用户名: 密码: 验证码:
基因表达谱芯片校正批次效应算法的比较及网络分析在精神分裂症研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因表达谱芯片作为一种高通量的基因组研究手段,在生物医学领域应用极其广阔。然而,每年有数以千计的基于芯片的研究,其数据都被“批次效应”所混杂。批次效应是指由于芯片在不同的实验批次处理而产生的系统误差。它在以前的芯片研究中鲜有提及。虽然批次效应可以通过缜密的实验设计缓解,但除非所有样本都可以在同一批次中处理完成,否则它不可能消除。
     我们首先从多个平台的实验数据中证明了了批次效应的存在,并且从多方面解析了该混杂效应对生物因素的严重影响。接下来我们从基因芯片的实验步骤入手,通过详细介绍基因芯片的实验过程,指出批次效应可能的来源。因为批次效应可以严重影响基因表达的实验结果,一系列校正批次的方法被发展出来。对目前比较流行的几种批次校正的方法,我们从方差比例,精度,准度,以及总体评价等方面进行了系统的比较,发现ComBat——一个基于经验贝叶斯的分析方法,多数指标优于其他五个算法,而且针对每个批次中含有样本量较小的数据时仍有优异的表现。我们推荐ComBat作为对不同批次的数据进行批次效应校正的最佳统计算法。另外我们还建议在比较重复样本和非重复样本之间关联的时候,有必要在探针水平进行标准化校正,从而降低非重复样本之间的被虚夸了的相关性。
     我们的另一部分工作是利用基因表达谱芯片数据探寻精神分裂症的发病机制。目前已经有很多基于基因表达谱芯片的精神分裂症的研究,发现了很多的候选基因,但几乎没有基因可以通过多重校正并且从不同的实验中重复出来。这可能是因为人类大脑基因表达的异质性或因为基因表达在病人中的改变较小.我们设想基于基因基因相互作用的网络或者通路会在病人大脑中的改变会更加一致,在这个研究中,我们利用基因共表达网络来分析不同来源的5组脑组织数据。
     首先我们对基因表达谱芯片数据进行了严格的质量控制,除了利用ComBat校正批次效应外,我们还通过MAS算法对探针质量进行控制,通过修改的RMA算法剔除单核苷酸多态位点对探针的影响,剔出种族差异对基因表达的影响等。之后我们通过基因共表达网络的方法构建基因网络,利用每组基因网络的特征向量,我们使用了两种不同的统计算法,校正年龄,性别,大脑pH值等变量后,挖掘是否存在某一组基因的表达水平变化与精神分裂症有强关联。
     结果发现在5组数据中,金属硫蛋白家族的部分基因,MT1E,MT1F,MT1G, MTIM, MTIX, MT2A的表达量在精神分裂症患者中都有显著的提高。如此一致的结果证明金属硫蛋白家族基因确实参与了精神分裂症发病的过程,或是病因,或是症状。金属硫蛋白富含半胱氨酸,在人体中的主要作用是通过结合重金属离子调节体内微量元素,以及神经受损后的免疫反应和氧化应激等。氧化应激已经被报道与精神分裂发病机制有关。已知重金属锌(Zn)在神经发育,情绪控制和保护细胞免受损伤等方面发挥作用。另外其他重金属,铜(Cu)也推测有精神分裂症有关。我们猜测重金属的调控失调,氧化应激和组织受损等可能参与在精神分裂症的发病机理之中。
     除此之外,我们还从遗传学和表观遗传学角度,分别利用eQTL的方法和DNA甲基化的数据对金属硫蛋白表达量变化进行了简要的分析。
The expression microarray is a frequently used approach to study gene expression on a genome-wide scale. However, the data produced by the thousands of microarray studies published annually are confounded by "batch effects," the systematic error introduced when samples are processed in multiple batches. Although batch effects can be reduced by careful experimental design, they cannot be eliminated unless the whole study is done in a single batch. We first stressed batch effects exist and confounded with biological factor in varies microarray platforms, then by outlining the experiment procedures, we pointed out the potential sources of batch effects. A number of programs are now available to adjust microarray data for batch effects prior to analysis. We systematically evaluated six of these programs using multiple measures of precision, accuracy and overall performance. ComBat, an Empirical Bayes method, outperformed the other five programs by most metrics. We also showed that it is essential to standardize expression data at the probe level when testing for correlation of expression profiles, due to a sizeable probe effect in microarray data that can inflate the correlation among replicates and unrelated samples.
     We then utilized the gene expression microarray to explore thepathogenesis of schizophrenia. Differential gene expression in schizophrenia brain have been pursued by multiple studies, and they yielded a long list of interesting candidate genes, but barely findings can survive multiple testing correction in at least one study and replicated in other studies. This is largely due to strong heterogeneity of gene expression in human brain and maybe minor changes in patients. We hypothesized that coordinated gene expression networks or pathways may have stronger and more robust changes in patient brains. In this study, we used the weighted co-expression network analysis to evaluate expression data of five brain gene expression studies.
     We first filtered data by strict quality control criteria:besides ComBat for batch correction, we also filtered out probe sets containing SNPs, with detection in less than 90% of samples, and without sufficient annotation.We removed samples of non-Caucasians and outliers from clustering method.A random sample is chosen from replicates.Wefound one module contained genes, MT1X, MT1E, MT1F, MT1G, MT1X and MT2A, which belong to metallothioneins(MT) gene family, were consistently significantly correlated with schizophrenia in five datasets with varied sample sources, and different microarray platforms. This robust change indicated their role in schizophreniaetiology or pathology. MT as one gene family enriched cysteine residues to bind heavy metals, such as zinc, copper, cadmium, mercury, involved in reactive oxygen species protection and stress adaption. Meanwhile, oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia, and zinc plays important roles in nerve development, mood control and preventing cell damage from oxidation; its supplement was considered as one schizophrenia treatment three decades ago. Those evidences are all related with MT's function in central neuron system, indicating MT's potential contribution in schizophrenia pathogenesis.
     We also tried to explore themechanism of MT's expression alternation in schizophrenia from genetics and epigenetics views, by eQTL method and DNA methylation data, separately.
引文
[1]P.O. Brown, D. Botstein. Exploring the new world of the genome with DNA microarrays[J]. Nature Genetics,1999,21:33-37
    [2]D. J. Lockhart, H. L. Dong, M. C. Byrne et al. Expression monitoring by hybridization to high-density oligonucleotide arrays[J]. Nature Biotechnology,1996, 14 (13):1675-1680
    [3]M. Schena, D. Shalon, R. W. Davis et al. Quantitative Monitoring of Gene-Expression Patterns with a Complementary-DNA Microarray[J]. Science,1995, 270 (5235):467-470
    [4]M. Schena, D. Shalon, R. Heller et al. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93 (20): 10614-10619
    [5]E. S. Lander. Array of hope[J]. Nature Genetics,1999,21:3-4
    [6]A. H. Sims. Bioinformatics and breast cancer:what can high-throughput genomic approaches actually tell us?[J]. Journal of Clinical Pathology,2009,62 (10):879-885
    [7]K. K. Dobbin, E. S. Kawasaki, D. W. Petersen et al. Characterizing dye bias in microarray experiments[J]. Bioinformatics,2005,21 (10):2430-2437
    [8]S. Frantz. An array of problems[J]. Nat Rev Drug Discov,2005,4(5):362-363
    [9]J. P. Ioannidis. Microarrays and molecular research:noise discovery?[J]. Lancet, 2005,365 (9458):454-455
    [10]R. A. Irizarry, D. Warren, F. Spencer et al. Multiple-laboratory comparison of microarray platforms[J]. Nat Methods,2005,2(5):345-350
    [11]E. Strauss. Arrays of hope[J]. Cell,2006,127 (4):657-659
    [12]Y. Tu, G. Stolovitzky, U. Klein. Quantitative noise analysis for gene expression microarray experiments [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99 (22):14031-14036
    [13]L. Ying, M. Sarwal. In praise of arrays[J]. Pediatr Nephrol,2009,24 (9): 1643-1659,1655,1659
    [14]O. Alter, P. O. Brown, D. Botstein. Singular value decomposition for genome-wide expression data processing and modeling[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97 (18): 10101-10106
    [15]M. Benito, J. Parker, Q. Du et al. Adjustment of systematic microarray data biasesfJ]. Bioinformatics,2004,20 (1):105-114
    [16]W. E. Johnson, C. Li, A. Rabinovic. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics,2007,8 (1):118-127
    [17]J. T. Leek, J. D. Storey. Capturing heterogeneity in gene expression studies by surrogate variable analysis[J]. Plos Genetics,2007,3 (9):1724-1735
    [18]C. Li, W. H. Wong. Model-based analysis of oligonucleotide arrays:Expression index computation and outlier detection[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98 (1):31-36
    [19]M. N. McCall, B. M. Bolstad, R. A. Irizarry. Frozen robust multiarray analysis (fRMA)[J]. Biostatistics,2010,11 (2):242-253
    [20]L. M. Shi, L. H. Reid, W. D. Jones et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements[J]. Nature Biotechnology,2006,24 (9):1151-1161
    [21]L. M. Shi, G. Campbell, W. D. Jones et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models[J]. Nature Biotechnology,2010:S5-S16
    [22]M. Chierici, K. Miclaus, S. Vega et al. An interactive effect of batch size and composition contributes to discordant results in GWAS with the CHIAMO genotyping algorithm[J]. Pharmacogenomics Journal,2010,10 (4):355-363
    [23]X. Fan, E. K. Lobenhofer, M. Chen et al. Consistency of predictive signature genes and classifiers generated using different microarray platforms[J]. Pharmacogenomics Journal,2010:S17-S27
    [24]H. Hong, L. Shi, Z. Suet al. Assessing sources of inconsistencies in genotypes and their effects on genome-wide association studies with HapMap samples[J]. Pharmacogenomics Journal,2010,10 (4):364-374
    [25]J. Luo, M. Schumacher, A. Scherer et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-Ⅱ microarray gene expression data[J]. Pharmacogenomics Journal,2010:S48-S61
    [26]K. Miclaus, M. Chierici, C. Lambert et al. Variability in GWAS analysis:the impact of genotype calling algorithm inconsistencies[J]. Pharmacogenomics Journal, 2010,10 (4):324-335
    [27]K. Miclaus, R. Wolfinger, S. Vega et al. Batch effects in the BRLMM genotype calling algorithm influence GWAS results for the Affymetrix 500K array[J]. Pharmacogenomics Journal,2010,10 (4):336-346
    [28]A. Oberthuer, D. Juraeva, L. Li et al. Comparison of performance of one-color and two-color gene-expression analyses in predicting clinical endpoints of neuroblastoma patients[J]. Pharmacogenomics Journal,2010:S28-S36
    [29]R. M. Parry, W. Jones, T. H. Stokes et al. k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction[J]. Pharmacogenomics Journal,2010,10 (4):292-309
    [30]W. Shi, M. Bessarabova, D. Dosymbekov et al. Functional analysis of multiple genomic signatures demonstrates that classification algorithms choose phenotype-related genes [J]. Pharmacogenomics Journal,2010,10 (4):310-323
    [31]L. Zhang, S. Yin, K. Miclaus et al. Assessment of variability in GWAS with CRLMM genotyping algorithm on WTCCC coronary artery disease[J]. Pharmacogenomics Journal,2010,10 (4):347-354
    [32]T. L. Fare, E. M. Coffey, H. Y. Dai et al. Effects of atmospheric ozone on microarray data quality[J]. Analytical Chemistry,2003,75 (17):4672-4675
    [33]R. Edgar, M. Domrachev, A. E. Lash. Gene Expression Omnibus:NCBI gene expression and hybridization array data repository [J]. Nucleic Acids Research,2002, 30 (1):207-210
    [34]D. G. Altman, J. M. Bland. How to randomise[J]. BMJ,1999,319 (7211): 703-704
    [35]G. T. Sica. Bias in research studies[J]. Radiology,2006,238 (3):780-789
    [36]K. M. Lee, J. H. Kim, D. Kang. Design issues in toxicogenomics using DNA microarray experiment[J]. Toxicol Appl Pharmacol,2005,207 (2 Suppl):200-208
    [37]Y. H. Yang, T. Speed. Design issues for cDNA microarray experiments [J]. Nature Reviews Genetics,2002,3 (8):579-588
    [38]J. Huang, R. Qi, J. Quackenbush et al. Effects of ischemia on gene expression[J]. Journal of Surgical Research,2001,99 (2):222-227
    [39]K. L. Thompson, P. S. Pine, B. A. Rosenzweig et al. Characterization of the effect of sample quality on high density oligonucleotide microarray data using progressively degraded rat liver RNA[J]. BMC Biotechnol,2007,7:57
    [40]M. J. Boedigheimer, R. D. Wolfinger, M. B. Bass et al. Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories[J]. BMC Genomics,2008,9:285
    [41]A. R. Whitney, M. Diehn, S. J. Popper et al. Individuality and variation in gene expression patterns in human blood[J]. Proc Natl Acad Sci U S A,2003,100 (4): 1896-1901
    [42]C. Ma, M. Lyons-Weiler, W. Liang et al. In vitro transcription amplification and labeling methods contribute to the variability of gene expression profiling with DNA microarrays[J]. J Mol Diagn,2006,8(2):183-192
    [43]M. C. Boelens, Meerman GJ Te, J. H. Gibcus et al. Microarray amplification bias: loss of 30% differentially expressed genes due to long probe-poly(A)-tail distances[J]. BMC Genomics,2007,8:277
    [44]Hoen PA T, F. de Kort, G. J. van Ommen et al. Fluorescent labelling of cRNA for microarray applications[J]. Nucleic Acids Res,2003,31 (5):e20
    [45]C. J. Schaupp, G. Jiang, T. G. Myers et al. Active mixing during hybridization improves the accuracy and reproducibility of microarray results[J]. Biotechniques, 2005,38 (1):117-119
    [46]W. S. Branham, C. D. Melvin, T. Han et al. Elimination of laboratory ozone leads to a dramatic improvement in the reproducibility of microarray gene expression measurements[J]. Bmc Biotechnology,2007,7
    [47]M. B. Satterfield, K. Lippa, Z. Q. Lu et al. Microarray scanner performance over a five-week period as measured with Cy5 and Cy3 serial dilution slides[J]. Journal of Research of the National Institute of Standards and Technology,2008,113 (3): 157-174
    [48]Y. H. Yang, M. J. Buckley, S. Dudoit et al. Comparison of methods for image analysis on cDNA microarray data[J]. Journal of Computational and Graphical Statistics,2002,11 (1):108-136
    [49]P. N. Furness, N. Taub, K. J. Assmann et al. International variation in histologic grading is large, and persistent feedback does not improve reproducibility[J]. Am J Surg Pathol,2003,27 (6):805-810
    [50]J. R. Pollack, C. M. Perou, A. A. Alizadeh et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays[J]. Nature Genetics,1999,23 (1): 41-46
    [51]J. G. Hacia, F. S. Collins. Mutational analysis using oligonucleotide microarrays[J]. Journal of Medical Genetics,1999,36 (10):730-736
    [52]Z. J. Liu, F. L. Mao, J. T. Guo et al. Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential[J]. Nucleic Acids Research,2005,33 (2):546-558
    [53]S. P. A. Fodor, J. L. Read, M. C. Pirrung et al. Light-Directed, Spatially Addressable Parallel Chemical Synthesis[J]. Science,1991,251 (4995):767-773
    [54]R. J. Lipshutz, S. P. Fodor, T. R. Gingeras et al. High density synthetic oligonucleotide arrays[J]. Nat Genet,1999,21 (1 Suppl):20-24
    [55]T. R. Hughes, M. Mao, A. R. Jones et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer[J]. Nature Biotechnology,2001, 19 (4):342-347
    [56]M. Lebl, C. Burger, B. Ellman et al. Fully automated parallel oligonucleotide synthesizer[J]. Collection of Czechoslovak Chemical Communications,2001,66 (8): 1299-1314
    [57]Y. Moreau, S. Aerts, B. De Mooret al. Comparison and meta-analysis of microarray data:from the bench to the computer desk[J]. Trends Genet,2003,19(10): 570-577
    [58]W. Huber, A. von Heydebreck, H. Sultmann et al. Variance stabilization applied to microarray data calibration and to the quantification of differential expression[J]. Bioinformatics,2002,18 Suppl 1:S96-S104
    [59]R. A. Irizarry, B. Hobbs, F. Collin et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data[J]. Biostatistics, 2003,4 (2):249-264
    [60]P. D. Lauren. Algorithm to model gene expression on Affymetrix chips without the use of MM cells[J]. IEEE Trans Nanobioscience,2003,2 (3):163-170
    [61]M. Milo, A. Fazeli, M. Niranjan et al. A probabilistic model for the extraction of expression levels from oligonucleotide arrays[J]. Biochem Soc Trans,2003,31 (Pt 6): 1510-1512
    [62]L. Zhang, M. F. Miles, K. D. Aldape. A model of molecular interactions on short oligonucleotide microarrays[J]. Nat Biotechnol,2003,21 (7):818-821
    [63]B. M. Bolstad, R. A. Irizarry, M. Astrand et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[J]. Bioinformatics,2003,19 (2):185-193
    [64]E. F. Petricoin, A. M. Ardekani, B. A. Hitt et al. Use of proteomic patterns in serum to identify ovarian cancer[J]. Lancet,2002,359 (9306):572-577
    [65]R. S. Spielman, L. A. Bastone, J. T. Burdick et al. Common genetic variants account for differences in gene expression among ethnic groups[J]. Nat Genet,2007, 39 (2):226-231
    [66]J. M. Akey, S. Biswas, J. T. Leek et al. On the design and analysis of gene expression studies in human populations[J]. Nat Genet,2007,39 (7):807-808, 808-809
    [67]K. A. Baggerly, S. R. Edmonson, J. S. Morriset al. High-resolution serum proteomic patterns for ovarian cancer detection[J]. Endocr Relat Cancer,2004,11(4): 583-584,585-587
    [68]D. B. Allison, X. Cui, G. P. Page et al. Microarray data analysis:from disarray to consolidation and consensus[J]. Nat Rev Genet,2006,7(1):55-65
    [69]B. H. Mecham, P. S. Nelson, J. D. Storey. Supervised normalization of microarrays[J]. Bioinformatics,2010,26 (10):1308-1315
    [70]J. T. Leek, R. B. Scharpf, H. C. Bravo et al. Tackling the widespread and critical impact of batch effects in high-throughput data[J]. Nat Rev Genet,2010,11 (10): 733-739
    [71]L. Dyrskjot, M. Kruhoffer, T. Thykjaer et al. Gene expression in the urinary bladder:a common carcinoma in situ gene expression signature exists disregarding histopathological classification[J]. Cancer Res,2004,64 (11):4040-4048
    [72]R. R. Kitchen, V. S. Sabine, A. H. Sims et al. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles[J]. Bmc Genomics,2010,11
    [73]Andreas Scherer. Batch Effects and Noise in Microarray Experiments:Sources and Solutions.[M]:John Wiley and Sons,2009
    [74]R. B. Scharpf, I. Ruczinski, B. Carvalho et al. A multilevel model to address batch effects in copy number estimation using SNP arrays[J]. Biostatistics,2011,12 (1):33-50
    [75]R. A. Gibbs, J. W. Belmont, P. Hardenbol et al. The International HapMap Project[J]. Nature,2003,426 (6968):789-796
    [76]D. M. Dick, T. Foroud, L. Flury et al. Genomewide linkage analyses of bipolar disorder:a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative[J]. Am J Hum Genet,2003,73 (1):107-114
    [77]R. McLendon, A. Friedman, D. Bigner et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J]. Nature, 2008,455 (7216):1061-1068
    [78]A. H. Sims, G. J. Smethurst, Y. Hey et al. The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets-improving meta-analysis and prediction of prognosis[J]. Bmc Medical Genomics, 2008,1:42
    [79]I. Hedenfalk, D. Duggan, Y. Chen et al. Gene-expression profiles in hereditary breast cancer[J]. N Engl J Med,2001,344 (8):539-548
    [80]G. E. Rodwell, R. Sonu, J. M. Zahn et al. A transcriptional profile of aging in the human kidney[J]. PLoS Biol,2004,2 (12):e427
    [81]P. D'Haeseleer, S. Liang, R. Somogyi. Genetic network inference:from co-expression clustering to reverse engineering[J]. Bioinformatics,2000,16 (8): 707-726
    [82]K. Dobbin, R. Simon. Sample size determination in microarray experiments for class comparison and prognostic classification[J]. Biostatistics,2005,6(1):27-38
    [83]N. Shah, J. Lepre, Y. Tu et al. Can we identify cellular pathways implicated in cancer using gene expression data?[J]. Proceedings of the 2003 Ieee Bioinformatics Conference,2003:94-103
    [84]S. Kikuchi, D. Tominaga, M. Arita et al. Dynamic modeling of genetic networks using genetic algorithm and S-system[J]. Bioinformatics,2003,19 (5):643-650
    [85]U. Klein, Y. H. Tu, G. A. Stolovitzky et al. Gene expression dynamics during germinal center transit in B cells[J]. Immune Mechanisms and Disease,2003,987: 166-172
    [86]C. L. Nutt, D. R. Mani, R. A. Betensky et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification[J]. Cancer Res,2003,63 (7):1602-1607
    [87]B. E. Perrin, L. Ralaivola, A. Mazurie et al. Gene networks inference using dynamic Bayesian networks[J]. Bioinformatics,2003,19 Suppl 2:i138-i148
    [88]G. Stolovitzky. Gene selection in microarray data:the elephant, the blind men and our algorithms[J]. Curr Opin Struct Biol,2003,13 (3):370-376
    [89]J. J. Rice, G. Stolovitzky, Y. H. Tu et al. Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions[J]. Biophysical Journal, 2003,84 (2):897-909
    [90]K. Basso, U. Klein, H. F. Niu et al. Tracking CD40 signaling during normal germinal center development by gene expression profiling[J]. Immune Mechanisms and Disease,2003,987:288-290
    [91]B. P. Durbin, J. S. Hardin, D. M. Hawkins et al. A variance-stabilizing transformation for gene-expression microarray data[J]. Bioinformatics,2002,18 Suppl 1:S105-S110
    [92]A. Mateos, J. Dopazo, R. Jansen et al. Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons[J]. Genome Research,2002,12 (11):1703-1715
    [93]B. N. Kholodenko, A. Kiyatkin, F. J. Bruggeman et al. Untangling the wires:a strategy to trace functional interactions in signaling and gene networks[J]. Proc Natl Acad Sci U S A,2002,99 (20):12841-12846
    [94]Y. Yang, Z. Zhang, Y. Li et al. Identifying cooperative transcription factors by combining ChIP-chip data and knockout data[J]. Cell Res,2010,20 (11):1276-1278
    [95]U. Klein, Y. H. Tu, G. A. Stolovitzky et al. Transcriptional analysis of the B cell germinal center reaction[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100 (5):2639-2644
    [96]R. Kuppers, U. Klein, I. Schwering et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling[J]. Journal of Clinical Investigation,2003,111 (4):529-537
    [97]P. S. Mischel, R. Shai, T. Shi et al. Identification of molecular subtypes of glioblastoma by gene expression profiling[J]. Oncogene,2003,22 (15):2361-2373
    [98]Q. H. Ye, L. X. Qin, M. Forgues et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning[J]. Nat Med,2003,9 (4):416-423
    [99]J. Powles, N. Day. Interpreting the global burden of disease.[J]. Lancet,2002, 360 (9343):1342-1343
    [100]U. Klein, Y. H. Tu, G. A. Stolovitzky et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells[J]. Journal of Experimental Medicine,2001,194 (11):1625-1638
    [101]A. A. Alizadeh, M. B. Eisen, R. E. Davis et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature,2000,403(6769): 503-511
    [102]P. R. Maycox, F. Kelly, A. Taylor et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function (vol 14, pg 1083,2009)[J]. Molecular Psychiatry,2009,14 (12):1146
    [1]Andreas Scherer. Batch Effects and Noise in Microarray Experiments:Sources and Solutions.[M]:John Wiley and Sons,2009
    [2]H. M. Kang, C. Ye, E. Eskin. Accurate Discovery of Expression Quantitative Trait Loci Under Confounding From Spurious and Genuine Regulatory Hotspots[J]. Genetics,2008,180 (4):1909-1925
    [3]W. E. Johnson, C. Li, A. Rabinovic. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics,2007,8(1):118-127
    [4]J. T. Leek, J. D. Storey. Capturing heterogeneity in gene expression studies by surrogate variable analysis[J]. Plos Genetics,2007,3(9):1724-1735
    [5]M. Benito, J. Parker, Q. Du et al. Adjustment of systematic microarray data biases[J]. Bioinformatics,2004,20 (1):105-114
    [6]O. Alter, P. O. Brown, D. Botstein. Singular value decomposition for genome-wide expression data processing and modeling[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97 (18): 10101-10106
    [7]J. Luo, M. Schumacher, A. Scherer et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-Ⅱ microarray gene expression data[J]. Pharmacogenomics Journal,2010:S48-S61
    [8]A. H. Sims, G. J. Smethurst, Y. Hey et al. The removal of multiplicative, systematic bias allows integration of breast cancer gene expression datasets-improving meta-analysis and prediction of prognosis[J]. Bmc Medical Genomics, 2008.1
    [9]E. F. Torrey, M. Webster, M. Knable et al. The Stanley Foundation brain collection and Neuropathology Consortium[J]. Schizophrenia Research,2000,44(2): 151-155
    [10]Affymetrix. Affymetrix Expression Console Software website[J],2011 (Jan.28)
    [11]D. D. Zhang, L. J. Cheng, J. A. Badner et al. Genetic Control of Individual Differences in Gene-Specific Methylation in Human Brain[J]. American Journal of Human Genetics,2010,86 (3):411-419
    [12]C. Li, W. H. Wong. Model-based analysis of oligonucleotide arrays:Expression index computation and outlier detection[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98 (1):31-36
    [13]R. A. Irizarry, B. Hobbs, F. Collin et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data[J]. Biostatistics, 2003,4 (2):249-264
    [14]M. J. Boedigheimer, R. D. Wolfinger, M. B. Bass et al. Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories[J]. BMC Genomics,2008,9:285
    [15]K.O. McGraw, S. P. Wong. Forming inferences about some intraclass correlation coefficients[J]. Psychological Methods,1996,1(1):30-46
    [16]M. N. McCall, R. A. Irizarry. Consolidated strategy for the analysis of microarray spike-in data[J]. Nucleic Acids Research,2008,36 (17)
    [17]T. Sing, O. Sander, N. Beerenwinkel et al. ROCR:visualizing classifier performance in R[J]. Bioinformatics,2005,21 (20):3940-3941
    [18]J. A. Hanley, B. J. Mcneil. A Method of Comparing the Areas under Receiver Operating Characteristic Curves Derived from the Same Cases[J]. Radiology,1983, 148 (3):839-843
    [19]Derek H. Ogle. NCStats:Helper Functions for Statistics at Northland College[J]. R package version 0.2-0,2010 (2011 Jan.28)
    [20]R. A. Irizarry, D. Warren, F. Spencer et al. Multiple-laboratory comparison of microarray platforms[J]. Nat Methods,2005,2(5):345-350
    [21]L. M. Shi, G. Campbell, W. D. Jones et al. The MicroArray Quality Control (MAQC)-Ⅱ study of common practices for the development and validation of microarray-based predictive models[J]. Nature Biotechnology,2010:S5-S16
    [22]R. B. Scharpf, I. Ruczinski, B. Carvalho et al. A multilevel model to address batch effects in copy number estimation using SNP arrays[J]. Biostatistics,2011,12 (1):33-50
    [23]J. Lamb, E. D. Crawford, D. Peck et al. The connectivity map:Using gene-expression signatures to connect small molecules, genes, and disease[J]. Science, 2006,313 (5795):1929-1935
    [24]E. S. Lander. Array of hope[J]. Nature Genetics,1999,21:3-4
    [25]J. T. Leek, R. B. Scharpf, H. C. Bravoet al. Tackling the widespread and critical impact of batch effects in high-throughput data[J]. Nat Rev Genet,2010,11 (10) 733-739
    [26]R. R. Kitchen, V. S. Sabine, A. H. Sims et al. Correcting for intra-experiment variation in Illumina BeadChip data is necessary to generate robust gene-expression profiles[J]. Bmc Genomics.2010,11
    [27]R. S. Spielman, L. A. Bastone, J. T. Burdick et al. Common genetic variants account for differences in gene expression among ethnic groups[J]. Nat Genet,2007, 39 (2):226-231
    [1]S. Miyamoto, A. S. LaMantia, G. E. Duncan et al. Recent advances in the neurobiology of schizophrenia[J]. Mol Interv,2003,3(1):27-39
    [2]T. J. Crow. The two-syndrome concept:origins and current status[J]. Schizophr Bull,1985,11 (3):471-486
    [3]K. T. Mueser, S. R. McGurk. Schizophrenia[J]. Lancet,2004,363 (9426): 2063-2072
    [4]J. McGrath, S. Saha, D. Chant et al. Schizophrenia:a concise overview of incidence, prevalence, and mortality[J]. Epidemiol Rev,2008,30:67-76
    [5]D. J. Castle, S. Wessely, R. M. Murray. Sex and schizophrenia:effects of diagnostic stringency, and associations with and premorbid variables[J]. Br J Psychiatry,1993,162:658-664
    [6]J. Perala, J. Suvisaari, S. I. Saarni et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population[J]. Arch Gen Psychiatry,2007,64 (1): 19-28
    [7]J. Rabe-Jablonska, W. Bienkiewicz. [Anxiety disorders in the fourth edition of the classification of mental disorders prepared by the American Psychiatric Association: diagnostic and statistical manual of mental disorders (DMS-Ⅳ--options book][J]. Psychiatr Pol,1994,28 (2):255-268
    [8]P. Pichot. [DSM-Ⅲ:the 3d edition of the Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric Association][J]. Rev Neurol (Paris), 1986,142 (5):489-499
    [9]N. Owens. P. D. McGorry. Seasonality of symptom onset in first-episode schizophrenia[J]. Psychol Med,2003,33 (1):163-167
    [10]M. Burmeister, M. G. Mclnnis, S. Zollner. Psychiatric genetics:progress amid controversy [J]. Nat Rev Genet,2008,9(7):527-540
    [11]E. Susser, R. Neugebauer, H. W. Hoek et al. Schizophrenia after prenatal famine. Further evidence[J]. Arch Gen Psychiatry,1996,53 (1):25-31
    [12]Clair D. St, M. Xu. P. Wang et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961 [J]. JAMA,2005,294 (5): 557-562
    [13]A. S. Nord, W. Roeb, D. E. Dickel et al. Reduced transcript expression of genes affected by inherited and de novo CNVs in autism[J]. Eur J Hum Genet,2011: 727-731
    [14]S. E. McCarthy, V. Makarov, G. Kirov et al. Microduplications of 16p11.2 are associated with schizophrenia[J]. Nat Genet,2009,41 (11):1223-1227
    [15]D. R. Grayson, Y. Chen, E. Costa et al. The human reelin gene:transcription factors (+), repressors (-) and the methylation switch (+/-) in schizophrenia[J]. Pharmacol Ther,2006,111 (1):272-286
    [16]N. S. Kosower, L. Gerad, M. Goldstein et al. Constitutive heterochromatin of chromosome 1 and Duffy blood group alleles in schizophrenia[J]. Am J Med Genet, 1995,60 (2):133-138
    [17]B. Regland, B. V. Johansson, B. Grenfeldt et al. Homocysteinemia is a common feature of schizophrenia[J]. J Neural Transm Gen Sect,1995,100 (2):165-169
    [18]A. Petronis, I. I. Gottesman, P. Kan et al. Monozygotic twins exhibit numerous epigenetic differences:clues to twin discordance?[J]. Schizophr Bull,2003,29 (1): 169-178
    [19]M. F. Fraga, E. Ballestar, M. F. Paz et al. Epigenetic differences arise during the lifetime of monozygotic twins[J]. Proc Natl Acad Sci U S A,2005,102 (30): 10604-10609
    [20]R. P. Sharma. Schizophrenia, epigenetics and ligand-activated nuclear receptors: a framework for chromatin therapeutics[J]. Schizophr Res,2005,72 (2-3):79-90
    [21]S. Inoue, M. Oishi. Effects of methylation of non-CpG sequence in the promoter region on the expression of human synaptotagmin XI (sytll)[J]. Gene,2005,348: 123-134
    [22]K. Iwamoto, M. Bundo, K. Yamada et al. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia[J]. J Neurosci,2005,25 (22):5376-5381
    [23]M. Shimabukuro, T. Sasaki, A. Imamura et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia:a potential link between epigenetics and schizophrenia[J]. J Psychiatr Res,2007,41(12):1042-1046
    [24]Y. Hakak, J. R. Walker, C. Li et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia[J]. Proc Natl Acad Sci U S A,2001,98 (8):4746-4751
    [25]C. Aston, L. Jiang, B. P. Sokolov. Microarray analysis of postmortem temporal cortex from patients with schizophrenia[J]. J Neurosci Res,2004,77 (6):858-866
    [26]S. Prabakaran, J. E. Swatton, M. M. Ryan et al. Mitochondrial dysfunction in schizophrenia:evidence for compromised brain metabolism and oxidative stress[J]. Mol Psychiatry,2004,9 (7):684-697,643
    [27]D. Tkachev, M. L. Mimmack, M. M. Ryan et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder[J]. Lancet,2003,362 (9386):798-805
    [28]T. Sugai, M. Kawamura, S. Iritani et al. Prefrontal abnormality of schizophrenia revealed by DNA microarray:impact on glial and neurotrophic gene expression [J]. Ann N Y Acad Sci,2004,1025:84-91
    [29]V. Haroutunian, P. Katsel, S. Dracheva et al. Variations in oligodendrocyte-related gene expression across multiple cortical regions:implications for the pathophysiology of schizophrenia[J]. Int J Neuropsychopharmacol,2007,10 (4):565-573
    [30]S. N. Mitkus, T. M. Hyde, R. Vakkalanka et al. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia[J]. Schizophr Res,2008,98 (1-3):129-138
    [31]P. R. Maycox, F. Kelly, A. Taylor et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function (vol 14, pg 1083,2009)[J]. Molecular Psychiatry,2009,14 (12):1146
    [32]C. S. Karam, J. S. Ballon, N. M. Bivens et al. Signaling pathways in schizophrenia:emerging targets and therapeutic strategies[J]. Trends Pharmacol Sci, 2010,31 (8):381-390
    [33]M. P. Vawter, T. Barrett, C. Cheadle et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia[J]. Brain Res Bull,2001,55(5): 641-650
    [34]S. Dracheva, S. L. Elhakem, S. R. McGurk et al. GAD67 and GAD65 mRNA and protein expression in cerebrocortical regions of elderly patients with schizophrenia[J]. J Neurosci Res,2004,76 (4):581-592
    [35]A. Uezato, J. H. Meador-Woodruff, R. E. McCullumsmith. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia[J]. Bipolar Disord,2009,11 (7): 711-725
    [36]B. K. Bitanihirwe, M. P. Lim, J. F. Kelley et al. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia[J]. BMC Psychiatry.2009,9:71
    [37]C. A. Altar, L. W. Jurata, V. Charles et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts[J]. Biol Psychiatry,2005,58 (2):85-96
    [38]K. Iwamoto, M. Bundo, T. Kato. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis[J]. Hum Mol Genet,2005,14 (2): 241-253
    [39]F. A. Middleton, L. Peng, D. A. Lewis et al. Altered expression of 14-3-3 genes in the prefrontal cortex of subjects with schizophrenia[J]. Neuropsychopharmacology, 2005,30 (5):974-983
    [40]K. Mimics, F. A. Middleton, A. Marquez et al. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex[J]. Neuron,2000,28 (1):53-67
    [41]K. Mimics, F. A. Middleton, G. D. Stanwood et al. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia[J]. Mol Psychiatry,2001,6 (3):293-301
    [42]D. Arion, T. Unger, D. A. Lewis et al. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia[J]. Biol Psychiatry,2007,62 (7):711-721
    [43]E. Vilella, J. Costas, J. Sanjuan et al. Association of schizophrenia with DTNBP1 but not with DAO, DAOA, NRG1 and RGS4 nor their genetic interaction[J]. J Psychiatr Res,2008,42 (4):278-288
    [44]J. M. Rethelyi, S. C. Bakker, P. Polgar et al. Association study of NRG 1, DTNBP1, RGS4, G72/G30, and PIP5K2A with schizophrenia and symptom severity in a Hungarian sample[J]. Am J Med Genet B Neuropsychiatr Genet,2010,153B (3): 792-801
    [45]H. Ishiguro, Y. Horiuchi, M. Koga et al. RGS4 is not a susceptibility gene for schizophrenia in Japanese:association study in a large case-control population[J]. Schizophr Res,2007,89 (1-3):161-164
    [46]L. Ding, A. N. Hegde. Expression of RGS4 splice variants in dorsolateral prefrontal cortex of schizophrenic and bipolar disorder patients[J]. Biol Psychiatry, 2009,65 (6):541-545
    [47]J. W. Buckholtz, A. Meyer-Lindenberg, R. A. Honea et al. Allelic variation in RGS4 impacts functional and structural connectivity in the human brain[J]. J Neurosci, 2007.27 (7):1584-1593
    [48]K. V. Chowdari, M. Bamne, J. Wood et al. Linkage disequilibrium patterns and functional analysis of RGS4 polymorphisms in relation to schizophrenia[J]. Schizophr Bull,2008,34 (1):118-126
    [49]L. Emilsson, P. Saetre, E. Jazin. Low mRNA levels of RGS4 splice variants in Alzheimer's disease:association between a rare haplotype and decreased mRNA expression[J]. Synapse,2006,59 (3):173-176
    [50]T. Ohtsuki, Y. Horiuchi, M. Koga et al. Association of polymorphisms in the haplotype block spanning the alternatively spliced exons of the NTNG1 gene at 1p13.3 with schizophrenia in Japanese populations[J]. Neurosci Lett,2008,435 (3): 194-197
    [51]S. L. Eastwood, A. J. Law, I. P. Everall et al. The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology[J].Mol Psychiatry,2003,8 (2):148-155
    [52]D. Arion, S. Horvath, D. A. Lewis et al. Infragranular gene expression disturbances in the prefrontal cortex in schizophrenia:signature of altered neural development?[J]. Neurobiol Dis,2010,37 (3):738-746
    [53]S.J. Huffaker, J. Chen, K. K. Nicodemus et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia[J]. Nat Med,2009,15 (5):509-518
    [54]L. Shao, M. V. Martin, S. J. Watson et al. Mitochondrial involvement in psychiatric disorders[J]. Ann Med,2008,40 (4):281-295
    [55]P. Saetre, L. Emilsson, E. Axelsson et al. Inflammation-related genes up-regulated in schizophrenia brains[J]. BMC Psychiatry,2007,7:46
    [56]L. Shao, M. P. Vawter. Shared gene expression alterations in schizophrenia and bipolar disorder[J].Biol Psychiatry,2008,64 (2):89-97
    [57]S. Kim, K. H. Choi, A. F. Baykiz et al. Suicide candidate genes associated with bipolar disorder and schizophrenia:an exploratory gene expression profiling analysis of post-mortem prefrontal cortex[J]. BMC Genomics,2007,8:413
    [58]K. H. Choi, M. Elashoff, B. W. Higgs et al. Putative psychosis genes in the prefrontal cortex:combined analysis of gene expression microarrays[J]. BMC Psychiatry,2008,8:87
    [59]B. Rollins, M. V. Martin, L. Morgan et al. Analysis of whole genome biomarker expression in blood and brain[J]. Am J Med Genet B Neuropsychiatr Genet,2010, 153B (4):919-936
    [60]V. Z. Chong, M. Thompson, S. Beltaifa et al. Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients[J]. Schizophr Res,2008,100 (1-3):270-280
    [61]G. Kirov, D. Ivanov, N. M. Williams et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria[J]. Biol Psychiatry,2004,55 (10):971-975
    [62]Y. C. Chagnon, M. A. Roy, A. Bureau et al. Differential RNA expression between schizophrenic patients and controls of the dystrobrevin binding protein 1 and neuregulin 1 genes in immortalized lymphocytes[J]. Schizophr Res,2008,100 (1-3): 281-290
    [63]S. V. Mathew, A. J. Law, B. K. Lipska et al. Alpha7 nicotinic acetylcholine receptor mRNA expression and binding in postmortem human brain are associated with genetic variation in neuregulin 1 [J]. Hum Mol Genet,2007,16 (23):2921-2932
    [64]S. J. Glatt, I. P. Everall, W. S. Kremen et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia[J]. Proc Natl Acad Sci U S A,2005,102 (43): 15533-15538
    [65]M. T. Tsuang, N. Nossova, T. Yager et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder:a preliminary report[J]. Am J Med Genet B Neuropsychiatr Genet,2005,133B (1):1-5
    [66]M. R. Kuzman, V. Medved, J. Terzic et al. Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia[J]. J Psychiatr Res, 2009,43 (13):1073-1077
    [67]S. M. Kurian, H. Le-Niculescu, S. D. Patel et al. Identification of blood biomarkers for psychosis using convergent functional genomics[J]. Mol Psychiatry, 2011,16 (1):37-58
    [68]M. Takahashi, H. Hayashi, Y. Watanabe et al. Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures[J]. Schizophr Res,2010,119 (1-3):210-218
    [69]M. R. Kuzman, V. Medved, J. Terzic et al. Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia[J]. J Psychiatr Res, 2009,43 (13):1073-1077
    [70]M. P. Vawter, E. Ferran, B. Galke et al. Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree[J]. Schizophr Res, 2004.67 (1):41-52
    [71]M. P. Vawter, Weickert C. Shannon, E. Ferran et al. Gene expression of metabolic enzymes and a protease inhibitor in the prefrontal cortex are decreased in schizophrenia[J]. Neurochem Res,2004,29 (6):1245-1255
    [72]M. Mistry, P. Pavlidis. A cross-laboratory comparison of expression profiling data from normal human postmortem brain[J]. Neuroscience,2010,167 (2):384-395
    [73]M. Elashoff, B. W. Higgs, R. H. Yolkenet al. Meta-analysis of 12 genomic studies in bipolar disorder[J]. J Mol Neurosci,2007,31 (3):221-243
    [74]S. Mexal, R. Berger, C. E. Adams et al. Brain pH has a significant impact on human postmortem hippocampal gene expression profiles[J]. Brain Res,2006,1106 (1):1-11
    [75]S. Weis, I. C. Llenos, J. R. Dulay et al. Quality control for microarray analysis of human brain samples:The impact of postmortem factors, RNA characteristics, and histopathology[J].J Neurosci Methods,2007,165 (2):198-209
    [76]B. Rollins, M. V. Martin, P. A. Sequeira et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder[J]. PLoS One,2009,4 (3):e4913
    [77]N. D. Halim, B. K. Lipska, T. M. Hyde et al. Increased lactate levels and reduced pH in postmortem brains of schizophrenics:medication confounds[J]. J Neurosci Methods,2008,169 (1):208-213
    [78]H. Tomita, M. P. Vawter, D. M. Walsh et al. Effect of agonal and postmortem factors on gene expression profile:quality control in microarray analyses of postmortem human brain [J]. Biol Psychiatry,2004,55 (4):346-352
    [79]M. P. Vawter, H. Tomita, F. Meng et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state:implications for brain disorders[J]. Mol Psychiatry,2006,11 (7):615,663-679
    [80]T. D. Cannon. Neurodevelopment and the transition from schizophrenia prodrome to schizophrenia:research imperatives[J]. Biol Psychiatry,2008,64 (9): 737-738
    [81]A. Torkamani, B. Dean, N. J. Schork et al. Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia[J]. Genome Res,2010,20 (4):403-412
    [82]C. Colantuoni, T. M. Hyde, S. Mitkus et al. Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex[J]. Brain Struct Funct,2008,213 (1-2):255-271
    [83]L. W. Harris, H. E. Lockstone, P. Khaitovich et al. Gene expression in the prefrontal cortex during adolescence:implications for the onset of schizophrenia[J]. BMC Med Genomics,2009,2:28
    [84]S. Narayan, S. R. Head, T. J. Gilmartin et al. Evidence for disruption of sphingolipid metabolism in schizophrenia[J]. J Neurosci Res,2009,87 (1):278-288
    [85]S. Narayan, B. Tang, S. R. Head et al. Molecular profiles of schizophrenia in the CNS at different stages of illness[J]. Brain Res,2008,1239:235-248
    [86]E. F. Torrey, M. Webster, M. Knable et al. The Stanley Foundation brain collection and Neuropathology Consortium[J]. Schizophrenia Research,2000,44(2): 151-155
    [87]A. L. Barabasi. Scale-free networks:a decade and beyond[J]. Science,2009,325 (5939):412-413
    [88]E. Ravasz, A. L. Somera, D. A. Mongru et al. Hierarchical organization of modularity in metabolic networks[J]. Science,2002,297 (5586):1551-1555
    [89]P. Langfelder, B. Zhang, S. Horvath. Defining clusters from a hierarchical cluster tree:the Dynamic Tree Cut package for R[J]. Bioinformatics,2008,24 (5):719-720
    [90]J. Dong, S. Horvath. Understanding network concepts in modules[J]. BMC Syst Biol,2007,1:24
    [91]Y. Gilad, S. A. Rifkin, J. K. Pritchard. Revealing the architecture of gene regulation:the promise of eQTL studies[J]. Trends Genet,2008,24 (8):408-415
    [92]E. B. Lewis. The Relation of Repeats to Position Effect in Drosophila Melanogaster[J]. Genetics,1945,30 (2):137-166
    [93]G. A. Wray, M. W. Hahn, E. Abouheif et al. The evolution of transcriptional regulation in eukaryotes[J]. Mol Biol Evol,2003,20 (9):1377-1419
    [94]E. Birney, J. A. Stamatoyannopoulos, A. Dutta et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project[J]. Nature,2007,447 (7146):799-816
    [95]J. N. Hirschhorn, M. J. Daly. Genome-wide association studies for common diseases and complex traits[J]. Nat Rev Genet,2005,6 (2):95-108
    [96]N. Risch, K. Merikangas. The future of genetic studies of complex human diseases[J]. Science,1996,273 (5281):1516-1517
    [97]B. Devlin, K. Roeder. Genomic control for association studies[J]. Biometrics, 1999,55 (4):997-1004
    [98]A. L. Price, N. J. Patterson, R. M. Plenge et al. Principal components analysis corrects for stratification in genome-wide association studies[J]. Nat Genet,2006,38 (8):904-909
    [99]P. J. Wittkopp, B. K. Haerum, A. G. Clark. Regulatory changes underlying expression differences within and between Drosophila species[J]. Nat Genet,2008,40 (3):346-350
    [100]D. Serre, S. Gurd, B. Geet al. Differential allelic expression in the human genome:a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression[J]. PLoS Genet,2008,4 (2):e1000006
    [101]S. Purcell, B. Neale, K. Todd-Brown et al. PLINK:a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet,2007,81(3): 559-575
    [102]J. D. Storey, R. Tibshirani. Statistical methods for identifying differentially expressed genes in DNA microarrays[J]. Methods Mol Biol,2003,224:149-157
    [103]J. D. Storey, R. Tibshirani. Statistical significance for genomewide studies[J]. Proc Natl Acad Sci U S A,2003,100 (16):9440-9445
    [104]R. B. Brem, L. Kruglyak. The landscape of genetic complexity across 5,700 gene expression traits in yeast[J]. Proc Natl Acad Sci U S A,2005,102 (5): 1572-1577
    [105]M. C. Oldham, G. Konopka, K. Iwamoto et al. Functional organization of the transcriptome in human brain[J]. Nat Neurosci,2008,11 (11):1271-1282
    [106]J. D. Cahoy, B. Emery, A. Kaushal et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes:a new resource for understanding brain development and function[J]. J Neurosci,2008,28 (1):264-278
    [107]J. H. KAGI, B. L. VALLEE. Metallothionein:a cadmium and zinc-containign protein from equine renal cortex. Ⅱ. Physico-chemical properties [J]. J Biol Chem, 1961,236:2435-2442
    [108]P. Moffatt, F. Denizeau. Metallothionein in physiological and physiopathological processes[J]. Drug Metab Rev,1997.29 (1-2):261-307
    [109]R. D. Palmiter, S. D. Findley, T. E. Whitmore et al. MT-Ⅲ, a brain-specific member of the metallothionein gene family [J]. Proc Natl Acad Sci U S A,1992,89 (14):6333-6337
    [110]C. J. Quaife, S. D. Findley, J. C. Erickson et al. Induction of a new metallothionein isoform (MT-Ⅳ) occurs during differentiation of stratified squamous epithelia[J]. Biochemistry,1994,33 (23):7250-7259
    [111]M. V. Campagne, H. Thibodeaux, N. van Bruggen et al. Increased binding activity at an antioxidant-responsive element in the metallothionein-1 promoter and rapid induction of metallothionein-1 and -2 in response to cerebral ischemia and reperfusion[J]. J Neurosci,2000,20 (14):5200-5207
    [112]P. F. Searle, B. L. Davison, G. W. Stuart et al. Regulation, linkage, and sequence of mouse metallothionein I and II genes[J]. Mol Cell Biol,1984,4 (7): 1221-1230
    [113]Y. M. Chuah, M. T. Maybery. Verbal and spatial short-term memory:common sources of developmental change?[J]. J Exp Child Psychol,1999,73 (1):7-44
    [114]J. R. Duguid, C. W. Bohmont, N. G. Liu et al. Changes in brain gene expression shared by scrapie and Alzheimer disease[J]. Proc Natl Acad Sci U S A,1989,86(18): 7260-7264
    [115]T. Kawashima, K. Doh-ura, M. Torisu et al. Differential expression of metallothioneins in human prion diseases[J]. Dement Geriatr Cogn Disord,2000,11 (5):251-262
    [116]H. G. Blaauwgeers, Chand M. Anwar, F. M. van den Berget al. Expression of different metallothionein messenger ribonucleic acids in motor cortex, spinal cord and liver from patients with amyotrophic lateral sclerosis[J]. J Neurol Sci,1996,142(1-2): 39-44
    [117]M. Penkowa, C. Espejo, A. Ortega-Aznar et al. Metallothionein expression in the central nervous system of multiple sclerosis patients[J]. Cell Mol Life Sci,2003, 60 (6):1258-1266
    [118]K. Suzuki, K. Nakajima, N. Otaki et al. Localization of metallothionein in aged human brain[J]. Pathol Int,1994,44 (1):20-26
    [119]A. K. West, J. Hidalgo, D. Eddins et al. Metallothionein in the central nervous system:Roles in protection, regeneration and cognition[J]. Neurotoxicology,2008,29 (3):489-503
    [120]F. E. Dewey, M. V. Perez, M. T. Wheeler et al. Gene coexpression network topology of cardiac development, hypertrophy, and failure[J]. Circ Cardiovasc Genet. 2011,4 (1):26-35
    [121]J. A. Mumford, S. Horvath, M. C. Oldham et al. Detecting network modules in fMRI time series:a weighted network analysis approach[J]. Neuroimage,2010,52(4): 1465-1476
    [122]C. G. Saris, S. Horvath, P. W. van Vught et al. Weighted gene co-expression network analysis of the peripheral blood from Amyotrophic Lateral Sclerosis patients[J]. BMC Genomics,2009,10:405
    [123]A. Li, S. Horvath. Network module detection:Affinity search technique with the multi-node topological overlap measure[J]. BMC Res Notes,2009.2:142
    [124]N. K. MacLennan, J. Dong, J. E. Aten et al. Weighted gene co-expression network analysis identifies biomarkers in glycerol kinase deficient mice[J]. Mol Genet Metab,2009,98 (1-2):203-214
    [125]A. P. Presson, E. M. Sobel, J. C. Papp et al. Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome[J]. BMC Syst Biol,2008,2:95
    [126]S. Horvath, J. Dong. Geometric interpretation of gene coexpression network analysis[J].PLoS Comput Biol,2008,4 (8):e1000117
    [127]A. Ghazalpour, S. Doss, B. Zhang et al. Integrating genetic and network analysis to characterize genes related to mouse weight[J]. PLoS Genet,2006,2(8): e130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700