用户名: 密码: 验证码:
遗传算法与粒子群算法的改进及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们从自然界的自适应进化现象得到启示,生物体和自然生态系统可以通过自身的演化使许多在人类看起来高度复杂的问题得到比较完美的解,由此产生了与经典优化方法截然不同的新型智能计算方法——仿生智能计算。本文对遗传算法(GA)和粒子群算法(PSO)两种仿生智能计算方法的算法机理、算法改进和应用方面做了较为系统的研究。其中主要的研究内容和成果可以归纳如下:
     标准遗传算法易陷入局部最优而出现早熟,在标准遗传算法中引进了捕食搜索策略,提出了基于捕食搜索策略的遗传算法。该算法在进化中模拟动物捕食搜索的过程,根据种群中个体最优适应值的变化来动态改变交叉和变异概率,从而加强了算法的全局搜索和局部优化的平衡能力。
     粒子群算法早熟收敛的主要原因是种群多样性的丧失。为了定量分析种群多样性,提出了以种群成熟度作为种群多样性的测度,并运用模糊理论和方法给出了种群成熟度的模糊型指标和计算方法,根据种群成熟度的大小动态自适应的改变惯性权重,从而在提高粒子群算法的运行效率的同时预防早熟。将此算法和基于捕食搜索策略的遗传算法成功地应用到了重油热解模型参数估计中。
     分析了粒子群算法中粒子速度的收敛性以及粒子速度对算法性能的影响,提出了运用种群平均速度动态调整惯性权重避免粒子速度提前接近于0而出现早熟的粒子群算法。
     多种群策略是保持种群多样性避免早熟较好的方法,本文提出了一种多种群并行粒子群算法(DPPSO),将子种群分为探测型和开发型,并考虑子种群的拓扑结构,对于探测型种群采用全局模型PSO算法,以增大探测最优个体的能力;而开发型种群采用局部模型PSO算法,加强算法局部搜索能力,在局部范围内搜索全局最优解,同时保持了种群之间的信息交流。仿真结果表明DPPSO能在一定程度上保持了群体多样性,从而避免了早熟。
     针对小世界网络模型具有较小平均路径长度和较大聚集系数的特点,将其引入粒子群算法的种群结构中,提出了动态种群结构的粒子群算法。由于网络模型的演化,使算法具有动态的种群结构,从而保持了种群的多样性。同时为了使粒子尽可能地分布在不同的搜索空间,在网络模型演化过程中考虑了节点的个体价值,另外为了加快算法的收敛速度,在进化后期采用全局模型粒子群算法。仿真结果表明了算法的有效性和实用性。
     提出了一种基于PSO的动态聚类算法,对标准PSO在编码机制和操作过程上做了改进,并以DB Index准则作为聚类有效性的判断准则。将其应用于模糊模型辨识中,用动态聚类算法确定模糊规则模型的前提结构和参数,然后用最小二乘法求解模糊模型的结论参数。并将该方法成功应用于热工过程模糊辨识中。
     将GA和PSO应用到径向基函数(RBF)神经网络的学习中。首先将变长度染色体遗传算法应用于RBF神经网络的训练,并与最小二乘法相结合,同时确定网络的结构和中心参数,用此方法建立了热电厂热负荷预测模型,并与BP网络和增长型结构学习算法RBF网络模型进行了比较,其模型精度有明显地提高。然后研究了两种基于PSO的RBF网络学习算法,一种是先利用减聚类算法确定网络的隐层单元数,再用PSO对中心参数进行优化,并与最小二乘法相结合来训练RBF网络;另一种是借鉴递阶遗传算法的编码原理,在PSO中引进了控制基因,并与最小二乘法相结合同时确定网络的拓扑结构和中心参数。结果表明,两种算法是有效的。
     最后,对全文进行了总结,指出了未来进一步研究的方向。
It is learning from the phenomena of adaptive optimization in the nature that creatures and natural ecological systems make the optimization problems with high degree of complexty solved perfectly. Under the background, biologically-inspired intelligent computations which are different from the classed optimization methods has emerged. The paper gives a comprehensive study on genetic algorithm (GA) and particle swarm optimization (PSO) from the aspects of algorithm mechanism, modifications and their applications. The main contents and contributions given in this dissertetion are as follows:
     To improve performance of genetic algorithm and avoid trapping to local optima, a new genetic algorithm based on predatory search strategy is proposed. It simulates the animal predatory search in running, and adjusts the crossover and mutation probability by the best individual fitness in every generation, so can balance the ability of global exploring and local search. The effectiveness and practicability are demonstrated by the simulation results.
     The reason of premature convengence is large lost in population diversity. The measure of population diversity for measuring poplation maturing degree is presented and its calculation is given on the basis fuzzy system theory. Finally, the method of adaptively adjusting inertia weight with poplation maturing degree is proposed to prevent premature convegence. The algorithm and genetic algorithm based on predatory search strategy have been applied successfully to the parameter estimation of heavy oil thermal cracking model.
     The convengence of particle velocity in PSO and effect on optimization performances are analyzed. A new PSO is proposed with dynamical adjust inertia weight using information defined as the average absolute value of velocity of all of the particles, which can avoid premature convengence for the velocity is closed to 0 in the early search part.
     To improve performance of PSO algorithm and avoid trapping to local minima, a multi-population parallel particle swarm optimization (DPPSO) algorithm is proposed. In the algorithm, sub populations are divided into exploration and exploitation types. The global version PSO is used in the exploration population to enhance ability of exploring the best individual, and the local version PSO is used in the exploitation population to enhance ability of local search and find the best global result in the local range. Simultaneously, keep communication with sub populations in running. The experimental results show that the restraining premature convergence is enhanced for maintaining the individual diversity.
     A new dynamic population structure PSO is proposed, in which the small world network model is introduced into population structure, and the topology structure is dynamical with the evolvement of small world network. So the population diversity is enhanced. The individual value is applied to evolution of small world network for particles can distribute in different search space. In order to perform a better local search, a global PSO version is used in the end of the search. The effectiveness and practicability is demonstrated by the simulation results.
     A dynamic clustering algorithm based on PSO is proposed, in which a novel coding and operation on the basis of standard PSO is introduced and DB Index rule is used to determine the validity of clustering. The proper fuzzy rule number and exact premise parameters can be obtained by using the dynamic clustering algorithm to identify fuzzy models, and result parameters by the least squared method. It is used in fuzzy modeling for thermal processes.
     GA and PSO are used in training radial basis (RBF) function network. Firstly, a new RBF network algorithm is introduced by combining genetic algorithm of chromosomes with changeable length and least-square method which can determine the structure and parameters of network. The algorithm is used to model heat loading forecasting for co-generation power plants and compares with BP neural network and RBF neural network based on a trainning algorithm of automatic increase in hidden nodes, the simulation results are satisfied. Second, two methods of RBF neural network algorithm based on PSO are proposed. First is to determine units’number in RBF layer using subtractive clustering method, and optimize central position and directional width based on PSO algorithm, and then train RBF neural network combining with least-square method. Second is to introduce a control gene into standard PSO, and determine network structure and parameters, such as centers and widths of hidden units by combining with least square method. Simulation results illustrate their efficiency.
     Finally, the whole research contents are summarized, and further research directions are indicated.
引文
[1] Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26(1): 29~41
    [2] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53~66
    [3] Wang Dingwei. Colony location algorithm for combinatorial optimization [A], Proc of IEEE. Conf. on Systems, Man & Cybernetics [C], Piscataway NJ: IEEE Service Center 2004, 1903~1909
    [4] Zhang Qizhi, Ge Xinsheng, Liu Yanzhu. A genetic algorithm for optimal control stretching process of solar arrays on spacecraft based on wavelet approximation [J]. Control Theory and Applications, 1999, 16(6): 842~847
    [5] Yun Li, Kim Chwee, David J Murray-smith. Genetic algorithm automated approach to the design of sliding mode control systems [J]. International Journal Control, 1996, 63(4): 721~739
    [6] Varsek A, Vrbanic T, Filipic B. Genetic algorithms in controller design and tuning [J]. IEEE Trans on System, Man and Cybernetics, 1993, 23(5): 33~41
    [7] G P Liu, V Kadirkarmanathan. Multi-objective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms. IEE Proceedings of Control Theory and Applications. 1999, 146(5): 373~382
    [8] W Lin, J G Delgado Frias, D C Gause. Hybrid Newton-Raphson genetic algorithm for the traveling salesman problem. Cybernetics and System, 1995, 26(4): 387~412
    [9] Lu Chien-ying, Jose G Delgada-frias, Wei Lin. A clustering and genetic scheme for large TSP optimization problems. Cybernetics and Systems, 1998, 29(2): 137~157
    [10] Chuen Lung Chen.Genetic algorithms applied to the continuous flow shop problem. Computers and Industrial Engineering, 1996, 30(3): 78~85
    [11] Tadahiko Murata. Multi-objective genetic algorithm and its applications to flow shop scheduling. Computers and Industrial Engineering, 1996, 30(3): 86~93
    [12] Michael Laszlo, Sumitra Mukherjee. A genetic algorithm using hyper-quadtrees for low-dimensional K-means clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006, 28(4): 533~543
    [13] Gang Leng, Thomas Martin McGinnity, Girijesh Prasad. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Trans. on Fuzzy Systems. 2006, 14(6): 755~766
    [14] Russell R A. Ant trails—An example for robots to follow [A]. Proc of the 1999 IEEE Int Conf on Robotics and Automation [C]. Detroit, 1999, 2698~2703
    [15] Israel A W, Michael L, Alfred M B. Distributed covering by ant-robots using evaporating traces [J]. IEEE Trans. on Robotics and Automation,1999, 15(5): 918~933
    [16] Li Y J, Wu T J. A nested ant colony algorithm for hybrid production scheduling [A]. Proc of the American Control Conf[C]. Anchorage, 2002, 1123~1128
    [17] Davis, L, Handbook of genetic algorithms, Van Nostrand Reinhold, New York, 1991
    [18] Michalewica, Z., Genetic algorithms + data structure - evolution programs, 3rd edition, New York: Springer~Verlag, 1996
    [19] Grefenstette, J.J. Gopal, R., Rosmaita, B., Van Gucht, D., Genetic algorithm for the traveling salesman problem, In Proceedings of the First International Conference on Genetic Algorithms(ICGA 1), Hillsdale, 1985, 160168
    [20] Mitchell, D., Selman, B, Levesque, H., Hard and easy distribution of sat problems, In Proceedings of the Tenth National conference on Artificial Intelligence. AAAI Press/The MIT Press, 1992, 459464
    [21] J Craig Potts, Terri D Giddens, Surya B Yadav. The development and evaluation of an improved genetic algorithm based on migration and artificial selection [J]. IEEE Trans. on System, Man, and Cybernetics, 1994, 24(1): 73~86
    [22] Belew R K, Evolving networks: using the genetic algorithms with connectionist learning. Artificial Life. 1992
    [23] R. Palaniappan, P. Raveendran, and S. Omatu, VEP Optimal Channel Selection Using Genetic Algorithm for Neural Network Classification of Alcoholics. IEEE Trans. Neural Networks, 2002. vol. 13, No. 2, pp. 486~491
    [24] Helena Szczerbicka, Matthias Becker, Michael Syrjakow. Genetic algorithms: a tool for modeling, simulation and optimization of complex systems. Cybernetics and Systems, 1998, 29(7): 639~659
    [25] Jose Nelson Amaral, Kagan Tumer, Joydeep Ghosh. Designing genetic algorithms for the state assignment problem. IEEE Trans. On System, Man and Cybernetics, 1995, 25(4): 687~694
    [26]文劲宇,刘沛,程时杰.遗传算法及其在电力系统中的应用[J].电力系统及其自动化, 1996, 20(10): 57~60; 20(11): 60~65
    [27] Gunter Rudolph. Convergence analysis of canonical genetic algorithms [J]. IEEE Trans. on Neural Networks, 1994, 5(1): 96~101
    [28]蔡良伟,李霞.遗传算法交叉操作的改进[J].系统工程与电子技术, 2006, 28(6): 925~928
    [29]陈小平,于盛林.实数遗传算法交叉策略的改进[J].电子学报, 2003, 31(1): 71~74
    [30]周晨光,王琦,邱祖廉.一种逐位变异的紧凑遗传算法[J].计算机工程, 2003, 29(17): 19~21
    [31]刘智明,周激流,陈莉等.一种维持种群多样性的遗传算法变异算子的研究[J].小型微型计算机系统, 2003, 24(5): 902~904
    [32]孙艳丰.具有倒位算子的图式定理的分析研究[J].系统工程与电子技术, 1996, 18(10): 45~49
    [33]潘伟,刁华宗,井元伟.一种改进的实数自适应遗传算法[J].控制与决策, 2006, 21(7): 792~795, 800
    [34] Ovidiu Gheorghies, Henri Luchian, Adriana Gheorghies. A study of adaptation and random search in genetic algorithm. 2006 IEEE Congress on Evolutionary Computation. 2006, 2103~2110
    [35] Emanuele Dilettoso, Nunzio Salerno. A self-adaptive niching genetic algorithm for multi-modal optimization of electromagnetic devices [J]. IEEE Trans. on Magnetics, 2006, 42(4): 1203~1206
    [36] A E Eiben, M C Schut, A R de Wilde. Boosting genetic algorithms withself-adaptive selection. 2006 IEEE Congress on Evolutionary Computation. 2006, 477~482
    [37]巩敦卫,孙晓燕.变搜索区域多种群遗传算法[J].控制理论与应用, 2006, 23(2): 256~260
    [38] Li Ming, Yang Xiaoqin, Zhou Linxia. Genetic algorithm with dynamic regional multi-species [J].自动化学报, 2003, 29(2): 212~218
    [39]田东平,迟洪钦.混合遗传算法与模拟退火法[J].计算机工程与应用, 2006, (22): 63~65
    [40]王文义,任刚.多种群退火贪婪混合遗传算法[J].计算机工程与应用, 2005, (23): 60~62
    [41] J.Kennedy and R.Eberhart. Particle swarm optimization, IEEE Int. Conf. Neural Networks, 1995, 1942~1948
    [42] R Eberhsrt, Y Shi. Guest editorial special issue on particle swarm optimization. IEEE Trans. on Evolutionary Computation, 2004, 8(3): 201~203
    [43] Carlos A, Coello Coello, Maximino Salazar Lechuga. MOPSO: a proposal for multiple objective particle swarm optimization, IEEE congress on Evolutionary Computation, 2002, 1051~1056
    [44] Mostaghim S, Teich J. The role of e-dominance in multi-objective particle swarm optimization methods. Proc. of IEEE Congress on Evolutionary Computation, 2003, 1764~1771
    [45] E Alfassio Grimaldi, F Grimaccia, M Mussetta, R E Zich. PSO as an effective learning algorithm for neural network applications. Proceedings of 3rd International Conference on Computational Electro-magnetics and Its Applications, 2004, 557~560
    [46] Liu Hongbo, Tang Yiyuan, Meng Jun, Ji Ye. Neural networks learning using vbest model particle swarm optimization. Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004, 3157~3159
    [47] Juang Chia-Feng. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [J]. IEEE Trans. on System, Man, and Cybernetics~Part B: Cybernetics, 2004, 34(2): 997~1006
    [48] Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control in electric power systems. Proceedings of the IEEE Congress on Evolutionary Computation, 2001
    [49] Abido M A. Optimal design of power system stabilizers using particle swarm optimization. IEEE Trans. on Energy Conversion, 2002, 17(3): 406~413
    [50] Eberhart R, Shi Y. Tracking and optimizing dynamic systems with particle swarms. Proceedings of the IEEE Congress on Evolutionary Computation, 2001, 94~97
    [51] Hu X, Eberhart R. Adaptive particle swarm optimization: detection and response to dynamic systems. Proceedings of the IEEE Congress on Evolutionary Computation, 2002, 1666~1670
    [52]董颖,唐加福,许宝栋等.一种求解非线性规划问题的混合粒子群算法[J].东北大学学报, 2003, 24(12): 1141~1144
    [53] Schoofs L, Naudts B. Swarm intelligence on the binary constraint satisfaction problem. Proceedings of the IEEE Congress on Evolutionary Computation, 2002, 1444~1449
    [54] Coath G, Halgamuge S K. A comparison of constraint-handling methods for the application of particle swarm optimization to constrained nonlinear optimization problems. Proceedings of IEEE Congress on Evolutionary Computation, 2003, 2419~2425
    [55] Sousa T, Silva A, Neves A. A particle swarm data miner. LNCS NO.2902, 2003, 43~53
    [56] Chen Chingyi, Ye Fun. Particle swarm optimization algorithm and its application to clustering analysis. Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control, 2004, 789~794
    [57] Xiao Lizhong, Shao Zhiqing, Liu Gang. K-means algorithm based on particle swarm optimization algorithm for anomaly intrusion detection. Proceeding of the 6th World Congress on Intelligent Control and Automation, 2006, 5854~5858
    [58] Wang Li, Liu Yushu, Zhao Xinxin, Xu Yuanqing. Particle swarm optimization for fuzzy c-means clustering. Proceeding of the 6th World Congress on Intelligent Control and Automation, 2006, 6055~6058
    [59] Lee Byung-hwa, Kim Sang-un, Seok Jin-wook, Won Sangchul. Nonlinear system identification based on support vector machine using particle swarm optimization. Proceeding of SICE-ICASE International Joint Conference, 2006, 5614~5618
    [60] Liu J, Xu Wenbo, Sun J. Nonlinear system identification of Hammerstien and Wiener model using swarm intelligence. Proceedings of the 2006 IEEE international Conference on Information Acquisition, 2006, 1219~1223
    [61]柯晶,乔谊正,钱积新.应用粒子群优化辨识时变时滞系统.第五届全球智能控制与自动化大会, 2004, 330~334
    [62] Shi Y H, Eberhart R C. Empirical study of particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation, 1999, 1945~1950
    [63] Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence in multi-dimensional complex space [J]. IEEE Transaction on Evolutionary Computation, 2002, 6(1): 58~73
    [64] Ozcan E, Mohan C. Particle swarm optimization: surfing the waves[A], Procceedings of the Congress on Evolutionary Computation [C], Washington DC, 1999, 1939~1944
    [65] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection [J]. Information Processing Letters, 2003, 85, 317~325
    [66] Peer E S, van den Bergh F, Engelbrecht A P. Using neighborhoods with the guaranteed convergence PSO. Proceedings of the IEEE Swarm Intelligence Symposium. 2003, 235~242
    [67] Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. Proceedings of IEEE Congress on Evolutionary Computation, 1999, 1931~1938
    [68] Kennedy J, Mendes R. Population structure and particle swarm performance. Proceedings of the IEEE Congress on Evolutionary Computation, 2002, 1671~1676
    [69] Kennedy J, Mendes R. Neighborhood topologies in fully informed and best-of-neighborhood particle swarms[J].IEEE Trans. on Systems, Man and Cybernetics-Part C: Applications and Reviews, 2006, 36(4): 515~519
    [70] Wang Fang, Qiu Yuhui. A modified particle swarm optimizer with roulette selectionoperator. Proceedings of NLP-KE’05, 2005, 765~768.
    [71] Andrew Stacey, Mirjana Jancic, Ian Grundy. Particle swarm optimization with mutation, Proceedings of the IEEE Congress on Evolutionary Computation, 2003, 1425~1430
    [72] Qin Yuanqing, Sun Debao, Cen Yigang. Path planning for mobile robot using the particle swarm optimization with mutation operator. Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004: 2473~2478
    [73] Liu Yu, Qin Zheng, Shi Zhewen.Hybrid particle swarm optimizer with line search. Proceedings of 2004 IEEE International Conference on Systems Man and Cybernetics. 2004, 3751~3755
    [74] Wang Xihuai, Li Junjun. Hybrid particle swarm optimization with simulated annealing. Proceedings of the Third International Conference on Machine Learning and Cybernetics. 2004, 2402~2405
    [75] Jiang J Q, Xing X L, Yang X W, Liang Y C. A hybrid algorithm based on PSO and genetic operation and its applications for cutting stock problem. Proceedings of the Third International Conference on Machine Learning and Cybernetics. 2004, 2198~2201
    [76] Du Shiqiang, Li Wanshe, Cao Kai. A learning algorithm of artificial neural network based on GA-PSO. Proceedings of the 6th World Congress on intelligent Control and Automation, 2006, 3633~3637
    [77] Gao Shang, Jiang Xinzi, Tang Kezong, Yang Jingyu. Hybrid algorithm combining ant colony optimization algorithm with particle swarm optimization. Proceedings of the 25th Chinese Control Conference.2006, 1428~1432
    [78] Zhao Fuqing, Zhu Aihong, Ren Zongyi, Yang Yahong. Integration of process planning and production scheduling based on a hybrid PSO and SA algorithm. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, 2006, 2290~2295
    [79] Parsopoulos K E, Plagianakos V P, Magoulas G D, Vrahatis M N. Objective function“stretching”to alleviate convergence to local minima[J]. Nonlinear Analysis, Theory, Methods and Applications, 2001, 47(5): 3419~3424
    [80] Shi Y, Eberhart R. A modified particle swarm optimizer. Proceedings of IEEEInternational Conference on Evolutionary Computation, 1998, 69~73
    [81] Wang Bo, Dong Yunlong, Wang Canlin, Qu Qinlin. A new particle swarm optimizer algorithm and application.Proceedings of 1st International Symposium on Systems and Control in Aerospace and Astronautics, 2006, 312~315
    [82] Xie X F, Zhang W J, Yang Z L. A dissipative particle swarm optimization. Proceedings of the IEEE Congress on Evolutionary Computation,2002, 1456~1461
    [83] Niu Ben, Zhu Yunlong, He Xiaoxian. Multi-population cooperative particle swarm optimization. LNAI 3630, 2005, 874~883
    [84] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer with local search. Proceddings of The 2005 IEEE Congress on Evolutionary Computation, 2005, 522~528
    [85] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer. Proceedings of 2005 IEEE Swarm Intelligence Symposium, 2005, 1~6
    [86] Linhares A. Preying on optima: a predatory search strategy for combinatorial problems[A].Proc. IEEE Int. Conf. Systems, Man and Cybernetics[C], Piscataway NJ: IEEE Service Center, 1998, 2974~2978
    [87] Linhares A. Synthesizing a predatory search strategy for VLSI layouts[J]. IEEE Trans. on Evolutionary Computation, 1999, 3(2): 147~152
    [88]宗敬群.一类混合自适应遗传算法及性能分析[J].系统工程理论与实践, 2001, 21(4): 14~18
    [89]许义海,李晓东.一种快速寻优的新型改进遗传算法[J].中山大学学报(自然科学版), 2006. 45(2): 36~40
    [90]胡玉兰,潘福成,梁英等.基于种群规模可变的粗粒度并行遗传算法[J].小型微型计算机, 2003, 24(3): 534~536
    [91] Erick Cantu Paz, David E Goldberg. Efficient Parallel Genetic Algorithms: Theory and Practice [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2): 221~238
    [92] Enrique Alba, JoséM Troya. Analyzing Synchronous and Asynchronous Parallel Distributed Genetic Algorithms [J].Future Generation Computer Systems, 2001, 17(4): 451~465
    [93] Sandra C M and Leandro N. Data clustering with particle swarms[A]. Proceedings of IEEE Congress on Evolutionary Computations, Vancouver, Canada, 2006, 1792~1798
    [94]黄芳,樊晓平.基于岛屿群体模型的并行粒子群优化算法[J].控制与决策, 2006, 21(2): 175~179, 188
    [95] Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatial particle extension. Proceedings of the IEEE Congress on Evolutionary Computation, 2002, 1474~1479
    [96]韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报, 2006, 18(10): 2969~2971
    [97] Zhang Liping, Yu Huanjun, Hu Shangxu. A new approach to improve particle swarm optimization [A]. Lecture Notes in Computer Science[C]. Chicago, IL: Springer-Verlag, 2003, 134~139
    [98] Eberhart R and Shi Y. Particle swarm optimization: developments, applications and resources [A]. Proceeding of IEEE Congress on Evolutionary Computation, Seoul, South Korea, 2001, 81~86
    [99] Suganthan P N. Particle swarm optimizer with neighborhood operator [A]. Proceedings of IEEE Congress on Evolutionary Computation, Piscataway, NJ, 1999, 1958~1962
    [100] Watts D J,Strongatz S H. Collective dynamics of small world networks [J].Nature, 1998, 393(4): 440~442
    [101] AlbertR, BarabásiA-L. Statistical mechanics of complex network [J]. Review of Modern Physics, 2002, 74(1.): 47~97
    [102] Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans Systems, Man and Cybernetics, 1985, 15(1): 116~132
    [103] Sugeno M, Yasukawa T. A fuzzy_logic_based approach to qualitative modeling[J]. IEEE Trans. on FuzzySystem, 1993, 1(1): 7~31
    [104] Gomez Skarmeta A F, Delgado M, Vila M A. About the use of fuzzy clustering techniques for fuzzy model identification [J]. Fuzzy Sets and Systems, 1999, 106(2):179~188
    [105] Handjilim L, Wertz V. Takagi-Sugeno fuzzy modeling incorporating input variables selection, IEEE Transactions on Fuzzy Systems, 2002, 10(6): 728~742
    [106] Kukol J D,Levi E. Identification oc complex systems based on neural Takagi-Sugeno fuzzy model, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2004, 34(1): 272~282
    [107] Chen Y X, Wang J Z.Support vector learning for fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems, 2003, 11(6): 716~728
    [108] Sugeno M,Kang G, Structure identification of fuzzy model,Fuzzy Sets and Systems, 1988, 28(1): 15~33
    [109]王辉,肖建.基于多分辨率分析的T-S模糊系统研究[J].控制理论与应用, 2005, 22(2): 325~329
    [110]王辉,肖建.基于多分辨率的模糊系统的函数逼近性分析[J].西南交通大学学报, 2004, 39(1): 26~30
    [111] Zhao L, Tsujimura Y, Gen M. Genetic algorithm for fuzzy clustering[C]. Proceedings of IEEE International Conference on Evolutionary Computation, 1996
    [112]刘静,钟伟才,刘芳等.免疫进化聚类算法[J].电子学报, 2001, 29(12A): 1868~1872
    [113]刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践, 2005, 25(6): 54~58
    [114]张莉,孙钢,郭军.基于k-均值聚类的无监督的特征选择方法[J].计算机应用研究, 2005, (3): 23~23, 42
    [115]杨善林,李永森,胡笑旋等. K-means算法k值优化问题研究[J].系统工程理论与实践, 2006, 26(2): 97~101
    [116] G.E.P. Box and G.M. Jenkins, Times series analysis, forecasting and control. San Francisco: Holden Day, 1970
    [117]朱红霞,沈炯,李益国.一种新的动态聚类算法及其在热工过程模糊建模中的应用[J].中国电机工程学报, 2005, 25(7): 34~40
    [118] M. Sugeno and T. Yasukawa, A fuzzy logic-based approach to qualitative modeling,IEEE Trans. on Fuzzy systems, 1993, 1(1): 7~31
    [119] Y. Yoshinari, Construction of fuzzy models through clustering technique, Fuzzy and Systems, 1993, 54(2): 157~165
    [120] C.W. Xu and Z. Yong, Fuzzy model identification and self-learning for dynamic systems, IEEE Trans on Systems, Man and Cybernetics, 1987, 17(4): 683~689
    [121] J.Q. Chen, Y.G. Xi and Z.J. Zhang, A clustering algorithm for fuzzy model identification, Fuzzy and Systems, 1998, 98: 319~329
    [122] F.C. Liu, C.J. Piao and R. Pei, Analysis on the applications of fuzzy clustering method in fuzzy model identification, System Engineering and Electronics. 2002, 24(5): 35~37,64
    [123] Y.H. Joo, H.S. Hwang and K.B. Kin, Fuzzy system modeling by fuzzy partition and GA hybrid schemes, Fuzzy and Systems, 1997, 86: 279~288
    [124]吕剑虹,陈建勤,刘志远等.基于模糊规则的热工过程非线性模型的研究[J].中国电机工程学报, 2002, 22(11): 132~137
    [125]张友民,李庆国,戴冠中等.一种RBF网络结构优化方法[J].控制与决策, 1996, 11(6): 667~671
    [126]周佩玲,陶小丽,傅忠谦等.基于遗传算法的RBF网络用于股票短期预测[J].数据采集与处理, 2001, 16(2): 249~252
    [127]王旭东,邵惠鹤等. RBF神经元网络在非线性系统建模中的应用[J].控制理论与应用, 1997, 14(1): 59~66
    [128] Park J, Stanberg I W. Universal approximation using radial basis function networks [J]. Neural Computation, 1991, 3(3): 246~257
    [129] Chen S et al. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Trans on Neural Networks, 1991, 2(2): 302~309
    [130] Sunil V T, Shin Y C. Radial basis function neural networks for approximation and estimation of nonlinear stochastic dynamic systems [J]. IEEE Trans on Neural Networks, 1994, 5(4): 594~603
    [131]王旭东,邵惠鹤,范懋基等.改进的RBF神经元网络及其应用[J].上海交通大学学报, 1996, 30(4): 132~136
    [132]宋晓峰,陈德钊,胡上序等.基于优进策略的遗传算法对重油热解模型参数的估计[J].高校化学工程学报, 2003, 17(4): 411~417
    [133]俞欢军,张丽平,陈德钊等.复合粒子群优化算法在模型参数估计中的应用[J].高校化学工程学报, 2005, 19(5): 675~680
    [134]葛晓霞,缪国君等.热电厂热负荷的预测方法[J].热力发电, 1996, 26(2): 25~28
    [135]李勇,宋景东,孙海波等.热电厂热负荷预测的神经网络模型[J].热能动力工程, 1998, 13(6): 447~448
    [136]张传斌,王学孝,邓正隆等.非线性时间序列的RBF神经网络预测方法及其应用[J].热能动力工程, 2001, 16(3): 311~312, 342
    [137]王洪斌,杨香兰,王洪瑞等.一种改进的RBF神经网络学习算法[J].系统工程与电子技术, 2002, 24(6): 103~105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700