用户名: 密码: 验证码:
摆线包络行星传动接触强度及本体温度场研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题来源于国家科技支撑计划课题“摆线包络行星精密传动研究”(编号:2006BAF01B08)。精密传动是以高精度传动运动为主要目的一类机械传动形式,在武器装备、数控机床、机器人、医疗器械、航空与航天、交通运输机械、印刷包装机械等领域应用十分广泛,是装备制造业和国防工业中极其重要的基础性零部件。
     摆线包络行星传动具有多齿啮合、传动精度高、承载能力强、扭转刚度高等突出优点,近年来在机器人、航天航空领域有广泛的应用前景,受到了广泛关注。本文将着重研究摆线一次及二次包络啮合副接触强度及本体温度场的计算分析方法,为啮合副的设计提供重要理论依据。论文的主要内容包括:
     ①根据齿轮啮合原理的运动学法,分别介绍了摆线一次及二次包络行星传动共轭啮合理论,并研究了摆线二次包络行星传动的啮合特性及曲率半径、综合曲率半径的计算方法。
     ②基于赫兹接触理论和摆线包络行星传动啮合理论,对摆线一次及二次包络啮合副的接触强度进行理论研究,推导出理论接触强度计算公式,为摆线包络行星传动接触强度计算及有限元分析提供了理论依据和参考。
     ③在简要介绍有限元法基础上,运用ANSYS及其APDL语言建立摆线一次及二次包络啮合副接触有限元分析模型,调用ANSYS求解器进行求解,并对结果进行对比分析。
     ④根据齿轮啮合原理和传热学基本理论,研究了摆线一次及二次包络啮合副本体温场分析热边界条件及其计算方法,并运用ANSYS进行啮合副的本体温度场有限元仿真分析。
     ⑤综合运用Visual Basic 6.0和APDL参数化有限元分析技术对ANSYS进行二次开发,编制了摆线包络啮合副齿廓设计及有限元分析系统,实现了啮合副设计及分析的一体化、自动化和参数化。
The project originates from the National Science and Technology Supporting Program, named“The Research on Cycloid Enveloping Planetary Precision Transmission”(No. 2006BAF01B08). Precision transmission is a kind of mechanical transmission mainly focuses on high-precision transmission of movement, it is widely used in many fields, such as weapon equipments, aviation and spaceflight, robot, NC machine tools, medical apparatus, transportation machinery printing , packaging machinery and so on. Precision transmission is an extremely important basic component in defense industry and the equipment manufacturing industry.
     Cycloid enveloping planetary transmission has advantages of multi-tooth meshing, high-precision of transmission; strong bearing capacity and high torsional stiffness. So it has been paid a wide rage of attention in the filed of precise transmission. This paper primarily studies contact strength and bulk temperature of the single and secondary enveloping cycloid meshing pair, which can provide a theoretical basis for the design of meshing pair, and has the practical engineering significance. The main contents of this thesis as follows:
     ①According to principle of gears meshing kinematics method, conjugate theory of the single and secondary enveloping cycloid meshing pair has been introduced, and the meshing features, radius of curvature and comprehensive radius of curvature of the secondary enveloping cycloid enveloping planetary transmission have been discussed.
     ②Based on Hertz, theoretical contact theory and the theory of cycloid enveloping planetary transmission, the contact strength of single and secondary enveloping cycloid meshing pair has been studied. Contact strength formulas have been derived, which can provide a theoretical basis and reference for the contact strength calculation and finite element analysis for cycloid enveloping planetary transmission.
     ③Based on brief introduction of finite element method, the finite element models of secondary enveloping cycloid meshing pair and single-enveloping cycloid meshing pair are built and analyzed by ANSYS and APDL, and results are analyzed and compared.
     ④According to gear meshing theory and the basic theory of hear transfer, the calculating method of thermal boundary conditions of body temperature filed analysis of single and secondary enveloping cycloid meshing pair are carried out. The body temperature filed of meshing pair is analyzed by ANSYS.
     ⑤Visual Basic 6.0 and APDL, which is a second development tool provided by ANSYS, are used to develop the program of tooth profile design and finite element analysis in cycloid enveloping planetary transmission. by using it, the integration, automation and parameterization of design and analysis of meshing pair is achieved.
引文
[1]陈兵奎.摆线二次包络行星传动装置[P].中国, 200610054263.6[P]. 2006/04/30.
    [2]陈兵奎,房婷婷,李朝阳等.摆线针轮行星传动共轭啮合理论[J].《中国科学》E辑:技术科学2008, 38(1):148-160.
    [3]房婷婷.摆线包络行星传动啮合理论研究[D].重庆大学硕士论文, 2007.7.1.
    [4]北京谐波传动技术研究所.谐波传动技术的新发展[J].齿轮,1991(2),52-55.
    [5]北京谐波传动技术研究所.谐波传动技术及谐波减速机[J].新技术新工艺, 1994(3), 12-13.
    [6] James FA, Dennis RH. Characteristics and Requirements of Robotic Manipulators for Space Operations [J]. SPIE, 1991,1612:13-23.
    [7] Daniels RW. New Drive Should Enhance Missilery [J]. Missiles and Rockets,1961(3):22-334.
    [8] Musser CW. The Harmonic Drive—Break Through in Mechanical Drive Design [J]. Machine De-sign,1960,32(8):160-170.
    [9] Musser CW. A New Look at Elastic-Body Mechanics [J].Machine Design,1961,33(8):150-156.
    [10] S.K.Malhotra, M.A.Parameswaran. Analysis of a cycloid speed reducer[J]. Mech. Mach. Theory, 1983, 18(6): 491-499.
    [11] Li Lixing, etc. The computer aided design of cycloid drive[J]. Chinese Journal of Mechanical Engineering, 1990, 3(2): 221-231.
    [12]李力行等.摆线针轮行星传动的齿形修正及受力分析[J].机械工程学报. 1986, 22(1):40-49.
    [13]李充宁,刘继岩等. 2K-V型行星传动中摆线轮啮合的传动精度研究[J].机械工程学报. 2001, 37(4):61-65.
    [14]李立行等.大型摆线针轮行星传动的合理结构和齿形[J].机械工程学报. 1999, 24(3):28-30.
    [15] D.C.H.Yang, J.G.Blanche, Design and application guideline cyloid drives with maching Tolerances[J], Mesh. Theory, 1990,25(5):487~501.
    [16] S.K.Malhotra, M.A.Parameswaran, Analysis of a cycloid speed reducer[J], Mech. Mach. Theory, 1983, 18(6): 491~499.
    [17] J.B.Shuang, G.R.Pennock,Geometry for trochoidal-type machines with conjugate envelopes[J] , Mech. Mach. Theory.
    [18] Faydor L.Litvin, Pin-Hao Feng, Computerized design and generation of cycloidal gearing[J]. Mech. Mach. Theory,1996,31(7):891~911.
    [19] J.B.Shung, G.R .Pennock, The direct contact problem in a trochoidal-type machine[J], Mech. Mach. Theory, 1994,29(5): 673~689.
    [20] L.M.Sun, Y.C.Tsai, A study on the mathematical models and contact ratios of extended cycloidand cycloid bevel gear sets[J],Mech.Mach.Theory, 1997, (1): 39~50.
    [21] Jackyun Shin, Sundar Krishnamurty, Standard code technique in the enumeration of epicyclic gear trains[J], Mech.Mach.Theory, 1993,28(3): 347~355.
    [22] F.L. Litvin, Alberto Demenego, Daniele Vecchiato. Formation by branches of envelope to parametric families of surfaces and curves [J]. Computer methods in applied mechanics and engineering, 190 (2001) 4587-4608.
    [23] F.L. Litvin, A.M. Egelja, M. De Donno. Computerized determination of singularities and envelopes to families of contact lines on gear tooth surfaces [J]. Computer methods in applied mechanics and engineering, 158 (1998) 23-24.
    [24] F.L. Litvin, Pin-hao Feng. Computerized design, generation, and simulation of meshing rotors of screw compressor [J].Mech. Mach. Theory, Vol.32, (2),: 137-160,1997.
    [25] F.L. Litvin, Pin-hao Feng. Computerized Design and Generation of Cycloidal Gearings [J] Mech. Mach. Theory, Vol.31, (7): 891-911, 1996.
    [26] Joong-Ho Shin, Soon-Man Kwon. On the lobe profile design in a cycloid reducer using instant velocity center [J]. Mechanism and Machine Theory, 41 (2006) 596-616.
    [27] Ta-Shi Lai. Design and machining of the epicycloid planet gear of cycloid drives [J] International Journal of Advanced Manufacturing Technology, v28, n7-8, April, 2006: 665-670.
    [28] Ta-Shi Lai. Geometric design of roller drives with cylindrical meshing elements [J]. Mechanism and Machine Theory, 40 (2005): 55–67.
    [29] Vecchiato D., DemenegoA, Argyris J, et al. Geometry of aCycloidal Pump [J].ComPut Methods Appl Mech Engrg, 2001, 190:2309-2330.
    [30] Mimmia G C, Pennacchi E. Non-undercuting conditions in internal gears [J].Mechanism and Machine Theory, 2000, 5:477-490.
    [31] Vogesang H, Verhulsdonk B, et al. pulsation problems in rotary lobe PumP [J].Vorld Pump February, 1999(2):16-21.
    [32] Tong Shih-His, Yang Daniel C H.On the generation of new lobe pumps for higher pumping flowrate [J]. Mechanism and Machine Theory, 2000, 35:997-1012.
    [33] Chen C-K, Yang S-C.Geometric modeling for cylindrical and helical gear pumps with circular arc teeth [J].Proc lnstn Mech Engrs part C, 2000, 214(4):599-607.
    [34] D.W. Botsiber, L. Kingston. Design and performance of the cycloid speed reducer [J]. Machine Design, 28 (1956) 65–69.
    [35] J. Davidson, K.H. Hunt, Robots and Screw Theory. Applications of Kinematics and Statics to Robotics [J]. OxfordUniversity Press, 2004.
    [36] E.P. Pollitt. Some applications of the cycloid machine design [J]. ASME Journal of Engineeringfor Industry, 82 (1960):407-414.
    [37]李力行,洪淳,摆线针轮行星传动中摆线轮齿形通用方程式的研究[J].大连铁道学院学报. 1992,13(1) 7-12.
    [38]高兴岐.多齿差摆线针轮行星传动的齿形及啮合特性的理论分析[J].机械传动, 2000, 4(4):11-14.
    [39]孟继安等.内啮合摆线齿轮泵齿廓特征参数化设计探讨[J].化工机械, 1990(3): 145-150.
    [40]侯东海等.少齿差摆线齿轮啮合原理及几何参数选择[J].机械传动,1995, 19 (3): 24-27
    [41]侯东海,司春华,吕伴功.少齿差摆线齿轮泵啮合原理及几何参数选择[J].机械传动, 1995, 19(3):24-27.
    [42]李荣堂等.多齿差内啮合圆弧摆线齿轮泵的开发[J].石油化工设备技术,1994,15 (4): 26-30.
    [43]李荣堂,史发科.多齿差内啮合圆弧摆线齿轮泵的开发[J].石油化工设备技术, 1994, 15 (4):25-30.
    [44] J·G·Blanche, D·C·H·Yang. Cycloid Drives With Machining Tolerances [J]. ASME J.Mech.Transm, Automn Des Vol.111, 1989: 337-344.
    [45] W.Kewis. A method of Selecting Grid Size to account for Hertz deformation Finite Element Analysis in the Spatial Cam Sliding Tooth Transmission[J]. Journal of Mechanical Design. 1993, 2-7.
    [46] LI Lixing. The Computer Aided Design of Cycloid Drive [J]. CHINESE JOURNAL of MECHANMCAL ENGINEERING. 1990. 3(2), 221-231.
    [47]李力行,关天民,王子孚等.摆线针轮行星传动的计算机辅助设计[J].大连铁道学报. 1992, 13(1):23-33.
    [48]夏显明,余建国,刘志强.减速器摆线轮的有限元分析研究[J].制造业信息化, 2005(3).Vol.28.
    [49]谭月胜等.摆线轮的三维造型及导入ANSYS中的方法[J].北京机械工业学院学报. 2001, 16(4):43-47.
    [50]关天民,张东生,雷蕾. FA新型摆线针轮行星传动受力分析方法与齿面接触状态有限元分析[J].机械设计. 2002,22(3):31-34.
    [51]刘茂武,孟态荣.重载摆线针轮行星传动针齿非赫兹弹性接触修形的研究[J].机械传动. 2002,26(1):52-54.
    [52]刘茂武,孟态荣.重载摆线齿轮传动的接触问题分析及其三维有限元计算[J].机械传动. 1994,18(1):11-15.
    [53] H.Bolk. Theoretical Study on Temperature Rise at Surface of Actual Contact under Oiliness Lubrication Conditions[J]. Proc. of Gen. Disc. Lubric. IME,Vol.2,1973.
    [54] T.Tobe, M.Kato. A Studuy on Flash Temperature on the Spur Gear Teeth. Transactions of the ASME[J], Journal of Engineering for Industry, February,1974.
    [55] Y.Terauchi, K.Nagamura, C-L Wu and K.lkejo. On the Heat Blance of Gear Equipment(On a Method for Predicting the Bulk Temperature Rise of Gears and Temperature Rise of Oil with Dip Cooling) [J]. JSME International Journal, SeriesⅢ, Vol.34,No.1,1991.
    [56] J.lshikawa, K.Hayashi, M.Yokoyana. Surface Temperature and Scoring Resistance of Heavy-Duty Gears. Transaction of the ASME[J], Journal of Engineering for Industry, May, 1974.
    [57] D.P.Dowsend, L.S.Akin. Analytical and Experimental Spur Gear Tooth Temperature as Affected by Operating Variables. Transactions of the ASME[J], Journal of Mechanical Design, Vol.103,January,1981.
    [58]龙慧等.旋转齿轮瞬时接触应力和温度的分析模拟[J].机械工程学报. 2004, 40(8):24-29.
    [59]程福安等.蜗轮稳态温度场及有限元分析[J].机械工程学报. 1998, 34(3):7-12.
    [60]饶振纲.行星齿轮传动设计[M].化学化工出版社,2003.
    [61]刘晖.基于参数化的齿轮传动接触有限元分析[D].大连交通大学,2004.11.
    [62]李润方等.接触问题数值方法[M].重庆大学出版社,1991.
    [63]关天明,张东升,蕾蕾.FA新型摆线针轮行星传动受力分析方法与齿面接触状态有限元分析[J].机械设计, 2005,22(3):31-43.
    [64]杨世铭.传热学[M].高等教育出版社,1987.
    [65]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].机械工业出版社,2003.
    [66]张明华,刘强,袁松梅.基于ANSYS二次开发的机床主轴单元分析系统[J].机床与液压. 2008,36(2):11-13.
    [67]邱向荣,陈炽坤. ANSYS二次开发及其在起重机轮叉设计中的应用[J].机械设计与制造. 2006,2:51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700