr-Nd-Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrologica Sinica,26 (3):768-784 (in Chinese with English abstract)
    Zhang Q, Yin XM, Jin WJ, Wang YL, Zhao YQ.2009. Issues on metallogenesis and prospecting of gold and copper deposits related to adakite and Himalayan type granite in west Qinling. Acta Petrologica Sinica,25 (12):3103-3122 (in Chinese with English abstract)
    Zhang, L., and Schaerer, U.,1996, Inherited Pb components in magmatic titanite and their consequence for the interpretation of U-Pb ages:Earth and Planetary Science Letters, v.138, p.57-65.
    Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C. and Spiegel, W.1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research 19,1-23.
    Wilson, A.J., Cooke. D.R.2007, U-Pb and Re-Os Geochronologic evidence for two alkalic porphyry Ore-Forming events in the cadia district, New South Wales, Australia. Economic Geology, v.102, p.3-26
    李建威,毕诗健, PauloVasconcelos.2010.胶东苏鲁地体范家埠金矿成矿作用与矿床成因浅析:兼与胶北地体金矿对比[J].高校地质学报,16:125-142
    王强,赵振华,许继峰,白正华,王建新,刘成新.2004.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因.岩石学报,020(02):352-360
    常印佛,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社,379
    苏欣栋.1978.鄂东南主要侵入岩化学成分特征及其与成矿关系.武汉:冶金部中南冶勘地质研究所.
    舒全安,陈培良,程建荣.1992.鄂东铁铜矿产地质.北京:冶金工业出版社,1-532.
    常印佛,刘湘培,吴言昌,1991.长江中下游铜铁成矿带.地质出版社,北京.
    湖北省地质矿产局.1990.湖北省区域地质志.北京:地质出版社.
    康永孚,苗树屏,李崇佑,古菊云,李亿斗,吴永乐.1994.中国钨矿床.见:中国矿床编委会《中国矿床》中册.北京:地质出版社,1-104
    翟裕生.1990.鄂东南地区铜铁金等多金属成矿地质条件与成矿预测.武汉:湖北鄂东南地质大队“七五”国家重点科技攻关项目研究成果报告.
    翟裕生,姚书振,林新多,周均若,万天丰,金福全,周忠桂.1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,235
    翟裕生,石准立,林新多等,1982.鄂东大冶式铁矿成因的若干问题.地球科学(3):239-250.
    薛迪康,葛宗侠,张宏泰,1997.鄂东南铜金矿床成矿模式与找矿模型.中国地质大学出版社,武汉.1~202
    赵永鑫,1993.长江中下游地区接触带铁矿床形成机理.中国地质大学出版社,武汉.
    马昌前,杨坤光,唐仲华,李增田,1994.花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析.中国地质大学出版社,武汉.
    徐克勤,刘英俊,俞受钧.中国钨矿的类型及其分布规律[A].见:全国第一届矿产会议文献汇编,第三辑(下册)[C].北京:地质出版社,1958
    李洪茂,时友东,刘忠,等.东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J].地质通报,2006,25(1-2):277-281.
    李水如,魏俊浩,邓军,等.广西大明山矿集区钨多金属矿床类型及控矿因素与找矿标志[J].中国钨业,2007.22(6):15~21.
    聂荣峰,王旭东.赣南钨矿研究进展[J].中国钨业,2007,22(3):1-5.
    石洪召,林方成、张林奎,钨矿床的时空分布及研究现状[J],沉积与特提斯地质,2009,29(4):90~95.
    彭建堂,符亚洲,袁顺达,等.热液矿床中含钙矿物的Sm-Nd同位素定年[J].地质论评,2006,52(5):597-611.
    谢桂青,毛景文,李瑞玲等,鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨:辉钼矿Re-Os同位素年龄[J],矿床地质,2008,25(1):43~52。
    谢桂青,毛景文,李瑞玲等,鄂东南地区大型矽卡岩型铁矿床金云母40Ar-39Ar同位素年龄及其构造背景初探[J],岩石学报,2008,024(08):1917~1927
    谢桂青,毛景文,李瑞玲等,2006.长江中下游鄂东南地区大寺组火山岩SHRIMP定年及其意义.中国科学(D).
    谢桂青,赵海杰,赵财胜,鄂东南铜绿山矿田矽卡岩型铜铁金矿床的辉铝矿Rr-Os同位素年龄及其地质意义[J],矿床地质2009,28(3)227~239
    赵海杰,毛景文,向君峰,周振华,魏克涛,柯于富.2010.湖北铜绿山矿床石英闪长岩的矿物学及Sr-Nd-Pb同位素特征.岩石学报,26(3):768-784
    吕庆田,侯增谦,杨竹森,史大年,2004.长江中下游地区的底侵作用及动力学演化模式:来自地球物理资料的约束.中国科学D辑,34(9):783-794.
    毛景文,Holly Stein,杜安道等.2004.长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示.地质学报,78(1):121-131.
    毛景文,谢桂青,张作衡等,2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188.
    毛景文,李永峰,藏文栓,李进文等.2004.长江中下游地区铜金(钼)Re-Os年龄测定及其对成矿作用的指示.地质学报,78(1)121-131
    王彦斌,刘敦一,曾普胜,杨竹森,田世洪,2004a.安徽铜陵地区幔源岩浆底侵作用的时代——朝山辉石闪长岩锆石SHRIMP定年.地球学报,25(4):423-427.
    邢凤鸣,徐祥,李志昌,1993.长江中下游早元古代基底的发现及意义.科学通报,38:1883-1886.
    吴元保,郑永飞,2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604.
    徐夕生,范钦成,S.Y.O'Reilly,蒋少涌,W.L.Griffin,2004.安徽铜官山石英闪长岩及其包体锆石U-Pb定年与成因探讨.科学通报,49(18):1883-1891.
    闫峻,陈江峰,喻钢,钱卉,周泰禧,2003.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,9(2):195-206.
    余元昌,李刚,肖国荃等,1985.湖北省大冶县铜绿山接触交代铜铁矿床.矿床专著一有色金属矿产,23.
    赵新福,李建威,马昌前.出版中.鄂东南铁铜矿集区铜山口铜(钼)矿床40Ar/39Ar年代学及对区域成矿作用的指示.地质学报.赵一鸣,林文蔚,毕承恩等,1990.中国矽卡岩矿床.地质出版社,北京,354.
    张旗,简平,刘敦一等,2003.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学D辑,33(4):309-314.
    张旗,殷先明,殷勇,金惟俊,王元龙,赵彦庆.2009.西秦岭与埃达克岩和喜马拉雅型花岗岩有关的金铜成矿及找矿问题.岩石学报,25(12):3103-3122赵一鸣、林文蔚等,1990.中国矽卡岩矿床.北京:地质出版社.1~354.
    於崇文,蒋耀淞,1990.云南个旧成矿区锡石-硫化物矿床原生金属分带形成的动力机制.地质学报,64(3):226~237.袁见齐、朱上庆、翟裕生,1984.矿床学.北京:地质出版社
    马光,2005.6.鄂东南铜绿山铜铁金矿床地质特征、成因模式及找矿方向.中南大学博士学位论文.
    周涛发,范裕,袁峰.2008.长江中下游成矿带成岩成矿作用研究进展.岩石学报,24(8)65-78
    李文博,黄智龙等,2006,云南会泽铅锌矿田臧放物质来源:Pb、S、C、H、O、Sr同位素制约,岩石学报,22(10):2567-2580
    桑斯特D F.1991.密西西比河谷型矿床与沉积喷气型矿床的对比.张秋明译.国外地质科技,8:5-20
    李英,祁思敬,马国良,张振飞.1999.中国北方超大型热水沉积硫化物矿床基本特征及形成条件研究.西安工程学院院报,2(4):19~24.
    王奖臻,李朝阳,李泽琴,李葆华,刘文周.2002.川、滇、黔交界地区密西西比河谷铅锌矿床与美国同类矿床的对比.矿物岩石地球化学通报,21(2):127~132.
    李均权,谭秋明,李江洲,2005,湖北省矿床成矿系列,湖北科学技术出版社,187-226。
    李峰,鲁文举等,2009,云南澜沧老厂斑岩钼矿成岩成矿时代研究,现代地质,23(6),1049~1055
    葛宗侠等,1984,鄂城—大鄂—阳新地区铁铜矿控矿条件、成矿规律与成矿预测,湖北地质矿产研究所
    陈裕淇,陈毓川等,1983,再论矿床的成矿系列问题,中国地质科学院院报,第6号,1-63张德会,1993,矿床分带综述,地质科技情报,12(1):59-63
    邵跃,1984,矿床元素原生分带的研究及其在地球化学找矿中的应用.地质与勘探,(2):47~55
    中国有色金属工业总公司北京矿产地质研究所编著,国外主要有色金属矿产[M].北京:冶金工业出版社,1987.
    翟裕生,中国区域成矿特征探讨[J].地质与勘探,2002,38(5):1-4.
    李洪茂,时友东,刘忠,等.东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J].地质通报,2006,25(1-2):277-281.
    陈光远,孙岱生,殷辉安等,成因矿物学与找矿矿物学[M],重庆出版社,1987,240~242
    周涛发,张乐骏,袁峰,安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素La-ICP-MS原位测定及其对矿床成因的制约[J],地学前缘,2010,17(2):306~319
    毕承思,中国矽卡岩型白钨矿矿床成矿基本地质特征,中国地质科学院院报,1987,03期
    刘继顺,舒广龙,高珍权,鄂东丰山矿田卡林型金矿地质地球化学特征[J],地学前缘,2004,11(2):379~385
    曾国梁,梁裕智.1998.中南冶勘矿床发现史[M].湖北武汉:中国地质大学出版社,81-83
    周涛发,范裕,袁峰,长江中下游成矿带地质与矿产研究进展,岩石学报,2012,10
    周涛发,范裕,袁峰.2008.长江中下游成矿带成岩成矿作用研究进展.岩石学报,24(8)65-78
    周涛发,范裕,袁峰,张乐骏等,2011,长江中下游成矿带火山岩盆地的成岩成矿作用,地质学报,85(5):712~729
    周涛发,范裕,袁峰等,2010,庐枞盆地侵入岩的时空格架及其对成矿的制约,岩石学报,026(09):2694-2714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700