用户名: 密码: 验证码:
炎症因子介导树突状细胞过度表达HVEM重建特异性自身免疫耐受
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究共分四个部分:第一部分构建了IL1/IL6重组体启动子调控荧光素酶表达的重组腺病毒载体和报告质粒,旨在通过一系列体内外实验检验IL1/IL6是否可诱导性表达外源基因。第二部分在前面已确定IL1/IL6启动子具有可调控活性的基础上,构建了该启动子调控HVEM表达的重组腺病毒载体,并将其转染小鼠骨髓来源的髓样树突状细胞(dendritic cell,DC),以检测DC经诱导表达HVEM后有何生理改变。结果证实HVEM修饰的DC可拮抗LPS诱导的DC成熟,下调相关细胞因子表达,抑制特异性T细胞的增殖反应。第三部分通过建立实验性自身免疫性心肌炎动物模型,确证HVEM修饰的DC能够在体内抑制自身反应性T细胞的活化、下调自身抗体的产生,减少致病性Th17亚群的生成,并较大程度地减轻心肌的自身免疫病损。第四部分在体内外已确定HVEM修饰的DC具有免疫保护作用的基础上,初步探讨其免疫耐受的机制,通过HVEM修饰的DC与小鼠淋巴结来源的CD4+ T细胞进行混合培养发现,HVEM修饰的DC能够延滞Treg的凋亡,并具有诱导产IL-10的Tr1生成的能力。这些结果表明,HVEM修饰的DC可能部分通过诱导调节性T细胞反应保护自身免疫损伤。
This study has four parts:In the first part we constructed the luciferase reporter plasmid and adenovirus containing IL1/IL6 hybrid promoter to evaluate its inducible expression characters in vitro and in vivo. In the second part, on the basis of confirmative conclusion of inducible ability of IL1/IL6 hybrid promoter, we constructed another adenovirus which the IL1/IL6 drives HVEM expression, and transferred it into murine myeloid DCs. The physiological properties of HVEM modified DCs were analyzed. We found HVEM modified DCs resisted to mature induced by LPS, and inhibited allogenic CD4+ T cell proliferation. It also decreased secretion of proinflammatory factors. In the third part we established an experimental autoimmune myocarditis model to investigate the role of HVEM modified DCs in prevention against autoimmune lesion. HVEM modified DCs ameliorated myocarditis, inhibited autoimmune reaction and production of autoantibodies. In addition, it altered the ratio of Th subsets that the ratio of Th1 increased while that of Th17 decreased. In the fourth part we found the HVEM modified DCs regulated Tr1 reaction and prolonged the survival of Treg, which suggested the protection mechanisms of HVEM modified DCs might partly depend on induction of regulatory T cells.
引文
[1] Chernajovsky Y, Gould DJ, and Podhajcer OL. Gene therapy for autoimmune diseases: quo vadis? Nat Rev Immunol. 2004; 4(10):800-11.
    [2] Rutella S, Danese S, and Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108(5):1435-40.
    [3] Bacchetta R, Gregori S, and Roncarolo MG. CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun Rev. 2005 Nov;4(8):491-6.
    [4] Jonuleit H, and Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323-7.
    [5] Steinman RM, Hawiger D, and Nussenzweig MC. Toleroginic dendritic cells. Annu Rev Immunol. 2003; 21:685-711.
    [6] Shortman K, and Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol. 2007;7(1):19-30.
    [7] Mahnke K, Johnson TS, Ring S, et al. Tolerogenic dendritic cells and regulatory T cells: A two-way relationship. J Dermatol Sci. 2007; [Epub ahead of print]
    [8] Bayry J, Triebel F, Kaveri SV, et al. Human Dendritic Cells Acquire a SemimaturePhenotype and Lymph Node Homing Potential through Interaction with CD4+CD25+ Regulatory T Cells. J Immunol. 2007;178(7):4184-93.
    [9] Lutz MB, and Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23(9):445-9.
    [10] Read S, Greenwald R, Izcue A, et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol. 2006;177(7):4376-83.
    [11] Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004; 4(5):336-47.
    [12] Moreland LW, Alten R, Van den Bosch F, et al. Costimulatory blockade in patients with rheumatoid arthritis: a pilot, dose-finding, double-blind, placebo-controlled clinical trial evaluating CTLA-4Ig and LEA29Y eighty-five days after the first infusion. Arthritis Rheum. 2002; 46(6):1470-9.
    [13] Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003; 100(14):8372-7.
    [14] Hodi FS, Mihm MC, Soiffer RJ, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A. 2003; 100(8):4712-7.
    [15] Kremer JM, Westhovens R, Leon M, et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003; 349(20):1907-15.
    [16] Genovese MC, Becker JC, Schiff M, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005; 353(11):1114-23.
    [17] Salomon B, and Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol. 2001;19: 225-52.
    [18] Riley JL, and June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood. 2005; 105(1):13-21.
    [19] Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23-68.
    [20] Cheung TC, Humphreys IR, Potter KG, et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci U S A. 2005; 102(37):13218-23.
    [21] Montgomery RI, Warner MS, Lum BJ, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996; 87(3):427-36.
    [22] Scheu S, Alferink J, Potzel T, et al. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis. J Exp Med. 2002; 195(12):1613-24.
    [23] Granger SW, and Rickert S. LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev. 2003; 14(3-4):289-96.
    [24] Wang Y, Subudhi SK, Anders RA, et al. The role of herpesvirus entry mediator as a negative regulator of T cell-mediated responses. J Clin Invest. 2005; 115(3):711-7.
    [25] Watanabe N, Gavrieli M, Sedy JR, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 2003; 4(7):670-9.
    [26] Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. 2005; 6(1):90-8.
    [27] Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci U S A. 2005; 102 (4):1116-21.
    [28] Hurchla MA, Sedy JR, Gavrieli M, et al. B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly Induced in anergic CD4+ T cells. J Immunol. 2005; 174(6):3377-85.
    [29] Han P, Goularte OD, Rufner K, et al. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol. 2004; 172(10):5931-9.
    [30] Gavrieli M, Watanabe N, Loftin SK, et al. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun. 2003; 312(4): 1236-43.
    [31] Krieg C, Han P, Stone R, et al. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J Immunol. 2005; 175(10):6420-7.
    [32] Tao R, Wang L, Han R, et al. Differential effects of B and T lymphocyte attenuator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts. J Immunol. 2005; 175(9):5774-82.
    [33] Murphy KM, Nelson CA, and Sedy JR. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol. 2006;6(9):671-81.
    [34] Pankuweit S, Ruppert V, and Maisch B. Inflammation in Dilated Cardiomyopathy. Herz. 2004; 29(8):788-793.
    [35] Cai G, Zhang J, Liu L, et al. Successful Treatment of Experimental Autoimmune Myocarditis by Adenovirus-Mediated Gene Transfer of Antisense CⅡTA. J Mol Cell Cardiol. 2005; 38(4):593-605.
    [36] Matsui Y, Inobe M, Okamoto H, et al. Blockade of T cell costimulatory signals using adenovirus vectors prevents both the induction and the progression of experimental autoimmune myocarditis. J Mol Cell Cardiol. 2002; 34(3):279-95.
    [37] Futamatsu H, Suzuki J, Kosuge H, et al. Attenuation of experimental autoimmune myocarditis by blocking activated T cells through inducible costimulatory molecule pathway. Cardiovasc Res. 2003; 59(1):95-104.
    [38] Varley AW, Geiszler SM, Gaynor RB, et al. A two-component expression system that responds to inflammatory stimuli in vivo. Nat Biotechnol. 1997; 15 (10):1002-6.
    [39] Bakker AC, van de Loo FA, Joosten LA, et al. C3-Tat/HIV-regulated intraarticular human interleukin-1 receptor antagonist gene therapy results in efficient inhibition of collagen-induced arthritis superior to cytomegalovirus regulated expression of the same transgene. Arthritis Rheum. 2002; 46 (6):1661-70.
    [40] Miagkov AV, Varley AW, Munford RS, et al. Endogenous regulation of a therapeutic transgene restores homeostasis in arthritic joints. J Clin Invest. 2002; 109(9):1223-9.
    [41] Flora G, Pu H, Lee YW, et al. Proinflammatory synergism of ethanol and HIV-1 Tat protein in brain tissue. Exp Neurol. 2005; 191(1):2-12.
    [42] Tuyt LM, Dokter WH, Birkenkamp K, et al. Extracellular-regulated kinase 1/2, Jun N-terminal kinase, and c-Jun are involved in NF-kappa B-dependent IL-6 expression in human monocytes. J Immunol. 1999; 162(8):4893-902.
    [43] Abe M, Tanaka Y, Saito K, et al. Regulation of interleukin (IL)-1beta gene transcription induced by IL-1beta in rheumatoid synovial fibroblast-like cells, E11, transformed with simian virus 40 large T antigen. J Rheumatol. 1997; 24(3):420-9.
    [44] van de Loo FA, de Hooge AS, Smeets RL, et al. An inflammation-inducible adenoviral expression system for local treatment of the arthritic joint. Gene Ther. 2004;11(7):581-90.
    [1] Fang IM, Lin CP, Yang CH, et al. Inhibition of experimental autoimmune anterior uveitis by adenovirus-mediated transfer of the interleukin-10 gene. J Ocul Pharmacol Ther. 2005; 21(6):420-8.
    [2] Smith R, Tarner IH, Hollenhorst M, et al. Localized expression of an anti-TNF single-chain antibody prevents development of collagen-induced arthritis. Gene Ther. 2003; 10(15):1248-57.
    [3] Tellez N, Montolio M, Biarnes M, et al. Adenoviral overexpression of interleukin-1 receptorantagonist protein increases beta-cell replication in rat pancreatic islets. Gene Ther. 2005; 12(2):120-8.
    [4] Hartung HP. Early treatment and dose optimisation BENEFIT and BEYOND. J Neurol. 2005; 252 Suppl 3:iii44-iii50.
    [5] Imhof MO, Chatellard P, and Mermod N. Comparative study and identification of potent eukaryotic transcriptional repressors in gene switch systems. J Biotechnol. 2002; 97(3):275-85.
    [6] Varley AW, Geiszler SM, Gaynor RB, et al. A two-component expression system that responds to inflammatory stimuli in vivo. Nat Biotechnol. 1997; 15(10):1002-6.
    [7] Bakker AC, van de Loo FA, Joosten LA, et al. C3-Tat/HIV-regulated intraarticular human interleukin-1 receptor antagonist gene therapy results in efficient inhibition of collagen-induced arthritis superior to cytomegalovirus-regulated expression of the same transgene. Arthritis Rheum. 2002; 46(6):1661-70.
    [8] Miagkov AV, Varley AW, Munford RS, et al. Endogenous regulation of a therapeutic transgene restores homeostasis in arthritic joints. J Clin Invest. 2002; 109(9):1223-9.
    [9] Garden GA, Morrison RS. HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. Brain Res Brain Res Rev. 2005; 50(1):14-26.
    [10] van de Loo AA, Arntz OJ, Bakker AC, et al. Role of interleukin 1 in antigen-induced exacerbations of murine arthritis. Am J Pathol. 1995; 146(1):239-49.
    [11] van de Loo FA., Joosten LA., van Lent PL. et al. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum 1995; 38(1): 164–172.
    [12] van de Loo FA, de Hooge AS, Smeets RL, et al. An inflammation-inducible adenoviral expression system for local treatment of the arthritic joint. Gene Ther. 2004;11(7):581-90.
    [13] Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony- stimulating factor. J Exp Med. 1992; 176(6): 1693-1702.
    [14] Abe M, Tanaka Y, Saito K, et al. Regulation of interleukin (IL)-1beta gene transcription induced by IL-1beta in rheumatoid synovial fibroblast-like cells, E11, transformed with simian virus 40 large T antigen. J Rheumatol. 1997; 24(3):420-9.
    [15] Tuyt LM, Dokter WH, Birkenkamp K, et al. Extracellular-regulated kinase 1/2, Jun N-terminal kinase, and c-Jun are involved in NF-kappa B-dependent IL-6 expression in human monocytes. J Immunol, 1999, 162(8):4893-4902.
    [16] Cai G, Zhang J, Liu L, et al. Successful treatment of experimental autoimmune myocarditis by adenovirus-mediated gene transfer of antisense CⅡTA. J Mol Cell Cardiol 2005; 38(4):593-605.
    [17] Lahiri T, Moore PE, Baraldo S, et al. Effect of IL-1beta on CRE-dependent gene expression in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2002; 283(6):L1239-46.
    [18] Baccam M, Woo SY, Vinson C, et al. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-kappa B, AP-1, and C/EBP. J Immunol. 2003; 170(6):3099-3108.
    [19] Herz J, Gerard RD. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci U S A. 1993; 90(7):2812-6.
    [20] Huard J, Lochmuller H, Acsadi G, et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 1995; 2(2):107-15.
    [21] Coulthard MG, Swindle J, Munford RS, et al. Adenovirus-mediated transfer of a gene encoding acyloxyacyl hydrolase (AOAH) into mice increases tissue and plasma AOAH activity. Infect Immun. 1996; 64(5):1510-5.
    [22] Perry MG, Richards L, Harbuz MS, et al. Sequential synovial fluid sampling suggests plasma and synovial fluid IL-6 vary independently in rheumatoid arthritis. Rheumatology (Oxford). 2006; 45(2):229-30.
    [23] Cheeran MC, Hu S, Gekker G, et al. Decreased cytomegalovirus expression following proinflammatory cytokine treatment of primary human astrocytes. J Immunol. 2000; 164(2):926-933.
    [24] Prosch S, Stein J, Staak K, et al. Inactivation of the very strong HCMV immediate early promoter by DNA CpG methylation in vitro. Biol Chem Hoppe Seyler. 1996; 377(3):195-201.
    [25] Curradi M, Izzo A, Badaracco G, et al. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol. 2002; 22(9):3157-3173.
    [26] Razin A. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J. 1998; 17(17):4905-4908.
    [27] Brigham KL, and Stecenko AA. Gene therapy in acute critical illness. New Horiz. 1995; 3(2):321-9.
    [1] Kappler JW, Staerz U, White J, et al. Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature. 1988; 332(6159):35-40.
    [2] Nemazee D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 2006; 6(10):728-40.
    [3] Burkly LC, Lo D, and Flavell RA. Tolerance in transgenic mice expressing major histocompatibility molecules extrathymically on pancreatic cells. Science. 1990; 248(4961):1364-8.
    [4] Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology. 2006; 117(4):433-42.
    [5] Levings MK, Allan S, d'Hennezel E, et al. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity. Adv Immunol. 2006; 92:119-55.
    [6] Melero I, Arina A, and Chen L. The many sounds of T lymphocyte silence. Immunol Res. 2005; 33(2):135-47.
    [7] Gattinoni L, Ranganathan A, Surman DR, et al. CTLA-4 dysregulation of self/tumor-reactive CD8+ T-cell function is CD4+ T-cell dependent. Blood. 2006;108(12):3818-23.
    [8] Fife BT, Guleria I, Gubbels Bupp M, et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med. 2006; 203(12):2737-47.
    [9] Watanabe, N. Gavrieli M, Sedy JR, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 2003; 4(7):670–9.
    [10] Engelhardt JJ, Sullivan TJ and Allison JP. CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J Immunol. 2006;177(2):1052-61.
    [11] Kocak E, Lute K, Chang X, et al. Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity. Cancer Res. 2006;66(14):7276-84.
    [12] Han P, Goularte OD, Rufner K, et al. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J. Immunol. 2004; 172(10):5931–9.
    [13] Hurchla MA, Sedy JR, Gavrieli M, et al. B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly induced in anergic CD4+ T cells. J. Immunol. 2005; 174(6):3377–85.
    [14] Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. 2005; 6(1):90–8.
    [15] Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc. Natl Acad. Sci. USA 2005; 102(4):1116–21.
    [16] Shi G, Luo H, Wan X, et al. Mouse T cells receive costimulatory signals from LIGHT, a TNF family member. Blood 2002; 100(9):3279–86.
    [17] Wang Y, Subudhi SK, Anders RA, et al. The role of herpesvirus entry mediator as a negative regulator of T cell-mediated responses. J. Clin. Invest. 2005; 115(3):711–17.
    [18] Croft M. The evolving crosstalk between co-stimulatory and co-inhibitory receptors: HVEM-BTLA. Trends Immunol. 2005;26(6):292-4.
    [19] Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony- stimulating factor. J Exp Med. 1992; 176(6): 1693-1702.
    [20] Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev. Immunol. 2003; 3, 609–20.
    [21] Montgomery RI, Warner MS, Lum BJ, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996; 87(3):427–36.
    [22] Mauri DN, Ebner R, Montgomery RI, et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 1998; 8(1): 21–30.
    [23] Sarrias MR, Whitbeck JC, Rooney I, et al. The three HveA receptor ligands, gD, LT-α and LIGHT bind to distinct sites on HveA. Mol. Immunol. 2000; 37(11):665–73.
    [24] Gavrieli M, Sedy J, Nelson CA, et al. BTLA and HVEM cross talk regulates inhibition and costimulation. Adv Immunol. 2006; 92:157-85.
    [25] Murphy KM, Nelson CA, Sedy JR. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol. 2006; 6(9):671-81.
    [26] Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol. 2006 Jun;6(6):476-83.
    [27] Krieg C, Han P, Stone R, et al. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J. Immunol. 2005; 175(10):6420-7.
    [28] Otsuki N. Kamimura Y, Hashiguchi M, et al. Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem. Biophys. Res. Commun. 2006; 344(4):1121–7.
    [29] Morel Y, Schiano de Colella JM, Harrop J, et al. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J. Immunol. 2000; 165(8):4397–404.
    [30] Cheung TC, Humphreys IR, Potter KG, et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc. Natl Acad. Sci. USA 2005; 102(37):13218–23.
    [31] Lutz MB, and Schuler G. Immature, semi-mature and fully mature denditic cells: which signals induce tolerance or immunity? Trends Immunol. 2002; 23(9):445-9.
    [32] Benczik M, and Gaffen SL. The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunol Invest. 2004;33(2):109-42.
    [33] Legge KL, Gregg RK, Maldonado-Lopez R, et al. On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J Exp Med. 2002;196(2):217-27.
    [34] Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006; 441(7090):235-8.
    [35] Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006; 441(7090):231-4.
    [36] Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006; 24(2):179-89.
    [1] Eriksson, U., and J.M. Penninger. Autoimmune heart failure: new understandings of pathogenesis. Int. J. Biochem. Cell Biol. 2005,37(1):27–32.
    [2] Koelsch, S.P.S., G. Hufnagel, and B. Maisch. The European study of epidemiology and treatment of cardiac infl ammatory diseases (ESETCID)—epidemiological results after 6 years. In Annual Meeting of the AHA, 2004, New Orleans.
    [3] Caforio AL, Daliento L, Angelini A, et al. Autoimmune myocarditis and dilated cardiomyopathy: focus on cardiac autoantibodies. Lupus. 2005;14(9):652-5.
    [4] Maisch B, Richter A, Sandmoller A, et al. Inflammatory dilated cardiomyopathy (DCMI). Herz. 2005;30(6):535-44.
    [5] Marty RR, and Eriksson U. Dendritic cells and autoimmune heart failure. Int J Cardiol. 2006;112(1):34-9.
    [6] Eriksson U, Ricci R, Hunziker L, et al. Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med. 2003;9(12):1484-90.
    [7] Rangachari M, Mauermann N, Marty RR, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin 17. J Exp Med. 2006;203(8):2009-19.
    [8] Cai G, Zhang J, Liu L, et al. Successful Treatment of Experimental Autoimmune Myocarditis by Adenovirus-Mediated Gene Transfer of Antisense CⅡ TA. J Mol Cell Cardiol. 2005;38(4):593-604.
    [9] Murakami U.,Uchida K.,Hiratsuka T.. Cardiac myosin from pig heart ventricle: purification and enzymatic properties.J Biochem(Tokyo), 1976, 80(3):611-9.
    [10] Neu N., Rose N.R., Beisel K.W., et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol. 1987, 139(11):3630-6.
    [11] El-Khatib MR,Chason JL,Ho KL,et al. Coxsachievirus B4 myocarditis in mice:valvular changes in virus-infected and control animals. J Infect Dis. 1978, 137(4):410-20.
    [12] Chang H, Hanawa H, Liu H, et al. Hydrodynamic-based delivery of an interleukin-22-Ig fusion gene ameliorates experimental autoimmune myocarditis in rats. J Immunol. 2006; 177(6):3635-43.
    [13] Matsumoto Y. New approach to immunotherapy against organ-specific autoimmune diseases with T cell receptor and chemokine receptor DNA vaccines. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(1):73-7.
    [14] Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23-68.
    [15] Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. 2005; 6(1):90–8.
    [16] Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc. Natl Acad. Sci. USA 2005; 102(4):1116–21.
    [17] Eriksson U, Kurrer MO, Sebald W, et al. Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma. J Immunol. 2001;167(9):5464-9.
    [18] Eriksson U, Kurrer MO, Bingisser R, et al. Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation. 2001;103(1):18-21.
    [19] Afanasyeva M, Wang Y, Kaya Z, et al. Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circulation. 2001;104(25):3145-51
    [20] Afanasyeva M, Wang Y, Kaya Z, et al. Experimental autoimmune myocarditis in A/J mice is an interleukin-4-dependent disease with a Th2 phenotype. Am J Pathol. 2001;159(1):193-203.
    [21] Steinman L. A brief story of Th17, the first major revision in the Th1/Th2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007; 13(2):139-145.
    [22] Weaver CT, Harrington LE, Mangan PR, et al. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 2006;24(6):677-88.
    [23] Harrington LE, Mangan PR, and Weaver CT. Expanding the effector CD4 T-cell repertoire:the Th17 lineage. Curr Opin Immunol. 2006;18(3):349-56.
    [24] Furuzawa-Carballeda J, Vargas-Rojas MI, and Cabral AR. Autoimmune inflammation from the Th17 perspective. Autoimmun Rev. 2007;6(3):169-75.
    [25] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123-32.
    [26] Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133-41.
    [27] oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715-25
    [28] Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168(11):5699-708.
    [29] Gaffen SL, Kramer JM, Yu JJ, et al. The IL-17 cytokine family. Vitam Horm. 2006;74:255-82.
    [30] Weaver CT, Hatton RD, Mangan PR, et al. IL-17 Family Cytokines and the Expanding Diversity of Effector T Cell Lineages. Annu Rev Immunol. 2007;25:821-52.
    [1] Steinman RM, Hawiger D, and Nussenzweig MC. Toleroginic dendritic cells. Annu Rev Immunol. 2003; 21:685-711.
    [2] Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol. 2006;6(6):476-83.
    [3] Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 2007;13(2):139-45.
    [4] Rutella S, Lemoli RM. Regulatory T cells and tolerogenic dendritic cells: from basic biology to clinical applications. Immunol Lett. 2004;94(1-2):11-26.
    [5] Akbari O, De Kruyff RL, and Umetsu DT. Plumonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol. 2001;2(8):725-31.
    [6] Menges M, Rossner S, Voigtlander C, et al. Repetitive injections of dendritic cells matured with tumor necrosis factor-α induce antigen-specific protection of mice from autoimmunity. J Exp Med. 2002; 195(1):15-21.
    [7] Chen W, Jin W, Hardgen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor FoxP3. J Exp Med. 2003;198(12):1875-86.
    [8] Lin W, Haribhai D, Relland LM, et al. Regulatory T cell development in the absence of functional Foxp3. Nat Immunol. 2007 Apr;8(4):359-68.
    [9] Nakamura K, Kitani A, and Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med. 2001;194(5):629-44.
    [10] Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207-14.
    [11] Groux H, O'Garra A, Bigler M, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389(6652):737-42.
    [12] Cheung TC, Humphreys IR, Potter KG, et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc. Natl Acad. Sci. USA 2005; 102(37):13218–23.
    [13] Aschenbrenner K, D'Cruz LM, Vollmann EH, et al. Selection of Foxp3(+) regulatory T cells specific for self antigen expressed and presented by Aire(+) medullary thymic epithelial cells. Nat Immunol. 2007;8(4):351-8.
    [14] Jonuleit H, and Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323-7.
    [15] Malek TR, and Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4(9):665-74.
    [16] Hoffmann P, Eder R, Kunz-Schughart LA, et al. Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 2004;104(3):895-903.
    [17] Bensinger SJ, Walsh PT, Zhang J, et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol. 2004;172(9):5287-96.
    [18] Levings MK, Sangregorio R, Galbiati F, et al. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol. 2001;166(9):5530-9.
    [19] Bacchetta R, Sartirana C, Levings MK, et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol. 2002;32(8):2237-45.
    [1] Sharpe AH and Freeman GJ. The B7-CD28 superfamily. Nat Rev. Immunol. 2002; 2(2): 116–26.
    [2] Greenwald RJ, Freeman GJ and Sharpe AH. The B7 family revisited. Annu. Rev. Immunol. 2005; 23:515–48.
    [3] Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev. Immunol. 2003; 3, 609–20.
    [4] Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 2005; 23:23–68.
    [5] Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat. Rev.Immunol. 2004; 4(5):336–47.
    [6] Montgomery RI, Warner MS, Lum BJ, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996; 87(3):427–36.
    [7] Hsu H, Solovyev I, Colombero A, et al. ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J. Biol. Chem. 1997; 272(21):13471–4.
    [8] Marsters SA, Ayres TM, Skubatch M, et al. Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-κB and AP-1. J. Biol. Chem. 1997; 272(22):14029–32.
    [9] Kwon BS, Tan KB, Ni J, et al. A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J. Biol. Chem. 1997; 272(22): 14272–6.
    [10] Smith CA, Farrah T, and Goodwin RG. The TNF receptor superfamily of cellular and viralproteins: activation, costimulation, and death. Cell. 1994; 76(6):959–62.
    [11] Rooney IA, Butrovich KD, Glass AA, et al. The lymphotoxin-β receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J. Biol. Chem. 2000; 275(19):14307–15.
    [12] Mauri DN, Ebner R, Montgomery RI, et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 1998; 8(1): 21–30.
    [13] Yu KY, Kwon B, Ni J, et al. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J. Biol. Chem. 1999; 274(20):13733–6.
    [14] Banner DW, D’Arcy A, Janes W, et al. Crystal structure of the soluble human 55 kD TNF receptor-human TNF β complex: implications for TNF receptor activation. Cell 1993; 73(3):431–45.
    [15] Bodmer JL, Schneider P and Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem. Sci. 2002; 27(1) :19–26.
    [16] Sarrias MR, Whitbeck JC, Rooney I, et al. The three HveA receptor ligands, gD, LT-α and LIGHT bind to distinct sites on HveA. Mol. Immunol. 2000; 37(11):665–73.
    [17] Whitbeck JC, et al. Localization of the gD-binding region of the human herpes simplex virus receptor, HveA. J. Virol. 2001; 75(), 171–180.
    [18] Carfi A, Willis SH, Whitbeck JC, et al. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol. Cell 2001; 8(1):169–179.
    [19] Watanabe, N. Gavrieli M, Sedy JR, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol. 2003; 4(7):670–9.
    [20] Han P, Goularte OD, Rufner K, et al. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J. Immunol. 2004; 172(10):5931–9.
    [21] Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. 2005; 6(1):90–8.
    [22] Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc. Natl Acad. Sci. USA 2005; 102(4):1116–21.
    [23] Cheung TC, Humphreys IR, Potter KG, et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc. Natl Acad. Sci. USA 2005; 102(37):13218–23.
    [24] Compaan DM, Gonzalez LC, Tom I, et al. Attenuating lymphocyte activity: the crystal structure of the BTLA–HVEM complex. J. Biol. Chem. 2005; 280(47):39553–61.
    [25] Hurchla MA, Sedy JR, Gavrieli M, et al. B and T lymphocyte attenuator exhibits structuraland expression polymorphisms and is highly induced in anergic CD4+ T cells. J. Immunol. 2005; 174(6):3377–85.
    [26] Otsuki N. Kamimura Y, Hashiguchi M, et al. Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem. Biophys. Res. Commun. 2006; 344(4):1121–7.
    [27] Loyet KM, Ouyang WJ, Eaton DL, et al. Proteomic profiling of surface proteins on Th1 and Th2 cells. J. Proteome Res. 2005; 4(10):400–9.
    [28] Morel Y, Schiano de Colella JM, Harrop J, et al. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J. Immunol. 2000; 165(8):4397–404.
    [29] Morel Y, Truneh A, Sweet RW, et al. The TNF superfamily members LIGHT and CD154 (CD40 ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. J. Immunol. 2001; 167(5):2479–86.
    [30] Shi G, Luo H, Wan X, et al. Mouse T cells receive costimulatory signals from LIGHT, a TNF family member. Blood 2002; 100(9):3279–86.
    [31] Tamada K, Shimozaki K, Chapoval AI, et al. LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J. Immunol. 2000; 164(8):4105–10.
    [32] Duhen T, Pasero C, Mallet F, et al. LIGHT costimulates CD40 triggering and induces immunoglobulin secretion; a novel key partner in T cell-dependent B cell terminal differentiation. Eur. J. Immunol. 2004; 34(12):3534–41.
    [33] Harrop JA, Reddy M, Dede K, et al. Antibodies to TR2 (herpesvirus entry mediator), a new member of the TNF receptor superfamily, block T cell proliferation, expression of activation markers, and production of cytokines. J. Immunol. 1998; 161(4):1786–1794.
    [34] Wang Y, Subudhi SK, Anders RA, et al. The role of herpesvirus entry mediator as a negative regulator of T cell-mediated responses. J. Clin. Invest. 2005; 115(3):711–17.
    [35] Teft WA, Kirchhof MG, and Madrenas J. A molecular perspective of CTLA-4 function. Annu. Rev. Immunol. 2005; 24:65–97.
    [36] Schwartz JC, Zhang X, Fedorov AA, et al. Structural basis for co-stimulation by the human CTLA-4/B7–2 complex. Nature. 2001; 410(6828):604–8.
    [37] Stamper CC, Zhang Y, Tobin JF, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature. 2001; 410(6828):608–11.
    [38] Shiratori T, Miyatake S, Ohno H, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 1997; 6(5):583–9.
    [39] Miyatake S, Nakaseko C, Umemori H, et al. Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem. Biophys. Res. Commun. 1998; 249(2), 444–8.
    [40] Chuang E, Lee KM, Robbins MD, et al. Regulation of cytotoxic T lymphocyteassociated molecule-4 by Src kinases. J. Immunol. 1999; 162(3):1270–7.
    [41] Marengere LE, Waterhouse P, Duncan GS, et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science. 1996; 272(5265):1170–3.
    [42] Lee KM, Chuang E, Griffin M, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998; 282(5397):2263–6.
    [43] Guntermann C, and Alexander DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4+ T cells by inhibiting ZAP-70 Tyr319 phosphorylation: a potential role for tyrosine phosphatases. J. Immunol. 2002;168(9):4420–9.
    [44] Schneider H, and Rudd CE. Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/ YFIP motif recognition. Biochem. Biophys. Res. Commun. 2000; 269(1):279–83.
    [45] Schneider H, Da Rocha Dias S, Hu H, et al. A regulatory role for cytoplasmic YVKM motif in CTLA-4 inhibition of TCR signaling. Eur. J. Immunol. 2001; 31(7):2042–50.
    [46] Nakaseko C, Miyatake S, Iida T, et al. Cytotoxic T lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J. Exp. Med. 1999; 190(6):765–74.
    [47] Chuang E, Fisher TS, Morgan RW, et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity. 2000; 13(3):313–22.
    [48] Baroja ML, Vijayakrishnan L, Betteli E, et al. Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J. Immunol. 2002; 168(10), 5070–8.
    [49] Alegre ML, Frauwirth KA, and Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev. Immunol. 2001; 1(3):220–8.
    [50] Frauwirth KA, and Thompson CB. Regulation of T lymphocyte metabolism. J. Immunol. 2004; 172(8):4661–5.
    [51] Boudreau RT, and Hoskin DW. The use of okadaic acid to elucidate the intracellular role(s) of protein phosphatase 2A: lessons from the mast cell model system. Int. Immunopharmacol. 2005; 5(10):1507–18.
    [52] Zhang Y, and Allison JP. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Natl. Acad. Sci. USA 1997; 94(17):9273–8.
    [53] Bradshaw JD, Lu P, Leytze G, et al. Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry. 1997; 36(50):15975–82.
    [54] Yi LA, Hajialiasgar S, and Chuang E. Tyrosinemediated inhibitory signals contribute to CTLA-4 function in vivo. Int. Immunol. 2004; 16(4):539–47.
    [55] Zhang X, Schwartz JC, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. 2004; 20(3):337–47.
    [56] Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting Src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl Acad. Sci. USA. 2001; 98(24):13866–71.
    [57] Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunol. 2001; 2(3):261–8.
    [58] Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 2004; 173(2):945–54.
    [59] Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3z signalosome and downstream signaling to PKCq. FEBS Lett. 2004; 574(1-3):37–41.
    [60] Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 2005; 25(21):9543–53.
    [61] Gavrieli M, and Murphy KM. Association of Grb-2 and PI3K p85 with phosphotyrosile peptides derived from BTLA. Biochem. Biophys. Res. Commun. 2006; 345(4):1440–5.
    [62] Gavrieli M, Watanabe N, Loftin SK, et al. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem. Biophys. Res. Commun. 2003; 312(4): 1236-43.
    [63] Krieg C, Han P, Stone R, et al. Functional analysis of B and T lymphocyte attenuator engagement on CD4+ and CD8+ T cells. J. Immunol. 2005; 175(10):6420-7.
    [64] Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2005; 439(7077):682–7.
    [65] Harrop JA, McDonnell, PC, Brigham-Burke M, et al. Herpesvirus entry mediator ligand (HVEM-L), a novel ligand for HVEM/TR2, stimulates proliferation of T cells and inhibits HT29 cell growth. J. Biol. Chem. 1998; 273(42):27548–56.
    [66] Granger SW, and Rickert S. LIGHT–HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev. 2003; 14(3-4):289–96.
    [67] Force WR, Walter BN, Hession C, et al. Mouse lymphotoxin-β receptor. Molecular genetics, ligand binding, and expression. J. Immunol. 1995; 155(11), 5280–8.
    [68] Murphy M, Walter BN, Pike-Nobile L, et al. Expression of the lymphotoxin β receptor on follicular stromal cells in human lymphoid tissues. Cell Death Differ. 1998; 5(6), 497–505.
    [69] Tamada K, Shimozaki K, Chapoval AI, et al. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med. 2000; 6(3):283–9.
    [70] Yu P, Lee Y, Liu W, et al. Priming of naive T cells inside tumors leads to eradication ofestablished tumors. Nat Immunol. 2004; 5(2), 141–9.
    [71] Wu Q, Wang Y, Wang J, et al. The requirement of membrane lymphotoxin for the presence of dendritic cells in lymphoid tissues. J. Exp. Med. 1999; 190(5), 629–38.
    [72] Wang YG, Kim KD, Wang J, et al. Stimulating lymphotoxin β receptors on the dendritic cells is critical for their homeostasis and expansion. J. Immunol. 2005; 175(10):6997–7002.
    [73] Heo SK, Ju SA, Lee SC, et al. LIGHT enhances the bactericidal activity of human monocytes and neutrophils via HVEM. J. Leukoc. Biol. 2005; 79(2):330–338.
    [74] Fan Z, Yu P, Wang Y, et al. NK-cell activation by LIGHT triggers tumor-specific CD8+ T-cell immunity to reject established tumors. Blood. 2006; 107(4):1342–1351.
    [75] Wang J, Chun T, Lo JC, et al. The critical role of LIGHT, a TNF family member, in T cell development. J. Immunol. 2001, 167(9):5099–105.
    [76] Wang J, Lo JC, Foster A, et al. The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT. J. Clin. Invest. 2001; 108(12):1771–1780.
    [77] Wang J, Anders RA Wu Q, et al. Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J. Clin. Invest. 2004; 113(6):826–35.
    [78] Wang J, and Fu YX. LIGHT (a cellular ligand for herpes virus entry mediator and lymphotoxin receptor)-mediated thymocyte deletion is dependent on the interaction between TCR and MHC/self-peptide. J. Immunol. 2003; 170(8):3986–93.
    [79] Ye Q, Fraser CC, Gao W, et al. Modulation of LIGHT–HVEM costimulation prolongs cardiac allograft survival. J. Exp. Med. 2002; 195(6):795–800.
    [80] Tamada K, Ni J, Zhu G, et al. Cutting edge: selective impairment of CD8+ T cell function in mice lacking the TNF superfamily member LIGHT. J. Immunol. 2002; 168(10):4832–4835.
    [81] Scheu S, Alferink J, Potzel T, et al. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin β in mesenteric lymph node genesis. J. Exp. Med. 2002; 195(12):1613–24.
    [82] Liu J, Schmidt CS, Zhao F, et al. LIGHT-deficiency impairs CD8+ T cell expansion, but not effector function. Int. Immunol. 2003; 15(7):861–70.
    [83] Wan X, Zhang J, Luo H, et al. A TNF family member LIGHT transduces costimulatory signals into human T cells. J. Immunol. 2002; 169(12):6813–21.
    [84] Deppong C, Juehne TI, Hurchla M, et al. Cutting edge: B and T lymphocyte attenuator and programmed death receptor-1 inhibitory receptors are required for termination of acute allergic airway inflammation. J. Immunol. 2006; 176(7):3909–13.
    [85] Tao R, Wang L, Han R, et al. Differential effects of B and T lymphocyte attenuator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts. J. Immunol. 2005; 175(9):5774-82.
    [86] Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003; 423(6939):506–11.
    [87] Vijayakrishnan L, Slavik JM, Illes Z, et al. An autoimmune diseaseassociated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity. 2004; 20(5):563–75.
    [88] Langstein J, Michel J, Fritsche J, et al. CD137 (ILA/4–1BB), a member of the TNF receptor family, induces monocyte activation via bidirectional signaling. J. Immunol. 1998; 160(5):2488–94.
    [89] Wiley SR, Goodwin RG, and Smith CA. Reverse signaling via CD30 ligand. J. Immunol. 1996; 157(8):3635–9.
    [90] van Essen D, Kikutani H, and Gray D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature. 1995; 378(6557):620–3.
    [91] Suzuki I, and Fink PJ. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J. Exp. Med. 1998; 187(1), 123–8.
    [92] Stuber E, Neurath M, Calderhead D, et al. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity. 1995; 2(5):507–21.
    [93] Kirchner S, Boldt S, Kolch, W, et al. LPS resistance in monocytic cells caused by reverse signaling through transmembrane TNF (mTNF) is mediated by the MAPK/ERK pathway. J. Leukoc. Biol. 2004; 75(2):324–31.
    [94] Zhai Y, Guo R, Hsu TL, et al. LIGHT, a novel ligand for lymphotoxin β receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J. Clin. Invest. 1998; 102(6):1142–51.
    [95] Gough SC, Walker LS, and Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol. Rev. 2005; 204:102–15.
    [96] Okazaki T, and Wang J. PD-1/PD-L pathway and autoimmunity. Autoimmunity. 2005; 38(5):353–7.
    [97] Chadha S, Miller K, Farwell L, et al. Haplotype analysis of tumour necrosis factor receptor genes in 1p36: no evidence for association with systemic lupus erythematosus. Eur. J. Hum. Genet. 2006; 14(1):69–78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700