用户名: 密码: 验证码:
柑橘采后病害生防菌YS-1的筛选和YS-1粗提物的抑菌机理及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界140个国家和地区都种植有柑橘,其中主要集中在中国、美国、巴西以及地中海沿岸的一些国家,是全球第一大水果。中国的柑橘栽培面积和产量均占世界首位,是柑橘第一大生产国。在生物技术研究方面,我国紧跟国际步伐,部分研究还处于领先水平。但在柑橘采后病害的防治研究方面,我国落后于美国、巴西、西班牙等国,原因主要是起步较晚,重视不够。所幸的是,随着人们对食品安全意识和环境保护意识的增强,我国正在加强这方面的力量配备和研究开发力度,期望在未来几年会有所突破。
     本文以江西的两大特色柑橘品种--新余蜜橘和南丰蜜橘为试验材料,筛选到了对柑橘采后危害最为严重的两大真菌性病害(青霉病和绿霉病)抑制作用强的微生物拮抗菌(命名为YS-1),并对其离体和活体抑菌效果进行了研究;为了探讨菌株YS-1的发酵工艺,本文采用单因子和正交设计相结合的试验方法对菌株YS-1发酵产抗菌物质的培养条件进行了优化;为探索抗菌物质的分离纯化条件,对菌株YS-1的发酵液预处理条件的选择以及该菌株的抗菌物质进行了理化特性的研究,以期为后续抗菌物质的分离纯化研究提供理论基础。本文主要研究结果如下:
     1.首先从分离、筛选着手,尝试了从不同途径,如土壤、果表、叶表及果实伤口处等分离菌株,采用离体初筛和活体复筛的方法,最终从金橘果表筛选到了一株拮抗作用较强的菌株YS-1。经形态学、生理生化、16S rDNA及rpoB基因等多重鉴定,确定该菌株属类芽孢杆菌(Paenibacillus brasilensis),序列登录号为:JQ677085。
     2.通过研究菌株YS-1对柑橘青霉病菌和绿霉病菌的抑制效果,发现离体平板上,菌株YS-1的菌悬液和上清液都对这两种病原菌表现出拮抗作用,且菌悬液对绿霉病菌的抑制效果好于上清液,而上清液表现出对青霉病菌有更好的抑制效果。在活体上菌株YS-1对青霉病菌的抑制效果,上清液的抑菌效果比菌悬液的要好,且两者之问有显著差异,上清液处理过的果实发病率仅为33.74%,病斑直径为4.71mm。
     3.抑菌机理研究试验发现,菌株YS-1的抑菌机理既可能与营养和空间的竟争有关,也与菌体抗生素的分泌有关,菌体本身也产生直接抑菌作用。通过对菌株YS-1抑菌谱的研究,发现其除了对柑橘青霉病原菌和绿霉病原菌表现出较强的拮抗作用外,对柑橘采后其它真菌性病害如柑橘炭疽病菌和柑橘酸腐病菌也有抑制作用,且对柑橘采后细菌性病害如柑橘溃疡病菌也有较强的抑制作用。
     4.对菌株YS-1产活性物质的生物效价进行了测定,得出计算生物效价的公式,并通过单因子试验和正交设计试验相结合的方法获得拮抗菌YS-1产生物活性物质的最佳培养基配方和发酵最优条件参数。研究结果为:由抑菌圈计算生物效价的公式为Y=10(x+10.695)/8.904xn;优化后的培养基配方为可溶性淀粉7.0%,酵母提取物2.5%,NaCl0.6%, MgSO40.2%, K2HPO40.2%;优化后的培养条件为接种量4%、发酵温度30℃、发酵初始pH为6.0,培养时间为72h;确定了最佳碳源为可溶性淀粉,最佳氮源为酵母提取物。
     5.探讨了发酵液的预处理方法,本文通过采用加热法和调酸法对菌株YS-1的发酵液进行预处理,得出将发酵液的pH调为3.0进行调酸处理,80℃下加热处理15min为最佳预处理条件。
     6.对菌株YS-1的抗菌物质在不同溶剂中的溶解性进行了试验,推测该粗提物中的抑菌物质是一种极性较大的水溶性物质。
     7.本文还对菌株YS-1抗菌物质的稳定性进行了试验研究,发现该物质能耐高温,耐酸及紫外照射,在121℃下灭菌20min, pH为3.0和紫外照射24h后抑菌活性均保持较好。对氯仿敏感,低温和常温下耐贮藏。说明菌株YS-1所产生的抗菌物质有较好的稳定性。
Citrus spp., the largest fruit crops worldwide, are cultivated in140countries and regions, mainly in China, Brazil, USA and Mediterranean countries. China occupies a prominent position in citrus industry due to the largest area and yield. We keep pace with the world in the aspect of biotechnology, part of the research in the leading level. But we are behind the USA, Brazil, Spain and other countries in the biocontrol of postharvest diseases of citrus mainly because of late starting and no enough attention. Fortunately, we are strengthening the power equipment and research efforts about the aspect along with the public's growing concern for food safety and environmental protection. We expect that the research will be a breakthrough in the next few years.
     A strain of bacteria (named YS-1) that has high biocontrol efficacy on postharvest diseases of blue mold and green mold on citrus fruits was isolated and identified to be Paenibacillus brasilensis. The efficacy of YS-1for the controlling of postharvest diseases of citrus in vitro and in vivo, the optimization of the culture conditions of YS-1, the conditions selection of YS-1fermentation broth pretreatment were studied. The solubility and stability of antimicrobial substance produced from YS-1were also studied. The results are as followed:
     1. A total of191isolates from the soil, the surface of fruits and leaves, the wound of fruits were screened for antagonism against Penicillium italicum and Penicillum digitatum. Bacterial YS-1having the highest biocontrol efficacy was isolated from the surface of kumquat fruit by intial selection and the farther selection. It was identified as Paenibacillus brasilensis by the Biolog microbial identification system combined with16S rDNA sequence analysis, biochemical and physiologic characteristics and rpoB sequence analysis. The Gen Bank is JQ677085.
     2. There was inhibition of fermentation supernatant and cell suspension of strain YS-1on the pathogens of blue mold and green mold. The inhibition of the cell suspension on Penicillum digitatum showed significant advantages compared with the supernatant of strain YS-1, nevertheless the efficacy of the supernatant for the controlling of postharvest Penicillium italicum was better than that of the cell suspension. There was significant difference between the two treatments in vivo test, and the fruit disease incidence and lesion diameter were33.74%and4.71mm, respectively.
     3. The antibacterial mechanism of strain YS-1were investigated, the results showed that it was concerned with not only the secretion of antibiotics but also the competition of nutrition and space. In addition, the strain YS-1also had a direct inhibitory effect. The antagonism spectrum of YS-1showed that the strain YS-1inhibited not only fungal diseases such as blue mold, green mold and anthracnose but also bacterial diseases such as citrus canker.
     4. Biological potency of active substances produced by strain YS-1was measured and calculated from the inhibition diameter. And the formula is: Y=l0(x+I0.695)/8.904. Optimization of culture medium and fermentation conditions was studied through the combination of one-factor-at-a-time test and orthogonal design test. The optimal medium was consisted of soluble starch7%, yeast extract2.5%, NaCl0.6%, MgSO40.2%, K2HPO40.2%; the optimal fermentation conditions was4%inoculum, fermentation temperature30℃, initial pH of fermentation6.0, culture time was72h; the best carbon source and nitrogen source was soluble starch and yeast extract, respectively.
     5. The methods of fermentation broth pretreatment were discussed by heating and adjustment acidity. The results showed that the suitable pretreatment methods were adjustment the pH of the fermentation broth to3.0and heat treatment for15min at80℃.
     6. The solubility of the antagonistic substances of the strain YS-1in different solvents were studied. The result showed that the material is a kind of water-soluble substances being of high polarity.
     7. The stability of YS-1antagonistic substances was studied. The results showed that there was resistance to high temperature, acid and ultraviolet radiation. The antagonistic substances showed better antagonistic activity at121℃for20min, pH low to3.0, Ultraviolet irradiation for24h and low temperature storage for a month. But it was sensitive to chloroform.
引文
[1]陈仕俏,赵文红,白卫东.我国柑橘的发展现状与展望[J].农产品加工学刊,2008,(3):21-24.
    [2]彭良志.我国柑橘生产现状与加入WTO后的对策[J].柑橘与亚热带果树信息,2000,16(9): 3-6.
    [3]李怀芳,刘凤权,郭小密.园艺植物病理学[M].北京:中国农业出版社,2001.
    [4]李家庆,张平,张华云等.果蔬保鲜手册[M].北京:中国轻工业出版社,2003.
    [5]Palou L, Smilanick J L, Usall J, et al. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate[J]. Plant Dis,2001,85: 371-376.
    [6]Palou L, Usall J, A Mufloz J, et al. Hot water,sodium and sodium bicarbonate for the control of postharvest green and blue molds of clementine[J]. Postharvest Biol Technol, 2002,24:93-96.
    [7]Prusky D, Lichter A. Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage[J]. FEMS Microbiology Letters, 2007,268:1-8.
    [8]邓伯勋.园艺产品贮藏运销学[M].北京;中国农业出版社,2002.
    [9]Holmes G J, Eckert J W. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California[J]. Phytopathology,1999,89 (9):716-721.
    [10]罗永兰,张志元.柑橘子青霉病菌的寿命与窑、库消毒剂的筛选[J].湖北农业科学,2000,6:53-54.
    [11]郎国良,徐南昌,郑强.柑橘贮藏期病害及其综防技术[J].现代农业科技,2007,1:68-69.
    [12]Bancroft M N, Gardner P D, Eckert J W, et al. Comparison of decay control strategies in California lemon packing houses[J]. Plant Diseases,1984,68:24-28.
    [13]Sommer N F. Role of controlled environments in suppression of postharvest diseases[J]. Can. J. Plant Pathol,1985,7:331-336.
    [14]El Ghaouth A, Wilson C L, Wisniewski M, et al. Biological control of postharvest diseases of Citrus fruits. In:Biological Control of Crop Diseases. Marcel Dekker, Inc[M]. New York. USA,2002,289-312.
    [15]Spadaro D, Gullino M L. State of the art and future prospects of the biological control of postharvest fruit diseases[J]. Int. J. food MicrobioL,2004,185-194.
    [16]熊件妹,姜亚君,郑卫民等.500g/L抑霉唑乳油对柑橘青霉和绿霉病菌的抑制作用与防治效果[J].江西农业学报,2006,18(5):70-72.
    [17]周小钢,李美玲,谢金蓉等.柑橘贮藏防腐保鲜研究[J].西南农业大学学报,1999,21 (1):78-81.
    [18]Sholberg P L, Conway W S. The commercial storage of fruits,vegetables and florist and nursery stocks. Postharvest Pathology[M]. In Agriculture Handbook,2004, No:6.
    [19]Wilson C L, Wisniewski M E, Droby S. A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables[J]. Scientia Horticulturae, 1993,53: 183-189.
    [20]Janisiewicz W J, Korsten L. Biological control of postharvest diseases of fruits[J]. Annual of Review of Phytopathology,2002,40:411-414.
    [21]Tripathi P, Dubey N K, Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables[J]. Postharvest Biology and Technology, 2004,32:235-245.
    [22]Shama G, Alderson P. UV hormesis in fruits:a concept ripe for commercialization[J]. Trends in Food Science Technology,2005,16:128-136.
    [23]Shama G. Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses[J]. Postharvest Biology and Technology,2007,44: 1-8.
    [24]庞杰,连予生,李正国.涂蜡对柑橘青绿霉菌的影响[J].山地农业生物学报,2000,6:436-438.
    [25]Chien P J, Sheu F, Lin H R. Coating citrus(Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life[J]. Food Chemistry,2007,100(3): 1160-1164.
    [26]Rodov V, Ben-Yehoshua S, Albagli R, et al. Reducing chilling injury and decay of stored citrus fruit by hot water dips [J]. Postharvest Biology and Technology,1995,5(1):119-127.
    [27]Palou L, Usall J, Munoz J A, et al. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of clementine mandarins[J]. Postharvest Biology and Technology,2002,24(1):93-96.
    [28]王世珍,张红印,黄星奕.热处理对水果采后病害防治的研究进展[J].食品科学,2008,29(2):477-480.
    [29]Fallik E. Effect of heat treatment on storality and fruit quality[J]. Postharvest Biology and Technology,2004,32:125-134.
    [30]Vicente A R, Martinez G A, Chaves A R, et al. Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage[J]. Postharvest Biology and Technology, 2006,40:116-122.
    [31]张红印.罗伦隐球酵母对水果采后病害的生物防治及其防治机理研究[D].浙江大学,2004.
    [32]习柳,田世平.酵母拮抗菌与碳酸氢钠配合对番茄果实采后病害的防治效果研究[J].中国农业科学,2005,38(5):950-955.
    [33]Smilanick J L, Margosan D A, Mlikota F, et al. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy[J]. Plant Disease,1999,83:139-145.
    [34]Palou L, Smilanick J L, Usall J, et al. Control of postharvest blue and green molds of arranges by hot water, sodium carbonate and sodium bicarbonate[J]. Plant Disease,2001, 85:371-376.
    [35]邓雨艳,明建,张昭其等.壳聚糖诱导脐橙果实抗病性、水杨酸及活性氧代谢变化[J].中国农业科学,2010,43(4):812-820.
    [36]Deng Y Y, Ming J, Zeng K F. Effects of chitosan coating on disease resistance and storage quality of navel orange fruit[J]. Food Science,2008,29 (11):656-661.
    [37]杨书珍,彭丽桃,潘思轶等.蜂胶提取物处理对柑橘诱导抗病性的影响[J].食品科学,2010,31(8):275-279.
    [38]刘畅,任艳芳,何俊瑜等.中草药提取液对3种柑橘病原菌的抑制作用[J].西南农业学报,2011,24(1):132-136.
    [39]Zeng R, Zhang A S, Chen J Y, et al. Postharvest quality and physiological responses of Clove bud extract dip on'Newhall'navel orange[J]. Scientia Horticulturae,2012,138:253-258.
    [40]Wilson C L, Chalutz E. Postharvest biological control of Penicillium rots of citrus with antagonistic yeasts and bacteria[J]. Scientia Horticulturae,1989,40 (2):105-112.
    [41]Shi J Y, Liu AY, Li X P, et al. Identification and antagonistic activities of an endophytic bacterium MGP3 isolated from papaya fruit[J]. Weishengwu Xuebao,2011,51 (9): 1240-1247.
    [42]Zhou X H, Lu Z X, Lv F X, et al. Antagonistic action of Bacillus subtilis strain fmbj on the postharvest pathogen Rhizopus stolonifer[J]. Journal of food science,2011,76 (5):254-259.
    [43]Mikani A, Etebarian H R, Sholberg P L, et al. Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains[J]. Postharvest biology and technology,2008,48:107-112.
    [44]姚良辉,尹京苑,何惠霞等.生物保鲜剂C06对水蜜桃采后的保鲜效果[J].农业工程学报,2010,26(4):357-361.
    [45]陈力,王中康,黄冠军等.柑橘溃疡病生防菌株CQBS03的鉴定及其培养特性研究[J].中国农业科学,2008,41(8):2537-2545.
    [46]Long C A, Wu Z, Deng B X. Biological control of Penicillium italicum of Citrus and Botrytis cinerea of Grape by Strain 34-9 of Kloeckera apiculata[J]. Eur Food Res and Technol,2005, 221:197-201.
    [47]Taqarort N, Echairi A, Chaussod R, et al. Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits[J]. World J Microbiol Biotechnol,2008,24:3031-3038.
    [48]Gutter Y, Littauer F. Antagonistic action of Bacillus subtilis against citrus fruit pathogens[B]. Bulletin of the Research Council of Israel,1953,33 (1):192.
    [49]汪茜,胡春锦,何仿钢等.生防细菌T132的鉴定及其对采后柑橘炭疽病的抑制效果[J].微生物学通报,2012,39(9):1260-1271.
    [50]宋聪,宋水山,关军锋.梨采后黑斑病拮抗菌J18的鉴定及防治效果的初步研究[J].现 代食品科技,2011,27(1):24-28.
    [51]De costa D M, Erabadupitiya H. An integrated method to control postharvest diseases of banana using a member of the Burkholderia cepacia complex[J]. Postharvest biology and technology,2005,36:31-39.
    [52]Patil B S, Vanamala J, Hallman G Irradiation and storage influence on bioactive components and quality of early and late season'Rio Red'grapefruit (Citrus Paradise Macf.) [J]. Postharvest biology and technology,2004,34:53-64.
    [53]Wilson C L, Wisniewski M E. Biological control of postharvest diseases of fruits and vegetables:An emerging technology[J]. Annu Rev Phytopathol,1989,27:425-441.
    [54]Meziane H. Gavriel S, Ismailov Z. Control of green and blue mold on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action[J]. Postharvest biology and technology,2006,39 (2):125-133.
    [55]Mercier J, Smilanick J L. Control of green mold flour rot of stored lemon by biofumigation with Museodor albus[J]. Biological Control,2005,32 (3):401-407.
    [56]Arras G. Mode of action of an isolate of Candida fmata in biological control of Penicillium digitatum in orange fruits[J]. Postharvest biology and technology,1996,8:191-198.
    [57]Arrebola E, Sivakumar D, Korsten L. Effect of volatile compounds produced by bacillus strains on postharvest decay in citrus[J]. Biological Control,2010,53 (1):122-128.
    [58]Obagwu J, Korsten L. Integrated control of citrus green and blue molds using bacillus subtilis in combination with sodium bicarbonate or hot water [J]. Postharvest biology and technology,2003,28 (1):187-194.
    [59]Hao W N, Li H, Hu M Y, et al. Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin[J]. Postharvest biology and technology,2011,59 (3):316-323.
    [60]郝卫宁,李辉,胡美英等.柑桔绿霉病拮抗细菌的筛选、鉴定及其抑制效果[J].中国生物防治学报,2011,2:284-288.
    [61]Li Q L, Ning P, Zheng L, et al. Fumigant activity of volatiles of streptomyces globisporus jk-1 against penicillium italicum on citrus microcarpa[J]. Postharvest biology and technology,2010,58 (2):157-165.
    [62]Canamas T P, Vinas I, Usall J, et al. Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent pantoea agglomerans CPA-2:Part II. Effectiveness of different cell formulations[J]. Postharvest biology and technology,2008, 49 (1):96-106.
    [63]Torres R, Teixido N, Usall J, et al. Anti-oxidant activity of oranges after infection with the pathogen penicillium digitatum or treatment with the biocontrol agent pantoea agglomerans CPA-2[J]. Biological Control,2011,57 (2):103-109.
    [64]Huang Y, Deverall B J, Morris S C. Postharvest control of green mould on oranges by a strain of Pseudomonas glathei and enhancement of its biocontrol by heat treatment[J]. Postharvest biology and technology,1995,5(1):129-137.
    [65]Schena L, Ippolito A, Zahavi T, et al. Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots[J]. Postharvest biology and technology,1999,17 (3):189-199.
    [66]Droby S, Vinokur V, Weiss B, et al. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila[J]. Phytopathology,2002,92(4): 393-399.
    [67]Lahlali R, Serrhini M N, Jijakli M H. Efficacy assessment of Candida oleophila(strain o) and Pichia anomala(strain k) against major postharvest diseases of citrus fruits in morocco[J]. Comm. Appl. Biol. Sci,2004,69 (4):601-604.
    [68]Lahlali R, Hamadi Y, Guilli E M, et al. Efficacy assessment of Pichia guilliermondii strain Zl, a new biocontrol agent, against citrus blue mould in morocco under the influence of temperature and relative humidity[J]. Biological Control,2011,56 (3):217-224.
    [69]Manso T, Nunes C. Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases[J]. Postharvest biology and technology,2011,61 (1):64-71.
    [70]Hernandez-Montiel L G, Ochoa J L, Troyo-Dieguez E, et al. Biocontrol of postharvest blue mold(Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates[J]. Postharvest biology and technology,2010,56 (2):181-187.
    [71]王博,李亮,龙超安等.柠檬形克勒克酵母对温州蜜柑“国庆一号”采后贮藏的防腐效果[J].菌物学报,2008,3:385-394.
    [72]黄雪梅,汪跃华,徐兰英等.拮抗酵母菌对沙糖桔采后绿霉病的抑制作用[J].中国南方果树,2011,1:4-8.
    [73]耿鹏,陈少华,胡美英等.马克斯克鲁维酵母对柑橘采后绿霉病的抑制效果[J].华中农业大学学报,2011,6:712-716.
    [74]吴崇明.绿色粘帚霉防治柑橘青绿霉病研究[J].江西植保,2005,3:100-101.
    [75]Borras A D, Aguilar R V. Biological control of Penicillium digitatum by Trichoderma viride on postharvest citrus fruits [J]. Journal of Food Microbiology,1990,11 (2):179-184.
    [76]Huang Y, Wild B L, Morris C. Postharvest biological control of Penicillium digitatum decay on citrus fruit by Bacillus pumilus[J]. Annals of Applied Biology,1992,120(4):367-372.
    [77]Ash C, Proest F G, Collins M D. Molecular identification of rRNA group 3 bacilli(Ash, Farrow, Wallbanks and Collins) using ga PCR probe test[J]. Antonie Van Leeuwenhoek, 1994,64:253-260.
    [78]刘国红,林乃铨,林营志等.芽孢杆菌分类与应用研究进展[J].福建农业学报,2008,23(1):92-99.
    [79]马玉超.具有固氮能力的类芽孢杆菌的分离、鉴定及固氮酶基因的克隆与序列分析[D].中国农业大学,2007.
    [80]牛伟,牛宇,耿海峰.水果采后病害生防菌研究进展[J].内蒙古农业科技,2010,5:94-97.
    [81]Grau F H, Wilson P W. Physiology of nitrogen-fixation by Bacillus polymyxa[J]. Journal of Bacteriology,1962,83 (3):490-496.
    [82]Witz D F, Detroy R W, Wilson P W. Nitrogen-fixation by growing cells and cell-free extracts of the Bacillaceae[J]. Archives of Mikrobiology,1967,55:369-381.
    [83]Seldin L, Van Elsas J D, Penido E G C. Bacillus azaotofixans sp.nov., a nitrogen-fixing species from Brazilian soils and grass roots[J]. Int J Syst Bacteriol,1984,34 (4):451-456.
    [84]Elo S, Suominen I, Kampfer P, et al. Paenibacillus borealis sp.nov., a nitrogen-fixing species isolated from spruce forest humus in Finland[J]. Int J Syst Evol Microbiol,2001,51: 535-545.
    [85]Berge O, Guinebretiere M H, Achouak W, et al. Paenibacillus gramins sp.nov. and Panibacillus odorifer sp.nov., isolated from plant roots, soil and food[J]. Int J Syst Evol Microbiol,2002,52:607-616.
    [86]Von der Weid L, Duarte G F, Van Elsas J D. Paenibacillus brasillensis sp.nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil[J]. Int J Syst Evol Microbiol,2002, 52: 2147-2153.
    [87]Ding Y, Wang J, Lin Y, et al. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region[J]. J Appl Microbiol,2005,99:1271-1281.
    [88]Rodriguez-Diaz M, Lebbe L, Rodelas B, et al. Paenibacillus wynnii sp.nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica[J]. Int J Syst Evol Microbiol,2005,55:2093-2099.
    [89]Kajimura Y, Kaneda M. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8:isolated, structure elucidation and biological activity[J]. J Antibiot, 1997,50:220-228.
    [90]Mavingui P, Heulin T. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus Polymyxa[J]. Soil Biology and Biochemistry,1994,26 (6):801-803.
    [91]Larson N K, Ismail B, Nielsen S S, et al. Activity of Bacillus polymyxa protease on components of the plasmin system in milk[J]. International Dairy Journal,2006.16:586-592.
    [92]Lebedev A A, Shlyapnikov S V, Pustobaev V N, et al. Structural characterization of extracellular ribonuclease of Bacillus polymyxa:amino acid sequence determination and spatial structure prediction[J]. FEBS Letters,1996,392:105-109.
    [93]Saravanakumar K, Sivanesan S, Samuel G, et al. Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB 16 [J]. Process Biochemistry,2005,40 (10):3236-3243.
    [94]Dutta S, Mishra A K, Dileep Kumar B S. Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia[J]. Soil Biology and Biochemistry,2008,40 (2):452-461.
    [95]Jorg H, Malte H U, Klaus B. Calorimetric investigations of the effect of polymyxin B on different Gram-negative bacteri[J].Thermochimica Acta,2007,458 (1):34-37.
    [96]Chong-Min R, Jinwoo K, Okhee C, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame[J]. Biological Control,2006,39 (3):282-289.
    [97]陈雪丽,郝再彬,王光华等.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化[J].中国生物防治,2007,23(2):156-159.
    [98]Giovanni A. Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits[J]. Postharvest biology and technology,1996,8(3): 191-198.
    [99]谢品,葛绍荣,陶勇等.多粘类芽孢杆菌BS04拮抗成分分离纯化及其特性[J].化学研究与应用,2004,16(6):775-777.
    [100]陈海英,林健荣,宋家清等.CP7菌株的抗菌活性及菌种鉴定[J].中国生物防治,2007,1:16-21.
    [101]邬行彦,熊宗贵,胡章助.抗生素生产工艺学[M].北京:化学工业出版社,1985.
    [102]贾广韬.多粘类芽孢杆菌(Paenibacillus polymyxa) Cp-S316抗菌物质的提取、体外抑菌试验及毒性研究[D].山东农业大学硕士学位论文,2005.
    [103]Ying Zhu, Shuna Li, Hongshui Yuan, et al. Isolation and identification of the antagonistic strain DM-54 of Bacillus amyloliquefacien against Verticillium dahliae, and optimization of antifungal protein producing conditions[J], Frontiers of Agriculture in China,2009,3 (1):16-23.
    [104]连玲丽,谢荔岩,郑璐平等.拮抗菌SB1的鉴定及其抗菌物质的分析[J].微生物学通报,2010,37(7):986-991.
    [105]刘伟,徐涛,蔡敬民等.海洋小链霉菌DY2741抗菌物质的溶解性质及分离纯化[J].食品科学,2010,31(15):177-180.
    [106]刘静,王军,姚建铭等.枯草芽孢杆菌JA抗菌物特性的研究及抗菌肽的分离纯化[J].微生物学报,2004,44(4):511-514.
    [107]周启升,曹宁宁,仇念全等.拮抗链霉菌S24抗菌物质的提取及其部分理化性质[J].生物工程学报,2010,26(3):350-356.
    [108]肖怀秋,李玉珍.微生物培养基优化方法研究进展[J].酿酒科技,2010,1:90-94.
    [109]Liu C, Ruan H, Shen H, et al. Optimization of the fermentation medium for alpha-galactosidase production from Aspergillus Foetidus ZU-G1 using response surface methodology[J]. Journal of food science,2007,72 (4):120-125.
    [110]Chalutz E, Droby S. Biological control of postharvest disease[M]. In:Boland, G.J., Kuykendall, L.D.(Eds.), USA,1998,157-170.
    [111]徐仲安,王天保,李常英等.正交试验设计法简介[J].科技情报开发与经济,2002,12(5):148-150.
    [112]高鹤永,弓爱君,曲冬梅等.正交设计法优化Bt发酵培养基[J].现代农药,2004,3(5):11-12.
    [113]Chalutz E, Wilson C L. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii[J]. Plant Dis,1990,74:134-137.
    [114]Janisiewicz W J. Biocontrol of postharvest diseases of apples with antagonist mixtures[J]. Phytopathol,1988,78:194-198.
    [115]Wilson C L, Wisniewski M E, Droby S, et al. A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables[J]. Scientia Horticulturae,1993,53: 183-189.
    [116]范青,田世平,姜爱丽等.采摘后果实病害生物防治拮抗菌的筛选和分离[J].中国环境科学,2001,21(4):313-316.
    [117]Spurr H W, Knudsen G R. Biological control of leaf disease with bacteria[A]. Windesl C E, Lindow S W. Biological Control on the Phylloplane [M]. SL Paul, MN:APS Press, 1985,45-62.
    [118]Janisiewicz W J, Roitman J. Biological control of blue and gray mold on apple and pear with Pseudomonas cepacia [J]. Phytopathology,1988,78: 1697-1700.
    [119]方中达.植病研究方法(第3版)[M].北京:中国农业出版社,1998.
    [120]Long C A, Wu Z, Deng B X. Biological control of Penicillium italicum of citrus and botrytis cinerea of grape by strain 34-9 of Kloeckera apiculata[J]. Eur Food Res Technol, 2005,221:197-201.
    [121]刘起丽,张建新,徐瑞富等.柑橘皮内生细菌分离及柑橘青霉病菌拮抗菌筛选研究[J].中国农学通报,2011,27(28):235-239.
    [122]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [123]Weid I V, Durate G F, Van Elsas J D, et al. Paenibacillus brasillensis sp. nov., a novel nitrogen-fixing species isolated form the maize rhizosphere in maize[J]. Int. J. Syst. and Evol. Microbiol,2002,52:2147-2153.
    [124]石鹏君,柏映国,袁铁铮等.应用rpoB和16S rDNA基因的变性梯度凝胶电泳技术对山羊瘤胃细菌多样性的研究[J].微生物学报,2007,47(2):285-289.
    [125]罗建军,耿鹏,胡美英等.1株拮抗酵母菌对柑橘绿霉病菌的抑制作用[J].华中农业大学学报,2013,32(1):54-58.
    [126]柳春燕,郭敏,林学政等.拟康氏木霉和枯草芽孢杆菌对黄瓜枯萎病的协同防治作用[J].中国生物防治,2005,21(3):206-208.
    [127]刘大群.拮抗链霉菌防治马铃薯疮痂病的大田试验研究[J].植物病理学报,2000,30(3):33-36.
    [128]国家药典委员会.中华人民共和国药典(二部)[S].北京:化学工业出版社,2005:附录XIA抗生素微生物检定法.
    [129]袁伟,惠丰立,柯涛等.均匀设计法优化廉价型牛凝乳酶工程菌发酵培养基[J].食品科学,2011,32(7):258-261.
    [130]Zhao Y, Ruxandra C, Liu Z J, et al. Orthogonal optimization of Carboxydothermus hydrogenoformans culture medium for hydrogen production from carbon monoxide by biological water-gas shift reaction[J]. International Journal of Hydrogen Energy,2011,36 (17):10655-10665.
    [131]Lars E, Mats B, Anders L. Optimization of chondrogenic medium through the use of factorial design of experiments[J]. Bioresearch open access,2012,1 (6):306-313.
    [132]Namita G, Gauri M, Rani G A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology [J]. Canadian journal of microbiology,2004,50 (5):361-368.
    [133]Abdel-Fattah Y R. Optimization of thermostable lipase production from a thermophilic Geobacillus sp.using Box-Behnken experimental design[J]. Biotechnology Letters,2002, 24 (14):1217-1222.
    [134]万红贵,叶慧,陆彬等.L-鸟氨酸发酵培养基的中心复合法优化[J].生产与科研经验,2006,32(1):3740.
    [135]熊智强,徐平,涂国全.利用响应面法优化红谷霉素发酵培养基[J].微生物学通报,2006,4:5-9.
    [136]Charin T, Suphawat S, Masanori W, et al. A thermotolerant Streptomyces sp. Grown on agricultural waste and media optimization using mixture design and Plackett-Burman experimental design methods[J]. Biotechnology Letters,2002,24 (17):1437-1442.
    [137]Raza W, Yang W, Shen Q R. Paenibacillus polymyxa: Antibiotics, hydrolytic enzymes and hazard assessment[J]. Journal of plant pathology,2008,90 (3):419-430.
    [138]石志琦,胡梁斌,于淑池,等.细菌P2FS08的鉴定及其对几种植物病原真菌的拮抗作用[J].南京农业大学学报,2005,28(3):48-52.
    [139]张淑梅,沙长青,赵晓宇,等.一株抗真菌内生多粘芽孢杆菌的分离鉴定及对水稻恶苗病菌的抑制作用[J].中国生物工程杂志,2010,30(2):84-88.
    [140]赵德立,曾林子,李晖等.多粘芽孢杆菌JW-725抗菌活性物质及其发酵条件的初步研究[J].植物保护,2006,32(1):47-50.
    [141]R.V.Muralidhar. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemical engineering journal,2001,9:17-23.
    [142]王惠,昊兆亮,童应凯等.应用二次回归正交旋转组合设计优化黄霉素发酵培养基[J].食品研究与开发,2006,27(6):19-22.
    [143]梁英,何雯娟,韩鲁佳.二次回归正交旋转组合设计对黄芩多糖提取工艺的优化[J].食品科学,2009,30(24):104-107.
    [144]任召珍,郑媛,孙谧等.海洋侧孢短芽孢杆菌Lh-1抗菌活性物质的分离及特性研究[J].微生物学报,2007,47(6):997-1001.
    [145]何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究[J].中国水稻科学,2002,16(4):361-365.
    [146]陆颖健,董昕,刘姝等.海洋链霉菌GB-2抗细菌物质的溶解性质和分离纯化[J].食品科学,2008,29(7):306-310.
    [147]连玲丽,谢荔岩,郑璐平等.拮抗细菌SB1的鉴定及其抗菌物质的分析[J].微生物学通报,2010,37(7):986-991.
    [148]朱自强,关怡新,李勉.双水相系统在抗生素提取和合成中的应用[J].化工学报,2001,52(12):1039-1048.
    [149]高群,孟宪志,王志学.链霉菌M-1菌株所产抑菌活性物质特性的初步研究[J].中国微生态学杂志,2007,19(1):46-47.
    [150]李琳,李槿年,余为一.细菌分类鉴定方法的研究概况[J].安徽农业科学,2004,32(3):549-551.
    [151]范磊,张道敬,刘振华等.多粘类芽孢杆菌HY96-2产脂肽类抗真菌物质的研究[J].天然产物研究与开发,2012,24:729-735.
    [152]南楠,戚向阳,袁勇军.枯草芽孢杆菌WL17产抗菌物质的分离、分析及其抗菌特性研究[J].中国食品学报,2012,12(8):17-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700