用户名: 密码: 验证码:
Cu-ZSM-5催化NOx直接分解反应机理的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展,氮氧化物逐渐成为大气主要污染物之一,如何有效降解NOx受到了广泛关注。前人大量经验总结表明催化还原方法是消除贫燃发动机尾气中NOx的有效方法之一。但仅用实验方法很难深入研究其具体吸附、分解等机理。
     本研究首先利用密度泛函(DFT)等理论方法对Cu+在ZSM-5分子筛内的位置进行了系统地研究,并在此基础上详细考察了NOx分子(NO,N2O,NO2)在Cu-ZSM-5中不同铜负载位上的吸附。研究采用包含完整直孔道、正弦孔道以及孔道交叉处的22T模型,确定了Cu+在ZSM-5内的三种可能位置:直孔道内(Ⅰ位)、孔道交叉处(Ⅱ位)和正弦孔道内(Ⅲ位)。结构数据表明,Cu+与2-3个骨架氧原子配位结合于ZSM-5分子筛内。在Cu-ZSM-5吸附NOx的过程中由Cu+和分子筛骨架向吸附质分子转移电子,使其带部分负电荷,从而不同程度地削弱了NO、分子中的N-N键和N-O键,使其键长增长。在所有铜位置中,NOx在铜Ⅱ位吸附对其活化作用最强,表明进一步的催化反应很有可能发生在Cu-ZSM-5的孔道交叉处。
     在系统考察了NOx分子(NO,N2O,NO2)在Cu-ZSM-5中不同铜位上的吸附之后,深入的研究了NO、分子在孔道交叉处(II位)可能发生的生成及分解反应。分别详细计算了NO、N2O、N02的生成与分解等NOx分解反应的中间过程,并整理出NOx催化分解的具体步骤。首先是NO在催化活性中心Cu*上吸附并分解生成吸附态的0和一分子N20,之后N20有两种分解可能:1)进一步与S*O生成N2+O2;2)直接分解生成N2和吸附态的O。随着反应继续进行,吸附态的0与NO发生反应生成N02,之后NO2继续被催化分解,从而形成一个活性的反应循环。
Due to the development of modern industry, various nitrogen oxides have become one of the most crucial gases to our environment. Therefore how to clear up NOx has been an extremely concerned project for various countries.
     In this work location of Cu+in Cu-ZSM-5 was studied using density functional theory method with a 22T model containing the straight and sinusoidal channels as well as the channel intersection of ZSM-5. It was found that Cu+is stabilized in ZSM-5 by forming two or three Cu-0 bonds with the zeolite framework oxygen atoms. Three stable sites were identified for Cu+in the ZSM-5 framework, i.e.; in the straight channel (type I site), in the sinusoidal channel (type III site) and in the intersection region of these two channels (type II site).
     The adsorption of NOx molecules (NO, N2O, NO2) in different Cu+sites of Cu-ZSM-5 showed that the molecules acquired negative charges, indicating aπback donation of d electrons of Cu+toπ* antibonding orbital of the adsorbed molecules. The optimization of the adsorption complexes of NO and NO2 on type I and III Cu+ sites reached the same equilibrium geometry. Among the three Cu+sites, NOx molecules are most negatively charged in the complexes involving type II site, which indicates that the molecules are most significantly activated on this site, and therefore the catalytic reaction might occur in the intersection region of ZSM-5.
     Based on this, the produce and decomposition of NOx molecules on the Cu+ center of the intersection region of Cu-ZSM-5 was investigated in details, and the catalytic reaction cycle of NOx was determined. It was found that the initial step of the reaction is that NO adsobed on the Cu+site and decomposed to adsorobed 0 (S*O) and N2O. The following decompsition of the adsorbed N2O has two possible ways:1) reacts with S*O to produce N2+O2; 2) decompses to N2 and adsorbed O, and then the adsorbed O could reaction with the new adsorbed NO to produce NO2. NO2 was then decomposed to complete the reaction cycle.
引文
1.吕君英,龚凡,郭亚平.选择性催化还原NOx的反应机理研究[J].工业催化,2006,14(1):40-44.
    2. FOKERMA M D, YING J Y. Mechanistic study of the selective catalytic reduction of nitric oxide with methane over yttrium oxide [J]. Journal of Catalysis,2000,192(1):54-63.
    3.吕君英,龚凡,郭亚平.选择性催化还原NOx的反应机理研究[J].工业催化,2006,14(1):40-44.
    4. FOKERMA M D, YING J Y. Mechanistic study of the selective catalytic reduction of nitric oxide with methane over yttrium oxide [J]. Journal of Catalysis,2000,192(1):54-63.
    5. QI G, YANG R T, THOMPSON L T. Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays [J]. Applied Catalysis A:General,2004,259(2):261-267.
    6. WALKER A P. Mechanistic studies of the selective reduction of NOx over Cu/ZSM-5 and related systems [J]. Catalysis Today,1995,26(2):107-128.
    7.IWAMOTO M, HAMADA H. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes [J]. Catalysis Today,1991,10(1):57-71.
    8.刘洁翔,魏贤,张晓光,王桂香,韩恩山,王建国.NOx分子在[Ag]-A1MOR分子筛中的吸附[J].物理化学学报,2009,25(1):91-96.
    9.丁波,孙岳明,张远.NO在Cu-ZSM-5上吸附机理的量化研究[J].计算机与应用化学,2003,20(5):583-586.
    10. BRAND H V, REDONDO A, HAY P J. Theoretical Studies of CO and NO Adsorption on Cu+-ZSM-5 Zeolite [J]. Journal of Physical Chemistry B,1997,101(39):7691-7701.
    11. PIETRZYK P, ZASADA F, PISKORZ W, KOTARBA A, SOJKA Z. Computational spectroscopy and DFT investigations into nitrogen and oxygen bond breaking and bond making processes in model deNOx and deN2O reactions [J]. Catalysis Today,2007,119 (1-4):219-227.
    12. Fu L, Bao J, He, D, et al. Assessme of vehicular pollution in China. J air Waste Manag Assoc. 2001,51(5):658-668.
    13.吴忠标.大气污染控制技术[M]北京:化学工业出版社.2002,244—319。
    14.张改莲。戚慧心.汽车排气污染物的形成及危害.生物学通报.2000,35(6):17—18.
    15. Parvulescu V I, Grange P, Delmon B. Catalytic removal of NO. Catal. Today.1998,46 (4): 233-316.
    16.孙锦余.利用氮氧化物控制技术治理大气污染.节能.2004,5:41—44.
    17.李勤.现代内燃机排气污染物的测量与控制.北京:机械工业出版,1998.
    18.李智森.燃烧中氮氧化物的形成和防治.环境保护.1994。11:6—7.
    19.任剑锋,王增长,牛志卿.大气中氮氧化物的污染与防治.科技情报开发与经济.2003,13:92—93.
    20. BH arrison,M W yatta ndK G G ough.C atalysis(London),1982,5:127-171
    21. H Muraki,11S hinjoh and Fujitani. Ind. Eng. Chem. Prod. Res. Dev.,1979,18:104-109
    22. T Maunula, JA hola, T Salmi, eta 1. Appl. Catal., B:1997,12:287-308
    23. J N Armor, Catal.Today,1995,26:147-158
    24. Yue jin Li and J NA rmor, J. Catal.,1994,145:1-9
    25. A Miyamoto, B Inouea nd YuichiM urakaml, Ind.E ng.C hem. Prod. Res. Dev.,1979,18: 104-109
    26. Westheimer F H, Mayer J E, J.C hem.P hys.,1946,14:733-751
    27. Heck RM,F arrautoR J.C atalyticA irP ollutionC ontrol:Co mmercialT echnology,p ublished by V an N ostr and Reinhold,USA,1995;161-178
    28. T Nakatsuji and A Miyamoto, Catal. Today,1991,10:21-31
    29.岩本正和,水野哲孝,触媒,1990,32:462
    30. IwamotoM,FurukawaH,KagawaS.Ne wD evelopments inZ eoliteS cienceT echnology, Published by E ls evier,Amsterdam,1986:443-447
    31. J A Anderson,C Marquez-Alvarez,M J Lope-Munoz et al,A ppl.C atal., B1997,14:189-202
    32. BKCho,J. Catal.,1993,142:418
    33. IwamotoM,HamadaH.C atalysisT oday,1991,(10):57-71
    34. Held W,Konig A,R ichter T,etal.SAEpaper,1990:900496
    35.A Obuchi,etal.J.Chem.Soc., Chem.Commun., 1992:247-254
    36. M Sasaki,e tal., Catal.L ett.,1992,15:297-312
    37. C Yokoyama,etal_,Catal.Today,1994,22:59-71
    38. M Iwamoto, S Yokoo, K Sakaia nd S Kagawa, J.C hem. Soc., Faraday Trans.,1981,21: 177-190
    39. M Iwvnoto, H Furukawa, Y Mine, et al. J. Chem. Soc., Chem. Commu.,1986,112:1272-1278
    40. M Iwamoto,H Yahiro, T Kutsuno eta 1., Bull Chem.S oc. Jpn.,1989,62:583-584
    41. Y Li, W K Hall, J. Catal.,1991,129:202-215
    42. J Valyon, W K Hall, Catal. Lett.,1993,19:109-119
    43. M Iwamoto, H Yahiro, Y Mine et al, Chem. Lett.,1989,213-232
    44. M Iwamoto, H Yahiro, K Tanka et al., J. Phys. Chem.,1991,95:3727-3730
    45. M Iwamoto, H Yahiro, N Mizuno et al., J.P hys. Chem.,1992,96:9360-9366 M. Iwamoto, H Yahiro, YT orikai et al., Chem. Lett.,1990,55:1967-1970
    46. K Eranen, N Kumar, L E Lindfors, Appl. Catal. B,1994,4:213-223
    47. S Kagawa,110 gawa, H Furukawa et al., Chem. Lett.,1991:407-410
    48. SullivanJ A,C unninghamJ,A ppl.C atal.B,1998,15(3-4):275-289
    49. Sato S, Yu Y, Yahiro H, etal,A ppl. Catal.1991,70(1):L1-L2
    50. LiY,A rmorJ N,A ppl.C atal.B 1993,2 (2-3):239-256
    51. Yogo K,I haraM, Terasakil, etl, Chem. Lett.,1993,2:229-232
    52. Li Y, Armor J N, Appl. Catal.1994,145(1):1-9
    53. Hirabayashi H,Y ahro H,M izuno N, etal, Chem. Lett.,1992,11:2235-2236
    54. Perez-Ramirez J, Garcia-Cortes J M, Kaptiejn F, etal,,2001,29(4):285-298
    55.腾加伟,蔡天锡,翟润生。第六届全国青年催化学术会议论文摘要集,哈尔滨,1998,P120
    56.包信和,腾加伟,蔡天锡,宗保宁,第九届全国催化学术会议,北京,1998,P402
    57. Jiawei Teng, Tianxi Cai,Xinhe Bao, Chinese Chemical Letters,199,10,83
    58. HamadaH,K intaichiY,Sasakim,e tal,A ppl. C atal.1991,75(1):L1-L8
    59. Keshavaraja A,S he X,S tephanopoulos M F, Appl. Catal. B 2000,27(1):L1-L9
    60. Shimizm K,M aeshima H,S atsuma A,etal, Appl.C atal. B 1998,18(1-2):163-170
    61. ChenI, HoriuchiT,O saki.T, etal,A ppl.C atal.B,1999,23(4):259-269
    62. Haneda M, Kintaichi Y, Jnaba M, etal,J. Catal.,2000,192(1):137-148
    63. HanedaM, KintaichiY,Hamada H,A ppl.C atal. B,1999,20:289-300
    64. HuangS J,W altersA B,V anniceM A,A ppl.C atal.B,1998,17(3):183-193
    65. Shi,C WaltersA B,V anniceM A,A ppl.C atal.B,1997,14 (3-4):175-188
    66. FokemaM D, Ying J Y,A ppl. Catal. B,1998,(1):71-77
    67.YT orikai,etal., Catal.Lett.,9,91(1991)
    68. K Ohto,eta].,63rd AnnualM eeting of Chem,S oc.Jpn.,2C443,1993
    69. BurchB,M illingtonP J,A ppl.C atal.B,1994,4(1):65-94
    70. Garcar-CortesJ M,Perez-RamirezJ,I llan-GomezM J.A ppl.C atal.B,2001,30(3-4):399-408
    71. BurchR,W atlingT,C Appl.C atal.B,1997,11(2):207-216
    72. MiyadaraT,A ppl.C atal.B,1993,2(2-3):199-205
    73. Keshavaraja A,S heX, Stephanopoulos M F,A ppl. Catal, B,2000,27(1):L1-L9
    74. A Ogata,A Obuchi, K Mizuno,e t al. Appl. Catal.,1990,65:L I1-L15
    75. AO gata,.A O buchi,K M izuno,A O hia ndH O huchi,S tud.S urf.S ciC atal.,1993,75:2 713-716
    76. A Ogata, A Obuchi, K Mizuno, A Ohi and H Ohuchi, J.Catal.,1993,144:452-459
    77. G J Li, F Dong, Y D Xu, Chin. Chem.Lett.,1994,5:951
    78. R J Wu,T Y Chou, C T Yeh, Appl.C atal. B:1995,6:105-116
    79. H Muraki, H Shinjoh and YF ujitani, Appl. Catal.,1986,22:325-335
    80. H.Muraki, K. Yokoto and Y. Fujitani, Appl. Catal.,1989,48:93-105
    81.H Hamada,etal., Appl.Catal.,1990,64,L1
    82. H Hamada,etal., Catal.T oday,1994,22,21
    83. HF urukawa,et al.,68"'M eetingo fC atal.So c.Jp n., A,1991:4H215,
    84. S Shin, K Ogawa, K Shimomura, Mat. Res. Bull.,1979,14:133-142
    85.胡健,王建伟,张听,田松柏.不同硅铝比的分子筛物化性质及催化性能研究.燃料化学学报.2007年4月第35卷第2期.253.256
    86. Moses O. Adebajo, Ray L. Frost. Oxidative Benzene Methylafion、Ⅳith Methane over MCM-41 and Zeolite Catalysts:Effect of Framework Aluminum, SiO2/Al2O3 Ratio, and Zeolite Pore Structure[J]。 Energy&Fuels 2005, 19,783-790
    87. M. Hunger a'S. Ernst a, S. Steucrnagel b, j. Weitkamp. High-field 1H MAS NMR investigationsof acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H. ZSM-58 andH-MCM-221[J]. Microporous Materials,1996,6,1349-353
    88. M. Bregolato, V. Bolis, C. Busco, P. Ugliengo, S. Bordiga, F. Cavani, N. Ballarini L. Maselli, S. Passeri, I. Rossetti, L. Forni. Methylation of phenol OVer high-silica beta zeolite:Effect of zeolite acidity and crystal size on catalyst behaviour[J]. Journal of Catalysis, 2007,245,285-300
    89.Claude-Emmanuel Hddoe, Catherine Louis, Anne Davidson, Mich61e Breysse, Franqoise Maug6, Michel VrinaL Support effect in hydrotreating catalysts:hydrogenation properties of molybdenum sulfide supported on B-zeolites of various acidities[J]. Journal of Catalysis.2003, 220,433-441
    90.Shenhui Li, Anmin Zheng, Yongchao Su, Hailu Zhang, Lei Chen, Jun Yang, Chaohui Ye, Feng Deng. Bmnsted/Lewis Acid Synergy in Dealuminated HY Zeolite:A Combined Solid-State NMR and Theoretical Calculation Study[J]. J. AM. CHEM. SOC.2007,129,11161-11171
    91.杨宇川,辉永庆,何小波,钟志京.微孔-介孔复合分子筛研究进展与应用前景[J].硅酸盐通报,2006,2,86-90
    92.许元栋,马波,凌凤香,张喜文,兰权,韩晓昱.中微孔结构沸石分子筛的合成研究进展[J].当代化工,2005,4(2):85.89
    93.汪慧智.新型分子筛催化剂的研究进展[J].化学工程师.2006,125(12):28.30
    94.宋艳,李永红.介孔分子筛的应用研究新进展叨.化学进展.2007,19(5):659-664
    95.曹庚振,庞新梅,张莉,杨一青,王宝杰,马燕青.几种新型分子筛对催化裂化汽油的改质性能研究明。石化技术与应用。2008,26(2):131-136
    96. Anmin Zheng, Lei Chert, Jun Yang, Mingjin Zhang, Yongchao Su,Yong Yue, Chaohui Ye, andFeng Deng. Combined DFT Theoretical Calculation and Solid-State NMR Studies of Al Substimtion and Acid Sites in Zeolite MCM-22. Phys. Chem. B2005,109,24273-24279
    97.郭玉华.分子筛催化的烯烃裂解及戊烯异构反应机理的理论研究[D].北京化工大学。98.Mamk Sierka'Uwe Eichler,Jerzy Datl溉Joachim Saner. Heterogeneity of Brousted Acidic Sites in Faujasite Type Zeolites due tO Aluminum Content and Framework structure. Phys. Chcm. B 1998,102,6397-6404
    99.German Sastre, Naonobu Katada, Katsuld Suzuki, Miki Niwa. Computational Study of BrenstedAcidity of Fanjasite. Effect of the AI Content on the Infrared OH Stretching Frequencies[J]. J. Phys. Chem. C 2008,112,19293-19301
    100. Jun Huang, Yijiao Jiang, V. R. Reddy Marthala, Bejoy Thomas, Ekatetina Romanova, Michael Hunger,Characterization and Acidic Properties of Aluminum-Exchanged Zeolites X and Y. J. Phys. Chem. C 2008,112,3811-3818
    101. Bei Liu, Elena Garct'a-Pe7rez,David Dubbeldam, Berend Smit,Soft'a Calero. Understanding Aluminum Location and Non-framework Ions Effects on Alkane Adsorption in Aluminosilicates: A Molecular Simulation Study [J]. J. Phys. Chem. C2007,111,10419-10426
    102. Patrick J. Cad, David E. W. Vaughan, Daniella Goldfarb. Higll Field 27A1 ENDOR Reveals the Coordination Mode of Cu2+in Low Si/Al Zeolites[J]. J. AM. CHEM. SOC.2006,128: 716-721
    103. Elena A. lvanova Shor,Alexei M. Shor,Vladimir A. Nasluzov,Ocorgi N. Vayssilov, Notker Ro'sch. Effects of the Aluminum Content of a Zeolite Framework:A DFT/MM Hybrid ApproachBased On Cluster Models Embedded in all Elastic Polarizable Environment. J. Chcm[J]. Theory Comput.2005,1,459-471
    104. Ivan Milas, Alexander Martins Silva, Marco Antonio Chaer Nascimento. A density functional study on the adsorpdon complex between isobutane and H-ZSM5 and its implication for the mechanism of activation of alkane molecules over H-ZSM5 zeolite[J]. Applied Catalysis A:General,2008,336,17-22
    105.周公度,段连运.结构化学基础.北京大学出版社,1995,第二版
    106. Born M, Oppenheimer J R. Zur Quantentheorie Der Molekeh. Ann. Physik,1927, band 84: 361-376
    107. Born M, Huang K. Dynamical theory of Crystal Lattices[M]. Oxford Uniersity ereepreess, NewYork,1954
    108. Hartree D R. The wave mechanism of an atom with a non-coulomb central field. L Theory and methods. Ⅱ. Some results and discussion. Proc. Cambridge phil. Soc,1928,24:89-132
    109. Fock V."self consistent field" with interchange for sodium. Z. Physik,1930,62:795-805
    110. Hamee D. Calcaulations of Atomc Structure. Wiley,1957
    11 1.Ira N.敕文.量子化学(宁世光,余敬曾,刘尚长译).北京:人民教育出版社,1980
    112. Roothaan C C J. New developments in molecular orbital theory. Rev. Mod. Phys.1951,23: 69-89
    113. (a) Heher W J, Radon L, Schleyer P V,et al. Ab initio Molecular Orbital Theory. Jhon Wiley & Sons, lnc,1986; (b) Mcquarrie D A. Quantum Chemistry University Science Books. Mill Vally.CA,1983
    114.唐敖庆,杨忠志,李前树.量子化学.北京:科学出版社,1982
    115.徐光宪,黎乐民,王德民.量子化学基本原理和从头算方法(中册).北京:科学出版社.1985
    116. Parr R G, Yang w. Density-functional theory of atoms and molecules. Oxford University Press. Oxford:1989
    117.赵成大.固体量子化学-材料化学的理论基础.北京:高等教育出版社,2003,第二版
    118. Labanowski J K. Andzelm, J. Density functional methods in chemistry.. Springer-Verlag: New York,1991
    119. Hohenbergh P C, Kohn w. Inhomogeneous electron gas. Phys. Rev.1964,136:B864-B871
    120. Murphy D R. Sixth-order term of the gradient expansion of the kinetic-energy density functional. Phys. Rev. A,1981,24:1682-1688
    121. Yang w. Gradient correction in Thomas-Fermi theory. Phys. Rev. A,1986,34:4575-4585
    122. Perdew J P, Wang Y. Theory of the cyclotron resonance spectrum of a polaron in two dimensions. Phys. Rev. B,1986,33:8800-8809
    123. Thomas,L.H. The calculation of atomic fields [J]. Proc.cambridge Philos.Soc.1927,23, 542-548
    124. Fermi,E.Un Methodo satistico par la determinazione di alcune propriet dell'atome. Rend Accad Naz Lincei.1927,23,602-607
    125. Hohenberg,P. Ad Kohn, W. Inhomogeneous Electron Gas [J]. Phys. Rev.1964,136, B864-B871.
    126. Kohn, W. and sham, L.J. Self-consistend Equations Including Exchange and Correlation Effects [J]. Phys. Rev.1965,140, A1133-A1138.
    127. JARDILLIER N, BERTHOMlEU D, GOURSOT A, REVELS J U, KOLSTER A M. Theoretical Study of Cu1Y Zeolite:Structure and Electronic Properties[J]. Journal of Physical Chemistry B,2006,110(37):18440-18446.
    128. WICHTERLOVA B, DEDECEK J, SOBALIK Z, VONDROVA A, KLIER K. On the Cu Site in ZSM-5 Active in Decomposition of NO:Luminescence, FTIR Study, and Redox Properties [J]. Journal of Cataysis,1997,169(1):194-202.
    129. LAMBERTI C, BORDIGA S, SALVALAGGIO M, SPOTO G, ZECCHINA A, GEOBALDO F, VLAIC.G, BELLATRECC1A M. XAFS, IR, and UV-Vis Study of the Cu1 Environment in Cu1-ZSM-5[J]. Journal of Physical Chemistry B,1997,101(3):344-360.
    130. KUMASHIRO P, KURODA Y, NAGAO M. New Analysis of Oxidation State and Coordination Environment of Copper Ion-Exchanged in ZSM-5 Zeolite [J]. Journal of Physical Chemistry B,1999,103(1):89-96.
    131. NACHTIGALL P, DAVIDOVA M, NACHTIGALLOVA D. Computational Study of Extraframework Cu+Sites in Ferrierite:Structure, Coordination, and Photoluminescence Spectra [J]. Journal of Physical Chemistry B,2001,105(17):3510-3517.
    132. NACHTIGALLOVA D, NACHTIGALL P, SIERKA M, SAUER J. Coordination and siting of Cu+ions in ZSM-5:A combined quantum mechanics/interatomic potential function study[J]. Physical Chemistry Chemical Physics,1999,1(8):2019-2026.
    133. DATKA J, KUKULSKA-ZAJAC E, KOZYRA P. IR studies and DFT calculations concerning the status of Cu+ions in CuZSM-5 and CuMCM-41 [J]. Catalysis Today,2004,90 (1-2):109-114.
    134. DAVIDOVA M, NACHTIGALLOVA D, NACHTIGALL P, SAUER J. Nature of the Cu+-NO Bond in the Gas Phase and at Different Types of Cu+Sites in Zeolite Catalysts[J]. Journal of Physical Chemistry B,2004,108(36):13674-13682.
    135. KUKULSKA-ZAJAC E, KOZYRA P. DATKA J. The interaction of benzene with Cu+sites in zeolites IR studies and DFT quantum chemical calculations [J]. Applied Catalysis A:General 2006,307(1):46-50.
    136. MENTZEN B F, BERGERET G. Crystallographic Determination of the Positions of the Copper Cations in Zeolite MFI [J]. Journal of Physical Chemistry C,2007,111(34):12512-12516.
    137. YOKOMICHI Y, YAMABE T, OHTSUKA H, KAKUMOTO T. Theoretical Study of NO Decomposition on Cu-ZSM-5 Catalyst Models Using the Density Functional Method[J]. Journal of Physical Chemistry,1996,100(34):14424-14429.
    138. SMEETS P J, SELS B F, VAN TEEFFELEN R M, LEEMAN H, HENSEN E J M, Robert A. Schoonheydt. The catalytic performance of Cu-containing zeolites in N2O decomposition and influence of O2, NO, and H2O on recombination of oxygen[J]. Journal of Catalysis,2008,256(2): 183-191.
    139. GOURSO A, COQ B, FAJULA F. Toward a molecular description of heterogeneous catalysis:transition metal ions in zeolites[J]. Journal of Catalysis,2003,216 (1-2):324-332.
    140. HASS K C, SCHNEIDER W F. Density functional studies of adsorbates in Cu-exchanged zeolites:model comparisons and SOx binding[J]. Physical Chemistry Chemical Physics,1999,1 (4):639-648.
    141. TROUT B L, CHAKRABORTY A K, BELL A T. Analysis of the Thermochemistry of NOx Decomposition.over CuZSM-5 Based on Quantum Chemical and Statistical Mechanical Calculations [J]. Journal of Physical Chemistry,1996,100 (44):17582-17592
    142 Kikuchi E., Yogo K. Stud. Surf. Sci. Catal.1994,84:1547.
    143 Petunchi J. O., Hall W. K. On the role of nitrogen dioxide in the mechanism of the selective reduction of NO, over Cu-ZSM-5 zeolite. Appl. Catal. B 1993,2:L17-L26.
    144 Yokoyama C., Wisono M. Catalytic Reduction of Nitrogen Oxides by Propene in the Presence of Oxygen over Cerium Ion-Exchanged Zeolites:Ⅱ. Mechanistic Study of Roles of Oxygen and Doped Metals. J. Catal.1994,150(1):9-17.
    145 Yasuda H., Miyamoto T., Misono M. ACS Symp Ser 1995,587:110.
    146 Hamada. H., Kintaichi Y.,Sasaki M., Ito T., Tabata M. Selective reduction of nitrogen monoxide with propane over alumina and HZSM-5 zeolite effect of oxygen and nitrogen dioxide intermediate. Appl, Catal.1991,70:L15-L20.
    147 He C, Paulus M., Find J. et al. In situ Infrared Spectroscopic Studies on the Mechanism of the Selective Catalytic Reduction of NO by C3H6 over Ga2O3/A12O3:High Efficiency of the Reducing Agent.'J. Phys. Chem. B 2005,109:15906-15914.
    148 Wang X., Chen H.-Y, Sachtler W. M. H. Mechanism of the Selective Reduction of NOx over Co/MFI:Comparison with Fe/MFI. J. Catal.2001,197:281-291.
    149 Li G., Larsen S.C, Grassian V. H. An FT-IR study of NOx reduction in nanocrystalline NaY zeolite:effect of zeolite crystal size and adsorbed water. Catal. Lett,2005,103:23-32.
    150 Li G., Larsen S. C., Grassian V. H. Catalytic reduction of NO2 in nanocrystalline NaY zeolite. J.Mol. Catal. A 2005,227:25-35.
    151 Sedlmair C., Gil B., Seshan K., Jentys A., Lercher J. A. An in situ IR study of the NOx adsorption/reduction mechanism on modified Y zeolites. Phys. Chem. Chem. Phys.2003,5: 1897-1905.
    152 Acke F., SkoglundhM. Differences in reaction mechanisms for the selective reduction of NO under oxygen excess over Pt based catalysts using propane or propene as the reducing agent. Appl. Catal. B 1999,22(1):L1-L3.
    153 Burch R., Watling T. C. Catal. Lett.1990,37:51
    154 Wogerbauer A., Maciejewski M., Baiker A. Reduction of nitrogen oxides over unsupported iridium:effect of reducing agent. Appl. Catal. B 2001,34(1):11-27.
    155 Cho B. K. Elucidation of Lean-NOx Reduction Mechanism Using Kinetic Isotope Effect. J. Catal.1998,178(2):395-407
    156 Burch R., Breen J. P., Meunier F. C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolite oxide and platinum group metal catalysts. Appl. Catal. B 2002,39:283-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700