用户名: 密码: 验证码:
金属板料数控渐进成形技术成形极限与回弹控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,由于产业发展的需要,许多新兴的加工技术应运而生,工业技术涉及到更为广泛的领域。虽然虚拟制造及优化技术得到广泛的关注,但原型制造却仍是必不可少的,传统制造技术只适合大规模、高产量的生产方式,但却不能满足越来越多的小批量、高精度或者快速原型制造产业的需求。因此迫切需要开发更具柔性的制造技术,其中就有这样一项技术,它可以满足成形出复杂型面的金属板料零件并保证其精度和表面粗糙度的前提下,还能大幅度降低模具成本以及减少对加工机床的依赖,这就是数控渐进成形(ISMF)。在数控渐进成形过程中,要得到所需的零件形状需要一套用于固定板料的成形装置、支撑板料的工具以及多样的成形头。本文通过大量实验总结出板料在数控渐进成形过程中的成形极限计算方法,以及回弹预测、控制和补偿手段,并得到成功验证,还加入人工智能神经网络和数值模拟技术力图减少实际生产中的试制次数,节约成本,缩短零件制造周期。
     金属板料的厚度在数控渐进成形中受成形角度的影响很大,当板料加工中达到一定成形角度时就会发生破裂,经过试验发现,成形极限与料厚都与成形角度密切有关,而成形极限则是板料成形过程中是否发生破裂的标准,也即数控渐进成形能否成功衡量尺度。但是在实际测量板料变形后的料厚时由于测量手段及误差等因素的干扰往往得不到准确值,因此必须研究另一套预测方法,利用成形极限的“平均应变法”则提供了一种更好的选择。此外,另一个成形过程中的重要问题是回弹,要得到合格的零件必须在编制加工程序时对零件型面做相应的调整,这就是回弹控制与补偿,只有这样才能使零件型面与目标型面之间的误差达到最小,零件才算符合产品要求。针对以上介绍的对成形结果其中决定作用的两大因素——成形极限和回弹,必须分别制定解决策略才能打开数控渐进成形更广泛的应用前景。
     而在解决破裂和回弹过程中都不约而同地用到型面重构,本文详细地介绍了几种型面重构方法的原理、用途和优缺点。而型面重构还为有限元数值模拟提供了必要的技术支撑。同时还就解决回弹问题用到的几种成形方式分别作了对比,详细论述地指出各种成形方法的用途,对制件成形质量的影响以及成本分析,为不同要求的制件提出综合指导意见。
     本文最终的落脚点是通过实验及有限元数值模拟建立起一套预测、评价数控渐进成形能否将金属板料制成合格零件的知识系统,当预测在成形过程中会出现缺陷时能提供相应解决手段。所以综合运用了实验研究、理论推导、有限元数值模拟和人工智能神经网络构建数据库等多重手段,为预测、评价和解决板料在数控渐进成形过程中常见的问题提供了一套简单实用的工具。
Present day developing industries deal with a wide spectrum of components. In spite of extensive efforts being made with regards to virtual process optimizing technology, the production of prototype parts is still a necessity. The conventional means of manufacturing is suitable in case the required volume is high. If the demands are small in number or if it is a prototype component, the investment in tooling for such processes may not be justified. Therefore, it becomes imperative to explore new flexible manufacturing technologies. One such technology, which allows the production of complex parts by drastically reducing costs in tooling and in machinery, is Numerical Control Incremental Sheet Metal Forming (NCISMF). In NCISMF process, the desired shape is obtained using a fixed form defining support tool with an active small-size-forming tool, programmed to requirement. The aim of the presented dissertation is to optimize the NCISMF process through surface reconstruction after considering process-induced disturbances.
     In NCISMF, the blank thickness, being the function of apex angle, is of significant influence, thereby arises the need to calculate a surface taking required final geometry and thickness influences into account. But by influences of error measurements, it is very hard to get the accurate thickness after proceesing. Therefore another measurement must be taken into considering, so the forming limit is a better choice. Additionally it is also necessary to consider spingback and make suitable adjustments in the surface so that the error between the produced geometry and required final geometry is minimal. Two separate custom-developed programs have to be developed to fulfill both the above requirements.
     To solve the split and spingback, the surface reconstruction provides a good choice. Thus several methods of surface reconstruction principles are introduced in this paper by comparing advantages and disadvantages between each methods . The surface reconstruction provides the necessary technical support for the finite element numerical simulation (FEM) also. Farthemore to control springback several shaping methods are compared, respectively, the impact on the quality of workpiece and cost are analysisd by the use of various shaping methods. So it is a comprehensive guidance for forming workpieces with different requirements.
     The ultimate focus is to gain knowledge by experiment and FEM to establish a set of forecasts, evaluation of NCISMF of sheet metal, that means the qualified parts can be achieved by the use of this knowledge system, and when defects come out this knowledge system can provide solutions during the forming process. Therefore, comprehensive use of the experimental study, theoretical analysis, numerical simulation and artificial neural networks, multi-database tools to predict, evaluate and solve the incremental sheet forming process in the NC common problem provides a simple and practical tool.
引文
[1] M.jeanneau , P.Pichant . The trends of steel products in the European automotive industry[J]. La revue De metallurgies-CIT,November,2000:1399-1408
    [2] Everett C. Oren.Automotive materials and technologies for the 21st Century[M].39TH MWSP CONF.PROC.,ISS,1998:693-643
    [3] Yukihisa Kuriyama,Manabu Takahashi Hiroshi Ohashi.Trend of Car Weight Reduction Using High-strength Steel[J].自动化技术,2001,55(4):51-57
    [4]中原孝善.高强度钢板在汽车上的应用及其成形技术[J].世界钢铁,2006(3):27-32
    [5]田中繁一等.塑性工具を用いた少数回押噫みインクリメンタルフォーミングによる曲面の成形[M].第48回塑性加工连合讲演会论文集,1997:129-130(日本)
    [6]康小明,马泽恩,何涛,等.机翼整体壁板喷丸成形CAD/CAM/CAE系统[J].航空制造工程,1998(6):35-36
    [7]李明哲,苏世忠.金属板料无模多点成形专用CAD/CAM与CAT软件的开发[J].中国机械工程,1993(3):14-16
    [8] Steven Ashley.Rapid Concept Moldelers[J].Mechanical Engineering,1996(1):64-66
    [9] Steven Ashley . A New Dimension for Office Pringters[J] . Mechanical Engineering,1996(3):112-114
    [10]李洪涛,王绍安,邱春城等.电磁成形工艺及其应用[J].电加工,1999(3):36~39
    [11]赵林,周锦进等.板材电磁成形实验研究[J].金属成形工艺,1992(2):7~11
    [12]周立军,杨学泉等.电磁形成技术及其应用[J].水利电力机械,1996(2)29~32
    [13]刘建华,杨合,李玉强.旋压技术基本原理的研究现状与发展趋势[J].重型机械,2002,3:15
    [14]杜坤,杨合..多道次普旋技术研究进展[J].机械科学与技术,2001,7(4):558-561
    [15] Kwai-Sang Chin.Implementation of rapid prototyping technology-a Hong Kong manu-facturing industry’s perspective[J].Advanced Manufacturing Technology,1998,14:570-579
    [16] Iseki,H.Iseki.A simple deformation analysis for incremental bulging of sheet metalusing high speed water jet[J].In Proceedings of 6thICTP,1999,2:1483-1488
    [17]松原茂夫.板材の逐次张出し·绞り成形.平成7年度塑性加工春季讲演会论文集[J].日本塑性加工学会,1995:209-210
    [18]北澤君義,林真太郎,山崎純生. 2パス法による薄板の半球狀CNCインクリメンタル張出し成形[M].第47回塑性加工連合講演會論文集, 1996: 125-126
    [19]吉川勝幸.角R付き四角形シェルのインクリメンタル直角壁立て張出し成形[M].平成10年度塑性加工春季講演會論文集, 1998: 283-284
    [20] Shim M S, Park J J. The formability of aluminum sheet in incremental forming[J].Journal of Materials Processing Technology, 2001, (113): 654-658
    [21]毛锋.金属板材数控渐进成形关键技术研究[D].武汉:华中科技大学, 2005
    [22]莫健华,丁勇,黄树槐.金属板材数控单点渐进成形加工轨迹优化研究[J].中国机械工程, 2003, 14(24): 2138-2140
    [23]北澤君義,中島明.薄板の円筒狀CNCインクリメンタル成形の成形限界[M].第48回塑性加工連合講演會論文集, 1997: 111-112
    [24]北澤君義.各種薄鋼板のCNCインクリメンタルパス円すぃ狀張出し成形成形限界[M].第49回塑性加工連合講演會論文集, 1998: 131-132
    [25] Kun Dai, Z R Wang, Yi Fang.CNC incremental sheet forming of an axially symmetric specimen and the locus of optimization[J]. Journal of Materials Processing Technology, 2000, 102: 164-167
    [26] Kun Dai, Z R Wang, Yi Fang.CNC incremental sheet forming of an axially symmetric specimen and the locus of optimization[J].Journal of Materials Processing Technology, 2000, 102: 164-167
    [27] Iseki H.An approximate deformation analysis and FEM analysis for the incremental bulging of sheet metal using a spherical roller[J].Journal of Materials Processing Technology, 2001,111(1-3):150-154
    [28] Pohlak M, Küttner R, Majak J.SIMULATION OF INCREMENTAL FORMING OF SHEET METAL PRODUCTS[M]. 4th International DAAAM Conference, 2004,143-145
    [29] Bambach M,Hirt G, Junk S.MODELLING AND EXPERIMENTAL EVALUATION OF THE INCREMENTAL CNC SHEET METAL FORMING PROCESS[M].VII International Conference on Computational Plasticity, 2003
    [30]李迎浩.金属板材数字化渐进成形过程数值模拟[D].武汉:华中科技大学, 2005
    [31] M Bambach. G Hirt. J Ames. Modeling of optimised strategies in the Incremental CNC sheet metal forming process[M] . Proceeding of Numiform 2004 Conference Columbus, 2004,1969-1974
    [32] G Hirt, M Bambach. Modeling incremental sheet forming using a meshless surface representation based on radial basis functions[M] . Advanced technology of plasticity-Proceeding of 8th international conference on technology of plasticity, Verona, Italy, 2005:261-262
    [33] Ambrogio G.,Costantino I.,De Napoli L.Influence of some relevant process parameters on the dimensional accuracy in incremental forming: A numerical and experimental investigation[J]. Journal of Materials Processing Technology,2004,153-154:501-507.
    [34] Pohlak Meelis,Kuttner Rein,Majak Juri.Modelling and optimal design of sheet metal RP and M processes[J].Rapid Prototyping Journal,2005,11:304-311.
    [35] Guoqiang Fan, L.Gao, G.Hussain,et al . Electric hot incremental forming:A novel technique[J]. International Journal of Machine Tools&Manufacture, 2008,48:1688-1692.
    [36] Y.H.Ji, J.J.Park.Formability of magnesium AZ31 sheet in the incremental forming at warm temperature[J]. Journal of Materials Processing Technology, 2008,201:354-358.
    [37]钟志华,李光耀.薄板冲压成型过程的计算机仿真与应用[M] .北京:北京理工大学出版社, 1998: 1-5.
    [38]康永林.国内外汽车板的现状、需求和发展趋势[J].中国冶金, 2003, (6): 18-23.
    [39]谭善银,张亚峰,柴震等.高强度冷轧钢板在奇瑞轿车上的应用研究[J].汽车工艺与材料, 2003, (6): 10-14.
    [40]张宇,朱平,陈关龙等.基于有限元法的轿车发动机罩板轻量化设计[J].上海交通大学学报, 2006, (1): 163-166.
    [41]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].宝钢技术, 2006, (9): 1-8.
    [42] Hirt G., Bambach M., Junk S., Chouvalova I.FEM modeling and optimization of geometric accuracy in incremental CNC sheet forming[J].Proceedings of International Conference on Accuracy in Forming Technology, Pg. 293-303, Chemintz, Germany, 2003.
    [43] Hirt G., Bambach M.Junk S.Modeling of the incremental CNC sheet metal forming process[M].SheMet, Proceedings of the International Conference, University of Ulster, Pg. 495- 502, April 2003.
    [44] Hirt G., Bambach M.Moddelling Incremental sheet forming using a meshless surface representation based on radial functions[M].8th International Conference on Technology of Plasticity University of Padova, Verona, Italy, 2005.
    [45] Hiroyuki A., Gen R.Patent-JP 2003053436[M].Die-less Sheet Forming Method and Apparatus26 Feb. 2003.
    [46] Hirt G., Junk S., Bambach M., Chovalova I. L. Process limits and material behaviour in sheet forming with CNC-tools[M].19. Institute of Materials Technology/Precision Forming (LWP), Pg. 1-6, Saarland University, Germany, 2003.
    [47] Papazian J., Hoitsma D., Kutt L., Melnichuk J., Nardiello J., Pifko A., Schwarz, R.C. Reconfigurable tooling for sheet metal forming, Proceedings of symposium Sheet Metal Forming Technology[J].The Minerals, Metals & Materials Society, Pg. 23-38, 1999.
    [48] Park J., Kim Y . Fundamental studies on the incremental sheet metal forming technique[J].Journal of Materials Processing Technology, Vol. 140, Pg. 447-453, 2003.
    [49] Palten H., Palten D.Metal spinning: from ancient art to high-tech industry[J].Metal FormingMagazine, Pg. 30-34, Sep. 2002.
    [50] Powell N. N., Andrew C.Incremental forming of flanged sheet metal components without dedicated dies[J].Proc. Instn. Mech. Engineerings, Vol. 206, Pg. 41-47, 1992.
    [51] Papazian J . Reconfigurable tooling for sheet metal parts production[M] . from http://www.galaxyscientific.com, 20 Oct. 2004.
    [52] Packham C. L.Metal spinning and shear and flow forming[J].Metallurgia and Metal Forming, Pg. 168-285, 1976.
    [53] Pasch K.Design of discrete die surface fixture for sheet metal forming, Bachelor of Science thesis, Department of Mechanical engineering[J].Massachusetts Institute of Technology, USA, June 1981.
    [54] Park J., Hong Y.: PATENT-6151938[M].Die-less forming apparatus, 28 Nov. 2000.
    [55] Filice L., Fratini L., Micari F . Analysis of material formability of incremental forming[M].Annals of the CIRP, Vol. 51/1, Pg. 199-202, 2002.
    [56] Finckenstein E. V.Kleiner M., Homberg W., Smatloch C.: An approach for flexibilization of the sheet metal part production[J].Production Engineering, Vol. II/2, Pg. 75-78, 1995.
    [57] Finckenstein E. V., K?hne R.Zur Technologie des NC-Drückens[J].Z.ind.Fertig.71, Pg. 231-235, 1981.
    [58] Finckenstein E. V., Smatloch C., Kleiner M.Grundlagenuntersuchungen zur Entwicklung eines flexiblen, numerisch einstellbaren Werkzeugsystems für Blechumformverfahren, Abschlusskolloquium zum DFG-Schwerpunktprogramm[J] . Flexible Umformtechnik, Wissenschaftsverlag, Pg. 6.2-1, Aachen, Germany, 1995.
    [59] Fratini L., Ambrogio G., Di Lorenzo R., Filice L., Micari F.Influence of mechanical properties of the sheet material on formability in single point incremental forming[M].Annals of the CIRP, Vol. 53/1, Pg. 207-210, Krakow, Poland, 2004.
    [60] Kim Y. H., Park J. J.Effect of process parameters on formability in incremental forming of sheet metal[J].Journal of Material Processing Technology, Vol. 130-131, Pg. 42-46, 2002.
    [61] Kitazawa K., Wakabayashi A., Murata K., Seino J. A CNC incremental sheet metal forming method for producing the shell components having sharp corners[J].Journal of JSTP, Vol. 35, No. 406, Pg. 1348-1353, 1994.
    [62] Kim T.J., Yang D.Y.Improvement of formability for the incremental sheet metal forming Process[J].International journal of Mechanical Sciences, Vol. 42, Pg. 1271-1286, 2000.
    [63] Kleiner M.Fr?smachine als Umformsystem[J].Industrieanzeiger, Vol. 5, Pg. 1-2, 2001.
    [64] Kleiner M., Ewers R., Henkenjohann N., Auer C., Kunert J.“Optimization of the Shear Forming Process by Means of Multivariate Statistical Methods”[M].Technical Report13/2005, SFB 475, Fachbereich Statistik, Universit?t Dortmund.
    [65] Kleiner M., Ewers R.Process Design and Optimization in Sheet Metal Spinning[M].Annals of the WGP, Production Engineering XIII (2006)1
    [66] Kleiner M., Beerwald C., Homberg W., Trompeter M.Flange draw-in sensor for the high pressure sheet metal forming, SheMet[M].Proceedings of the International Conference, Pg. 305-312, Jordanstown, Ireland, 2003.
    [67] Kleiner M., G?bel R., Klimmek C., Heller B., Reitmann V., Kantz H.Wrinkling in sheet metal spinning, 4th International Symposium[J].Investigations of Non-Linear Dynamic Effects in Production Systems, Pg. 14, Chemnitz, Germany, 2003.
    [68] Kleiner M., Kolleck R., Rauer J., Weidner T . Die-less forming of sheet metal parts[J]. Journal of Material Processing Technology, Vol. 103, Pg. 109-113, 2000.
    [69] Kleiner M., Zieke G.Rechnergestützte Form?nderungsanalyse an rotations-symmetrischen Feinblechteilen am Beispiel des NC-Drückens[M].Stahl u. Eisen 103 (1983) Nr.11, 1983.
    [70] Kliment J. L., Kruijk H..Das Gummiumformverfahren, seine heutige Anwendung und weitere Entwicklungen im Flugzeugbau[J ].Teil I, Blech, Rohre, Profile, Band 29, Pg. 49-53, 1982.
    [71] Kopp R., Hornauer K. P.Kugelstrahl-Umformen und Richten[J].Zeitschrift Metall, Band 34, Heft 4, Pg. 320-323, 1980.
    [72] K?nig W., Hofmann H. W., Stutz R. D . Blechumformung mit elastischen Wirkmedien[J].Industrie, Nr. 35, Pg. 20-23, May 1981.
    [73] Kobayashi S., Oh S., Altan T.Metal Forming and the Finite-Element Method[M]. Oxford University press, ISBN 019504402 9, United Kingdom, 2003.
    [74] Krux R.Herstellung eigenschaftsoptimierter Bauteile mit der Hochdruck-Blechumformung und Analyse der induzierten Eigenspannungen[D] . Dr.-Ing. Dissertation, Universit?t Dortmund, Dortmund, Germany, 2003.
    [75] Krizbergs J., Kromanis A.Methods for prediction of the surface roughness 3D parameters according to technological parameters[M].5th International DAAAM Baltic Conference, Pg. 145-149, 2006.
    [76] Kurita N., Ueno K., Nagata M.Incremental forming for automobile body panel[J].Journal of Japan Institute of Light Metals, Vol. 49, No. 2, Pg. 67-71, 1999.
    [77] Micari, F.Single point incremental forming, Seminar on incremental forming[M].22 October, 2004, Cambridge University.
    [78] Weinert K., Mehnen J.Discrete NURBS-surface approximation using an evolutionary strategy[M].Reihe Computational Intelligence Sonderforschungsbereich 531, Dortmund, Germany, 2000.
    [79] Weinert K.,Mehen J.NURBS-surface approxiamtion of discrete 3D-point data by means of evolutionary algorithms[M].CIRP International Seminar on Intelligent Computation in Manufacturing, Pg.263-268, 2000.
    [80] Weinert K., Friedhoff J.On the processing of digitizes point data for the die- and mold manufacturing industry[J] .Production Engineering, Vol.4, Pg.123-126, München, 1997.
    [81] Weinert K., Surmann T., Mehnen J . Evolutionary surface reconstruction using CSG-NURBS-hybrids[M].Reihe Computational Intelligence Sonderforschungsbereich 531, Dortmund, Germany, 2001.
    [82] Westk?mper E., Schraft D., Sch?fer T . Roboshaping– flexible inkrementelle Blechumformung mit Industrierobotern[M].Werkstatttechnik online, Pg. 7-11, 2003.
    [83] Whittier B.The fine art of metal shaping[J].Experimenter Magazine, March 1999.
    [84]莫健华,叶春生,黄树槐.金属板材数控无模成形及快速制模[J].电加工与模具,2002(1):15~18
    [85]林忠钦等.车身覆盖件冲压成形仿真[M].北京:机械工业出版社, 2005.
    [86]徐丙坤,施法中,陈中奎.板料冲压成形数值模拟中的几个关键问题[J].塑性工程学报, 2001, (2): 33-35.
    [87]叶又,彭颖红等.板料成形数值模拟的关键技术及难点[J].塑性工程学报, 1997, (2): 19-22.
    [88]李玉强,崔振山,张冬娟等.板料成形优化技术进展与质量工程研究[J].塑性工程学报, 2005, (2): 11-16.
    [89] Hirt G., Junk S., Chouvalova I. L.: Inkrementelle Blechumformung als wirtschaftliche Alternative zur Herstellung von Prototypen und Klienserien[M]. 19. Aachner Stahlkolloquium, Pg. 251-270, Aachen, Germany, March 2004
    [90]方漪,戴昆,王仲仁.板材数控增量成形过程的研究[J].塑性工程学报,1999,(9):49-53.
    [91]周六如,莫健华,肖祥芷.板料零件数控渐进成形工艺研究[J].塑性工程学报,2003,(8):27-29
    [92]安治国.基于径向基函数近似模型及多目标遗传算法的板料成形工艺优化设计[D].重庆大学,2009
    [93]蔡中义,李明哲,李湘吉.板材成形回弹数值分析的静力隐式方法[J].中国机械工程, 2002, (17): 1458-1461.
    [94] Yang, D. Y., Jung, D. W., Song, I. S., et al. Comparative Investigation into Implicit explicit and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes[J]. Journal of Materials Processing Technology, 1995, (50): 39-53.
    [95]边少锋, Joachim Menz. Kriging估计的分析解释与协方差函数的代数确定[J].中国地质大学学报, 2000, (2): 195-120.
    [96] Soren, N. Lophaven, Hans Bruun Nielsen & Jacob Sondergaard. "Aspects of the Matlab Toolbox DACE." Report IMM-REP-2002-12[M]. Informatics and Mathematical Modeling, Technical University of Denmark, 2002.http://www.imm.dtu.dk/~hbn/dace/.
    [97] Kurkova, K. Kolmogorov's Theorem. The Handbook of Brain Theory and Neural Networks [M]. ed. M. A. Arbib, MIT Press, 1995: 501-502.
    [98] Ghaboussi, J. D. & Sidarta, E. New nested adaptive neural networks constitutive modeling[J], Computer and Geotechnics, l998, (1): 29-52.
    [99] Sin, R., Chen, W. & Simpson, T. W. Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria[J]. Journal of Structural and Multidisciplinary Optimization, 2001, (1): 1-13.
    [100] Hirt G., Junk S., Witulski N.: Incremental sheet forming: quality evaluation and process simulation, Advanced Technology of Plasticity[M], Proceedings of the 7th ICTP, Vol.-I, Pg. 931-936, Yokohama, Japan, Sep. 2002
    [101]崔令江.汽车覆盖件冲压成形计算[M],机械工业出版社,2003
    [102] ]胡世光,陈鹤峥.板料冷压成形原理[M],国防工业出版社,1989
    [103] ]邓陟,王先进,陈鹤峥.金属薄板成形技术[M],兵器工业出版社,1993
    [104] ]李硕本等.冲压工艺理论及新技术[M],机械工业出版社,2002
    [105] ]崔令江.浅拉深小曲率汽车覆盖件冲压成形质量控制[M],材料·工艺·设备, 2002(1):29-31
    [106] ]Chakrabarty J.A theory of stretch forming over hemispherical punch heads[M],Int.J.Mech Sci,1970 (12):315-325
    [107]周六如,肖祥芷,莫健华.金属直壁筒形件数控渐进成形工艺研究[J],机械科学与技术2004(11):1366-1369

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700