用户名: 密码: 验证码:
基于脑MR图像的三维组织自动分割
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,医学图像极大地影响了神经科学的许多领域。随着先进的医学成像技术的发展,许多神经科学的研究放在了比较脑内组织解剖结构的差异上,从而寻求与脑疾病有关的解剖结构形态改变的特征,以期提高脑疾病诊断的可靠性和治疗方案的有效性。医学图像分割作为图像分割领域中的一个重要分支,是实现医学图像分析,进而完成医学图像理解的首要、关键性步骤。
     随着磁共振成像(Magnetic Resonance Imaging,MRI)技术的发展,磁共振(MR)图像可以提供脑内部组织解剖结构的高对比度和高分辨率的三维(3D)医学图像。神经科学研究人员逐渐地对能将脑精确区分为三大主要组织,灰质(GM)、白质(WM)和脑脊液(CSF),进而将脑分割为皮层结构、皮层下结构和病理组织的方法产生浓厚兴趣。这些基于解剖学形态结构改变的研究均依靠对MR图像的分割。而医学图像分割技术就提供了这种从多模式医学图像中分割和提取出各种脑组织结构的自动和半自动的方法。
     然而,医学图像分割是医学图像分析中最困难和最具有挑战性的问题之一。由于MR成像设备成像能力的限制,临床采集的脑组织的MR图像通常含有噪声、偏场(Bias Field,BF)导致的灰度不均匀(Intensity Non-uniformity,INU)、部分容积效应(Partial Volume Effect,PVE)和运动伪影等不利因素,加之脑组织复杂的形状、边界和拓扑结构,使得快速、准确和鲁棒地分割脑组织MR图像是一件困难的事。
     此外,二维(2D)图像分割已不能满足临床和研究的需要,脑组织3D图像的分割逐渐成为主流,临床医生和研究人员迫切需要快速、准确和鲁棒的3D分割算法。因为人体组织结构毕竟是三维结构体,而且3D分割充分利用了当今成像设备采集的3D图像数据的信息,其分割结果在空间上更加准确和连续,提供给研究人员更丰富的人体组织的3D形态结构、大小、位置等信息,显示也更加的直观明了。
     近几十年来,针对图像分割领域的相关算法虽然种类繁多,且仍层出不穷,但依然无法完全满足人们的实际需求。其原因相当复杂,包括:无法完全用数学模型来简单描述人们所面临的实际问题;分割对象结构性质的千差万别;图像退化以及人们对分割结果预期目标互不相同等。这些原因决定了不可能实现一种普适、通用的分割方法。只能针对特定问题和具体的需求给予合理选择,在精度、速度、和鲁棒性等关键性指标上做出均衡或侧重。
     针对目前医学图像分割领域的发展现状,本文从脑内组织MR图像三维分割的角度出发,分析并回顾当前主要的医学图像分割方法,特别是三维医学图像分割算法。针对这些算法中的不足,提出了一些新的模型和3D分割算法;并利用这些新算法和已有的算法,在三个分割层次上,来实现在临床和神经科学研究中对脑组织的分割。
     随着研究人员对脑和脑疾病的研究不断深入,脑组织的分割已经被分为三个层次。第一个层次是将脑组织分割为三大脑组织,灰质、白质和脑脊液;第二个层次是将脑组织进一步分割为皮层结构和皮层下结构;第三个层次是病理组织的分割和提取。这三个层次不是互相独立的,而是有机的联系在一起。如第一层次的分割结果有助于其它两个层次的分割。本文包括以下的研究工作和创新:
     第一、由于脑部MR图像存在图像偏场和噪声,本文提出了一种基于象素灰度值的改进FCM自适应快速自动分割算法,来完成对含有偏场和噪声的脑部MR图像进行快速3D分割。在该算法中,给出了一种新的分割目标函数,采用参数模型来近似偏场和类似马尔可夫随机场先验的模糊隶属度矢量邻域约束来模拟脑组织分布的空间一致性。该算法不需要对MR数据取对数或滤波等预处理,在目标函数递归优化的过程中,利用偏场参数模型和邻域约束来同时完成象素的分割和图像偏场的估计。由于算法利用分割结果估计偏场,使得偏场的估计更加合理和准确。同时参数模型减少了需要估计参数的数目,提高了算法分割结果的准确度和分割的速度。模拟和临床脑部MR图像的分割实验结果表明,我们的算法对初始值不敏感,对噪声有较强的抑制,有效地克服了偏场的影响,分割结果准确度高,速度快。我们的算法在三维MR图像的自动分割实验中取得了满意的分割速度和准确度。
     第二、在本文中,我们提出了一种基于多约束和动态先验的自动三维分割算法,称之为MCDPMRF-EM算法。该算法将来自MR图像的一种大尺度约束引入MRF模型中,在贝叶斯框架和最大后验准则下,利用改进的EM算法,实现MR脑图像的分割。MCDPMRF-EM算法具有分割准确、鲁棒和分割结果与解剖学一致性高的优点。我们的算法有以下创新点:(1)提出多约束模型和构造方法,并利用构造的多约束来提升分割算法的性能。算法对分类数不敏感,在不同分割数目设置下,算法的分割结果具有解剖学先验知识一致性。(2)提出动态先验的概念来模拟人眼分割图像的自适应特点,使得先验的作用根据具体的待分割图像自适应调整,有效地克服了图像偏场。(3)利用参数模型来模拟由于图像偏场存在而导致的同种组织灰度的变化,避免对图像灰度值的对数变换和由此导致的灰度值统计概率不再符合高斯统计模型假设的缺陷。(4)提出一个新的EM改进优化算法。在高斯马儿可夫随机场模型和偏场模型的假设下,该算法可以快速、准确和鲁棒地求解分割目标函数的最优解。
     第三、中脑黑质的病变及多巴胺能神经元功能的破坏是帕金森病(PD)的主要原因。通过对黑质精确的三维分割,来获得其位置、体积和3D形状,再对PD病人和正常人、PD病人早期和晚期以及PD病人治疗前后的黑质形态学上的比较,测量黑质形状和体积的统计变化,有利于提高对早期PD的诊断和评价治疗效果。本文提出了一种基于动态曲面模型和解剖先验知识为约束的自动3D分割方法,该方法能够精确地提取黑质的3D形状结构。而且,就我们所知,黑质的3D分割还未见报道过。
     第四、MRI图像肿瘤的自动分割具有相当大的难度,因为肿瘤及其周围组织的表现和外观比较复杂。在临床上,医生和分割算法间的一些交互信息会极大地提高分割算法的分割结果的准确性和针对性。基于此,我们提出了一种基于图论最大流/最小切准则的交互式半自动3D肿瘤分割算法。该算法通过简单的交互,就能够快速、准确地分割出脑肿瘤。
     第五、人类大脑的脑室系统是由四个相互连通的脑室构成,脑室内脑脊液体积容量的变化和脑室形态的改变与多种神经性疾病有关联,脑室系统体积形态变化的量化研究对诊断各种脑部疾病,评价治疗效果和对疾病发作和结果的预测都有重要作用。本文提出了一种准确,快速,稳健的自动三维人脑脑室系统的混合分割方法,能够自动地从脑部3D MR图像中提取出整个脑室系统。该方法由以下两个算法串联构成:(1)基于多约束和动态先验马儿可夫随机场模型(MRF)和最大期望(EM)优化的三维自动分割算法(MCDPMRF-EM算法),MCDPMRF-EM算法将3D图像分割成5种组织类型,同时估计图像偏场。由于MCDPMRF-EM算法采用多约束和动态先验MRF模型,同时用参数模型表达MR图像偏场,本文方法具有偏场校正、抑制噪声的能力,并且算法对不同分类数目,其分割结果一致性高。(2)基于高斯马尔可夫随机场模型(GMRF)分割目标函数和s/t最大流—最小切图论优化的快速3D分割算法。前一个算法用来将脑组织分为白质(WM)、白质/灰质(WM/GM)、灰质(GM)、灰质/脑脊液(GM/CSF)和脑脊液(CSF)五种组织类型;后一个算法利用前一个算法的结果来进一步分割出整个脑室系统;两个算法之间通过形态学方法来联系。两个串联算法均在MR图像的三维空间中进行分割,利用三维空间的参数偏场模型和三维空间约束信息。该混合方法利用像素的部分容积效应和图论网络流中最大流—最小切优化分割算法的解偏小的特点,来实现各脑室不同部分的种子像素点提取和带硬约束的最大流—最小切优化方法的脑室自动分割。本混合方法不需要对MR图像进行去噪,偏场校正等预处理,就能获得与解剖学知识一致的优质分割结果。
In the last two decades, the field of medical image analysis has greatly influenced many areas in neuroscience. With the advancement of the medical imaging technologies, neuroscientists have been increasingly interested in methodologies that can identify brain normal tissues, subcortical structures and pathological tissues in anatomical imaging modalities. Many neuroscience studies aim to find new disease related anatomical characteristics in order to increase the reliability of diagnosing the illness or improving the effectiveness of treatment methods against the brain disease. As the one of the most important branches of segmentation of image, the segmentation of medical image is the primary and critical step for the analyzing and understanding the medical images.
     Today, with the advancement of the Magnetic Resonance Imaging (MRI), the MRI has provided a means for imaging tissues in the brain at very high contrast and resolution in the three dimensional space. Most neuroscientists are keenly interested in outlining the three main brain "tissue" classes - cerebral spinal fluid (CSF), white matter (WM) and gray matter (GM) - in Magnetic Resonance (MR) images and further parcellating these tissue classes into their substructures such as cerebral ventricles, thalamus and so on. These anatomical studies of brain tissues and structures with disease are often based on the analysis of Magnetic Resonance images. The segmentation of medical images provides different kinds of algorithms or tools to segment and extract the tissues and structures in the brain automatically or interactively from MR images for the analysis.
     The task of automatically segmenting medical images is challenging as the images are corrupted by several artifacts. Because of the limited resolution and imperfection of the medical imaging devices, the sampled MR images from clinic are often degraded by noise, bias field (BF, also known as intensity non-uniformity, INU), partial volume effects (PVE) and motive artifacts. In addition, the complex shape, boundary and topology of brain tissues and structures make the accurate, fast and robust segmentation of brain tissues very difficult.
     Furthermore, two-dimensional (2D) segmentation of medical images can not meet the demands of clinic and research anymore. Three-dimensional (3D) segmentation and visualization of medical images becomes popular which is because of the 3D nature of the tissues and structures of brain in reality. Moreover, the 3D segmentation offers more accurate and continuous results utilizing the more rich information provided by 3D medical imaging data volumes as much as possible. The visualization of objective structures is more vivid with rich relevant 3D information about shape, size and location.
     By far, the field of medical image analysis has developed a variety of automatic segmentation methods to fulfill the difficult problem of medical segmentation. However, the current medical segmentation algorithms still can't satisfy the various demands in clinic and research completely. The reasons causing the above deficient state of the field include poor mathematic model for describing the problem faced in practice, significant difference between different targets to be segmented, degraded medical images due to the imperfectness of the imaging devices, random and complex change of pathological tissue, diverse expectances of the result, and so on. So, there is no such an algorithm of segmentation which is competent for all kinds of the problems. What we can do is to develop different algorithms of segmentation for different problems.
     In this thesis, the current algorithms of medical image segmentation are reviewed in detail especially the 3D segmentation algorithms for brain tissues. Some new models and algorithms are proposed to fulfill the accurate and fast 3D segmentation of brain tissues and structures on the following three levels. As researchers have been furthering the studies in brain and the related diseases, the segmentation of brain tissues has been stratified into three levels: the segmentation of three main tissues of brain, the segmentation of the subcortical structures and the segmentation of pathological tissues. We believe that the three levels are interdependent in automatic parcellation of brain. In the thesis, the following creative research works are included:
     First, an new intensity based improved FCM algorithm is presented to fast segment the MR brain volumes with significant bias field and noise into three main brain tissues. The algorithm is formulated by proposing a new objective function based on standard FCM algorithm with bias field correction and neighborhood constrain. In the algorithm, a parameterized model is adopted to express the bias field and a neighbor constrain on membership vectors similar to Markov random field (MRF) is proposed to express spatial consistency of brain tissue. The proposed algorithm segment MR data volumes and estimate the bias field without need for a logarithmic transformation and preprocessing. Experimental results with both synthetic and real clinic data are included, as well as comparisons of the performance of our algorithm with that of other published methods. The validation of the algorithm shows good accuracy and fast convergence.
     Second, in the paper, a new multi-constrain and dynamic prior based automatic 3D Segmentation algorithm called MCDPMRF-EM is developed for segmenting MR Brain volumes into three main brain tissues. A novel big scale constrain extracted from MR volumes is introduced into Markov Random Field model (MRF) in the algorithm. The algorithm searches the optimal segmentation configuration using the Maximum a Posteriori (MAP) criteria and a modified expectation-maximization algorithm (EM) in the Bayesian frame. The MCDPMRF-EM algorithm segments MR brain volumes corrupted by bias field and noise accurately and robustly. The results of the algorithm are more consistent with the known anatomical facts. The proposed algorithm incorporates the following novel features.
     1)The multi-constrain model is proposed as well as its creation to improve the function of statistical segmentation algorithms. By incorporating the new model, our algorithm is insensitive to class number, and the segmentation result of our algorithm is more consistent with the known anatomical facts.
     2)The dynamic prior concept is also proposed to simulate the self adaptive function of human eyes. The dynamic prior can automatic adjust the constrain to effectively conquer the bias field.
     3)We propose parametric, smooth models for the intensity of each class instead of multiplicative bias field that affects tissue intensities. This may be a more realistic model and avoids the need for a logarithmic transformation and, hence, the related nonlinear distortions.
     4) We propose a novel variant of the EM algorithm which allows for the use of a fast and accurate way to find optimal segmentations, given the intensity models which incorporate MRF spatial coherence assumptions.
     Third, the MRI-based quantity analysis of substantia nigra (SN) in human brain has more and more value in diagnosis of Parkinson disease in today. We describe an anatomic knowledge-constrained algorithm based on active surface model and adaptive region growth to automatically delineate the SN region from a magnetic resonance image. The result of the algorithm can be used to calculate position, shape and volume and help early clinical diagnosis as well as treating effect of SN. The validation of the algorithm was tested and showed good accuracy and adaptation.
     Fourth, we propose a graph-based three-dimensional (3D) algorithm to automatically segment brain tumors from magnetic resonance images (MRI). The algorithm uses minimum s/t cut criteria to obtain a global optimal result of objective function formed according to Markov Random Field Model and Maximum a posteriori (MAP-MRF) theory, and by combining the expectation-maximization (EM) algorithm to estimate the parameters of mixed Gaussian model for normal brain and tumor tissues. 3D segmentation results of brain tumors are fast achieved by our algorithm. The validation of the algorithm was tested and showed good accuracy and adaptation under simple interactions with the physicians.
     Last, the human cerebral ventricular system consists of four inter-communicating chambers. Changes in CSF volume and ventricular shape are associated with several neurological diseases. Quantification of the degree of abnormal enlargement of ventricles is important in diagnosis of various diseases, measuring the response to treatment, and predicting the prognosis of the disease process. In this paper, we present a novel 3D hybrid approach for automatic extraction of human cerebral ventricular system from MR neuroimages. The approach consists of following two algorithms and intermediate step serially. First, an new 3D algorithm of segmentation called MCDPMRF-EM based on multi-constrain and dynamic prior with Markov Random Field model, which optimized by a Maximum A posteriori Probability criteria and the expectation maximization algorithm. The algorithm segment brain tissues into five tissue class types and estimate bias field (BF) accurately and robustly from MR image volumes. Second, an intermediate step of some morphological processes is followed with the above algorithm to extract the seed regions which are the parts of the four ventricles. Thirdly, we use a combinatorial s/t graph cuts algorithm with the hard constraints to segment the ventricular system from MR neuroimages. Our approach can automatically extract the complete ventricular system with no need for denoise and correction of bias field. The test result of the approach is accurate and agrees with the anatomical structure of the ventricular system.
引文
[1]Kapur T.,Grimson W.E.L.,Wells W.M.,et al.Segmentation of brain tissue from magnetic resonance images[J].Medical Image Analysis,1996,1(2):109-127.
    [2]Brown,M.and Semeka,R.MRI:Basic Principles and Applications[M].The 3rd edition,John Wiley and Sons,Inc.,2003.
    [3]Kikinis R,Shenton ME,Iosifescu DV,et al.A digital brain atlas for surgical planning,Model Driven Segmentation and Teaching[J].IEEE Transactions on Visualization and Computer Graphics,1996,2(3):232-241.
    [1]Haralick R.M.,Shapiro L.G.Image segmentation techniques[J].Comput.Vis.Graph.Im.Proc.,1985,29:100-132.
    [2]Pham D.L.,Prince J.L.An adaptive fuzzy C-Means algorithm for image segmentation in the presence of intensity inhomogeneities[J].Patt.Rec.Let.,1999,20(1):57-68.
    [3]Zadeh L.A.Fuzzy set[J].Information and Control,1965,8:338- 353.
    [4]Liang Z.Tissue classification and segmentation of MR images[J].IEEE Eng.Med.Biol.,1993,12(1):81-85.
    [5]Wells W.M.,Grimson W.E.L.,Kikins R.,et al.Adaptive segmentation of MRI data[J].IEEE Transactions on Medical Imaging,1996,15:429-442.
    [6]Dembele D.,Kastner P.Fuzzy C-Means method for clustering microarray data[J].Bioinformatics,2003,19(8):973-980.
    [7]Held,K.;Kops,E.R.;Krause,B.J.;Wells,W.M.,Ⅲ.;Kikinis,R.;Muller-Gartner,H.-W.Markov random field segmentation of brain MR images,Medical Imaging,IEEE Transactions on Volume 16,Issue 6,Date:Dec.1997,Pages:878-886.
    [8]Ballester M.G.,Zisserman A.,M.Brady.Combined statistical and geometrical 3D segmentation and measurement of brain structures[C].IEEE Workshop on Biomedical Image Analysis,1998,26:14-23.
    [9]Leemput K.V.,Maes F.,Vandermeulen D.,et al.Automated model-based tissue classification of MR images of the brain [J].IEEE Transactions on Medical Imaging,1999,18(10):897-908.
    [10]Warfield S.,Rexilius J.,Kaus M.,et al.Adaptive,template moderated,spatial varying statistical classification [J].Medical Image Analysis,2000,4(1):43-55.
    [11]Zhang Y.,Brady M.,Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm [J].IEEE Transactions on Medical Imaging,2001,20(1):45-57.
    [12]Zijdenbos A.,Foghani R.,Evans A.Automatic 'pipeline' analysis of 3D MRI data for clinical trials:Application to multiple sclerosis [J].IEEE Transactions on Medical Imaging,2002,21(10):1280-1291.
    [13]Marroquin J.L.,Vemuri B.C.,Botello S.,et al.An accurate and efficient Bayesian method for automatic segmentation of brain MRI Medical Imaging [J].IEEE Transactions on Medical Imaging,2002,21(8):934 - 945.
    [14]Marroquin J.,Santana E.,Botello S.Hidden Markov measure field models for image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25:1380-1387.
    [15]Prastawa M.,Gilmore J.,Lin W.,et al.Automatic segmentation of MR images of the developing newborn brain [J].Medical Image Analysis,2005,9:457-466.
    [16]Ashburner J.,Friston K.,Unified segmentation [J].Neurolmage,2005,26(3):839-851.
    [17]Greenspan H.,Ruf A.,Goldberger J.Constrained Gaussian mixture model framework for automatic segmentation of MR brain images Medical Imaging [J].IEEE Transactions onMedical Imaging,2006,25(9):1233 - 1245.
    [18]Bazin P.L.,Pham D.L.Topology-preserving tissue classification of magnetic resonance brain images,IEEE Trans.Medical Imaging,2007,26 (4):487-496.
    [19]Rajapakse J.C,Giedd J.N.,Rapoport J.L.Statistical approach to segmentation of single-channel cerebral MR images [J].IEEE Trans.Med.Imag.1997,16(2):176-186.
    [20]Desco M.,Gispert J.D.,Reig S.,et al.Statistical segmentation of multidimensional brain datasets [C].Proceedings of SPIE,2001,4322:184-193.
    [21]Chang Y.L.,Li X.Adaptive image region-growing [J].IEEE Trans.on Image Processing,1994,3(6):868-72.
    [22]Adams R.,Bischof L.Seeded region growing [J].IEEE Trans.Pattern Anal.Machine Intell.1994,16(6):641-7.
    [23]Heinonen T.,Dastidar P.,Eskola H.,et al.Applicability of semi-automatic segmentation for volumetric analysis of brain lesions [J].Journal of Medical Engineering &Technology,1998,22:173-8.
    [24]Tamez-Pena J.G.,Totterman S.,Parker K.Unsupervised statistical segmentation of multispectral volumetric MR images [C].Proceedings of SPIE,1999,3661:300-311.
    [25]Pohle R.,Toennies K.D.Segmentation of medical images using adaptive region growing.Proceedings of SPIE,2001,4322:1337-1346.
    [26]Manousakas I.N.,Undrill P.E.,Cameron G.G.,et al.Split-and-Merge segmentation of magnetic resonance medical images:performance evaluation and extension to three dimensions [J].Computers and Biomedical Research,1998:31(6):393-412.
    [27]Yung-Chieh L.,Yu-Pao T.,Yi-Ping H.,et al.Comparison between immersion-based and toboggan-based watershed image segmentation [J].IEEE Transactions on Image Processing,2006,15(3):632-640.
    [28]Meyer F.An overview of morphological segmentation [J].International Journal of Pattern Recognition and Artificial Intelligence,2001,15(7):1089-1118.
    [29]Sijbers J.,Scheunders P.,Verhoye M.,Vander L.A.,et al.Watershed based segmentation of 3D MR data for volume quantization [J].Journal of Magnetic Resonance Imaging,1997,15:679-688.
    [30]Bueno G.,Musse O.,Heitz F.,Armspach J.P.3D Watershed-based segmentation of internal structures within MR brain images.Proceedings of SPIE,2000,3979:284-293.
    [31]Grau V.,Mewes A.,Alcaniz M.et al.Improved watershed transform for medical image segmentation using prior information [J].IEEE Transactions on Medical Imaging,2004,23(4):447- 458.
    [32]Bezdek J.C.Pattern Recognition with Fuzzy Objective Function Algorithms [M].Plenum Press,New York,1981.
    [33]Hall L.O.,Bensaid A.M.,Clarke L.P.,et al.A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain [J].IEEE Trans.Neural Networks,1992,3:672-682.
    [34]Gerig G.,Martin J.,Kikinis R.,et al.Unsupervised tissue type segmentation of 3D dual-echo MR head data.Image and Vision Computing,1992,10:346-360.
    [35]Brandt M.E.,Bohan T.P.,Kramer L.A.Estimation of CSF,white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images [J].ComputerizedMedicallmaging and Graphics,1994,18:25-34.
    [36]Singh M.,Patel P.,Khosla D.,et al.Segmentation of functional MRI by K-means clustering [J].IEEE Trans.Nucl.Sci.,1996.43:2030-2036.
    [37]Pham D.L.,Prince J.L.Adaptive fuzzy segmentation of magnetic resonance images [J].IEEE Trans.Med.Imag.,1999,18(9):737-751.
    [38]Liew A.W.C,Leung S.H.,Lau W.H.Fuzzy Image Clustering Incorporating Spatial Continuity.IEEE Proceedings-Vision,Image and Signal Processing,2000,147(2):185-192.
    [39]Barra V.,Boire J.-Y.Tissue segmentation on the MR images of the brain by the possibilistic clustering on a 3D wavelet representation [J].Journal of Magnetic Resonance Imaging,2000,11(3):267-278.
    [40]Liew A.W.C,Leung S.H,Lau W.H.Segmentation of Color Lip Images by Spatial Fuzzy Clustering [J].IEEE Trans.Fuzzy System,2003,11(4):542-549.
    [41]Liew A.W.C,Yan H.An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation [J].IEEE Trans.Med.Imag.,2003,22(9):1063-1075.
    [42]Szeto L.K.,Liew A.W.C,Yan H.,et al.Gene expression data clustering and visualization based on a binary hierarchical clustering framework [J].Journal of Visual Languages and Computing,2003,14:341-362.
    [43]Wu S.,Liew A.W.C,Yan H.Cluster analysis of gene expression data based on self-splitting and merging competitive learning [J].IEEE Trans,on Information Technology in Biomedicine,2004,8(1):5-15.
    [44]Liew A.W.C,Hong Y.,Law N.F.Image segmentation based on adaptive cluster prototype estimation [J].IEEE Transactions on Fuzzy Systems,2005,13(4):444 - 453.
    [45]Sanghoon L.,Crawford M.M.Unsupervised multistage image classification using hierarchical clustering with a bayesian similarity measure [J].IEEE Transactions on Image Processing,2005,14(3):312 - 320.
    [46]Wismuller A.,Meyer-Baese A.,Lange O.,et al.Cluster analysis of dynamic cerebral contrast-enhanced perfusion MRI time-series [J].IEEE Transactions on Medical Imaging,2006,25(1 ):62-73.
    [47]Awate S.P.,Zhang H.,Gee J.C.A fuzzy,nonparametric segmentation framework for DTI and MRI analysis:with applications to DTI-Tract extraction [J].IEEE Transactions on Medical Imaging,2007,26(11):1525 - 1536.
    [48]Chatzis S.P.,Varvarigou T.A.,A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation [J].IEEE Transactions on Fuzzy Systems,2008,16(5):1351 - 1361.
    [49]Das S.,Abraham A.,Konar A.Automatic clustering using an improved differential evolution algorithm [J].IEEE Transactions on Systems,Man and Cybernetics,2008,38(1):218 - 237.
    [50]Wu Z.,Leahy R.An optimal graph theoretic approach to data clustering:theory and its application to image segmentation [J].IEEE Transactions on Pattern Analysis and MachineIntelligence,1993,15(11):1101-1113.
    [51]Sarkar S.,Boyer K.L.Quantitative measures of change based on feature organization:eigenvalues and eigenvectors.IEEE Conference Computer Vision and Pattern Recognition,1996,478-483.
    [52]Shi J.,Malik J.Normalized cuts and image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
    [53]Wang S.,Siskind J.M.Image segmentation with ratio cut [J],IEEE Transactions on PAMI,2003,25(6):675-690.
    [54]Carballido-Gamio J.,Belongie S.J.,Majumdar S.Normalized cuts in 3-D for spinal MRI segmentation [J].IEEE Transactions on Medical Imaging,2004,23(1):36-44.
    [55]Grady L.,Funka L .G.Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials.Lecture Notes in Computer Science,2004,3117:230-245.
    [56]Boykov Y,Funka LG.Graph Cuts and Efficient N-D Image Segmentation [J].International Journal of Computer Vision,2006,70(2):109-131.
    [57]Boykov,Y.and Kolmogorov,V.An experimental comparison of min-cut /max-flow algorithms for energy minimization in vision.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26 (9):1124-1137.
    [58]Kang L.,Xiaodong W.,Chen D.Z.,et al.Optimal surface segmentation in volumetric images - A graph-theoretic approach [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):119-134.
    [59]Corso J.J.,Sharon E.,Dube S.,et al.Efficient multilevel brain tumor segmentation with integrated bayesian model classification [J].IEEE Transactions on Medical Imaging,2007,27(5):629-640.
    [60]Terzopoulos D.,Fleischer K.Deformable models [J].The Visual Computer,1988,4(6):306-331.
    [61]Terzopoulos D.,Witkin A.,Kass M.Constraints on deformable models:Recovering 3D shape and nonrigid motion [J].Articial Intelligence,1988,36(1):91-124.
    [62]Kass M.,Witkin A.,Terzopoulos D.Snakes:Active contour models,International Journal on Computer Vision.,1998,1(4):321-331.
    [63]Szeliski R.Bayesian modeling of uncertainty in low-level vision [J].International Journal on Computer Vision,1990,5(3):271-301.
    [64]Zienkiewicz O.C,Taylor R.L.The finite element method [M].New York:McGraw-Hill,1989.
    [65]Farin G.Curves and surfaces for CAGD [M].New York:Academic Press,1993.
    [66]Miller J.V,Breen D.E.,Lorensen W.E.,et al.Geometrically deformed models:A method for extracting closed geometric models from volume data [J].ACM SIGGRAPH Computer Graphics,1991,25(4):217-226.
    [67]Osher S.,Sethian J.A.Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi Formulation [J].Journal of Computational Physics,1988,79(1):12-49.
    [68]Malladi R.,Sethian J.A.,Vemuri B.C.Shape modeling with front propagation:A level set approach [J].IEEE Trans.Pattern Anal.Machine Intell.,1995,17(2):158-175.
    [69]Malladi R.,Sethian J.A.,Vemuri B.C.A fast level set based algorithm for topology-independent shape modeling [J],Journal of Mathematical Imaging and Vision,1996,6(2/3):269-290.
    [70]Yuille A.L.,Hallinan P.W.,Cohen D.S.Feature extraction from faces using deformable templates [J].International Journal of Computer Vision,1992,8(2):99-111.
    [71]Metaxas D.,Terzopoulos D.Shape and nonrigid motion estimation through physics-based synthesis [J].IEEE Trans,on Pattern Analysis and Machine Intelligence,1993,15(6):580-591.
    [72]Bardinet E.,Cohen L.D.,Ayache N.Superquadrics and free-form deformations:A global model to fit and track 3D medical data.Lecture Notes in Computer Science,1995,905:319-326.
    [73]Vemuri B.C.,Radisavljevic A.Multiresolution stochastic hybrid shape models with fractal priors.ACM Trans,on Graphics,1994,13(2):177-207.
    [74]Szekely G,Kelemen A.,Brechbuhler C,et al.Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier surface models [J].Medical Image Analysis,1996,l(1):19-34.
    [75]Cootes T.,Hill A.,Taylor C.et al.The use of active shape models for locating structures in medical images [J].Image and Vision Computing,1994,12(6):355-366.
    [76]Davatzikos C.A.,Prince J.L.An active contour model for mapping the cortex [J].IEEE Trans.Med.Imag.,1995,14(1):65-80.
    [77]McInerney T.,Terzopoulos D.Deformable models in medical image analysis:A survey.Medical Image Analysis,1996,1(2):91-108.
    [78]Atkins M.S.,Mackiewich B.T.Fully automatic segmentation of the brain in MRI [J].IEEE Trans.Med.Imag.,1998,17(1):98-107.
    [79]Duta N.,Sonka M.Segmentation and interpretation of MR brain images:An improved active shape model.IEEE Trans.Med.Imag.1998,17(6):1049-62.
    [80]Zeng X.,Staib L.H.,Schultz R.T.,et al.Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation [J].IEEE Transactions on Medical Imaging,1999,18(10):927-937.
    [81]Baillard C,Hellier P.,Barillot C.Segmentation of brain 3D MR images using level sets and dense registration [J].Medical Image Analysis,2001,5(3):185-194.
    [82]Shen D.,Herskovits E.H.,Davatzikos C.An adaptive focus statistical shape model for segmentation and shape modeling of 3-D brain structures [J],IEEE Transactions on Medical Imaging,2001,20(4):257-270.
    [83]Vese L.A.,Chan T.F.A multiphase level set framework for image segmentation using theMumford and Shah model [J],International Journal of Computer Vision,2002,50(3):271-293.
    [84]Ji L.,Yan H.An attractable snakes based on the greedy algorithm for contour extraction.Pattern Recognition [J],2002,35(4):791-806.
    [85]Yang J.,Staib L.H.,Duncan J.S.Neighbor-constrained segmentation with level set based 3D deformable models [J],IEEE Transactionson Medical Imaging,2004,23(8):940-948.
    [86]Angelini E.D.,Song T.,Mensh B.D.,et al.Segmentation and quantitative evaluation of brain MRI data with a multi-phase three-dimensional implicit deformable mode,Proceedings of the SPIE,2004,5370:526-537.
    [87]Angelini E.D.,Song T.,Mensh B.D.,et al.Brain MRI segmentation with multiphase minimal partitioning:a comparative study.International Journal of Biomedical Imaging,2007,2007(10526).
    [88]Dawant B.M.,Hartmann S.L.,Thirion J.P.,et al.Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free form transformations:I.Methodology and validation on normal subjects [J].IEEE Trans.Med.Imag.,1999,18(10):909-916.
    [89]Xiao H.,Fischl B.Atlas Renormalization for Improved Brain MR Image Segmentation Across Scanner Platforms,IEEE Transactions on Medical Imaging,2007,26(4):479 - 486.
    [90]Reddick W.E.,Glass J.O.,Cook E.N.,et al.Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks [J].IEEE Trans.Med.Imag.,1997,16(6):911-918.
    [91]Zhu Y.Yan H.Computerized tumor boundary detection using a Hopfield network [J].IEEE Trans.Med.Imag.,1997,16(1):55-67.
    [92]Shan S.,William S.,Malcolm G.,et al.MRI Fuzzy Segmentation of Brain Tissue Using Neighborhood Attraction with Neural-Network Optimization [J].IEEE Transactions onInformation Technology in Biomedicine,2005,9(3):459-467.
    [93]Tao S.,Jamshidi M.M.,Lee R.R.,Mingxiong H.A Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR Image [J].IEEE Transactions on Neural Networks,2007,18(5):1424-1432.
    [94]Worth,A.J.,Makris N.,Patti M.R.,et al.Precise segmentation of the lateral ventricles and caudate nucleus in MR brain images using anatomically driven histograms [J].IEEE Transactions on Medical Imaging,1998,17(2):303-310.
    [95]Pohl K.M.,Bouix S.,Nakamura M.,et al.A Hierarchical Algorithm for MR Brain Image Parcellation [J],IEEE Transactions on Medical Imaging,2007,26(9):1201-1212.
    [96]Zhuowen T.,Narr K.L.,Dollar P.,et al.Brain Anatomical Structure Segmentation by Hybrid Discriminative/Generative Models [J].IEEE Transactions on Medical Imaging,2008,27(4):495-508.
    [97]Clark J.W.Neural network modelling.Phys.Med.Biol.,1991,36:1259-1371.
    [98]Haykin S.Neural Networks:A comprehensive Foundation [M].first edition,New York:Macmillan,1994.
    [99]Valli G.,Poli R.,Bigozzi C,et al.Artificial Newral Networks for the Segmentation of Medical Images.Technical report,McGill University,Toronto,Ontario,Canada,1994.
    [100]Udupa J.K.,Samarasekera S.Fuzzy connectedness and object segmentation [J].Graphical Models and Image Processing,1996,58:246-261.
    [101]Udupa J.K.,Saha P.K.,Lotufo R.A.Relative Fuzzy Connectedness and Object Definition:Theory,Algorithms,and Applications in Image Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(11):1485-1550.
    [102]Tianhu L.,Udupa,J.K.,Saha,P.K.,et al.Artery-vein separation via MRA-An image processing approach [J].IEEE Transactions on Medical Imaging,2001,20(8):689-703.
    [103]Pednekar A.S.,Kakadiaris I.A.Image segmentation based on fuzzy connectedness using dynamic weights [J].IEEE Transactions on Image Processing,2006,15(6):1555-1562.
    [104]Yongxin Z.,Jing B.Atlas-Based Fuzzy Connectedness Segmentation and Intensity Nonuniformity Correction Applied to Brain MRI [J].IEEE Transactions on BiomedicalEngineering,2007,54(1):122-129.
    [105]Horsfield M.A.,Bakshi R.,Rovaris M.,et al.Incorporating Domain Knowledge Into the Fuzzy Connectedness Framework:Application to Brain Lesion Volume Estimation in Multiple Sclerosis [J].IEEE Transactions on Medical Imaging,2007,26(12):1670-1680.
    [106]Fox,Lancaster J.A probabilistic atlas of the human brain:theory and rationale for its development [J].Neurolmaging,1995,2(2):89-101.
    [107]Thompson P.M.,Schwartz C,Toga A.W.High-resolution random mesh algorithms for creating a probabilistic 3D surface atlas of the human brain [J].Neurolmaging,1996,3(1):19-34.
    [108]Holmes C.J.,Hoge R.,Collins L.,et al.Enhancement of mr images using registration for signal averaging [J].Journal of Computer Assisted Tomography,1998,22(2):324-333.
    [109]Fischl B.,Kouwe A.V.,Destrieux C.et al.Automatically parcellating the human cerebral cortex [J].Cerebral Cortex,2004,14(1):11-22.
    [110]Gerig G.,Styner M.Statistical shape models for segmentation and structural analysis.IEEE International Symposium on Biomedical Imaging,2002,2002:18-21.
    [111]Thompson P.M.,Woods R.P.,Mega M.S.,et al.Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain [J].Human Brain Mapping,2000,9(2):81-92.
    [112]Warfield S.K.,Rexilius J.,Huppi P.S.,et al.A binary entropy measure to assess nonrigid registration algorithm [C].Medical Image Computing and Computer-Assisted Intervention,2001,2208:266-274.
    [113]Davatzikos C.Spatial transformation and registration of brain images using elastically deformable models [J].Computer Vision and Image Understanding,1997,66(2):207-222.
    [114]Ferrant M.,Nabavi A.,Macq B.,et al.Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model [J].IEEE Transactions in Medical Imaging,2001,20(12):1384-1397.
    [115]Rohr K.,Stiehl H.S.,Sprengel R.,et al.Landmark-based elastic registration using approximating thin-plate splines [J].IEEE Transactions in Medical Imaging,2001,20(6):526-534.
    [116]Schnack H.G.,Hulshoff P.H.E.,Baare W.F.C,et al.Automatic segmentation of the ventricular system from MR images of the human brain [J].Neurolmage,2001,14(1):95-104.
    [117]Yan X.,Qingmao H.,Aamer A.,et al.A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages [J].Neurolmage,2004,21(1):269-282.
    [118]Holden M.,Schnable J.A.,Hill D.L.G.Quantifying small changes in brain ventricular volume using non-rigid registration.MICCAI,2001,49-56.
    [119]Lisa J.,Patric H.,Claudio P.,et al.A level set method for segmentation of the thalamus and its nuclei in DT-MRI [J].Signal Processing,2007,87:309-321.
    [120]Amini L.,Soltanian-Zadeh,H.,Lucas,C,et al.Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours [J].IEEE Transactions on Biomedical Engineering,2004,51(5):800-811.
    [121]Pohl K.M.,Fisher J.,Grimson W.E.,et al.A Bayesian model for joint segmentation and registration [J].Neuroimage,2006,31(1):228-239.
    [122]Browne A.,Jakary A.Vinogradov S.,et al.Automatic Relevance Determination for Identifying Thalamic Regions Implicated in Schizophrenia [J].IEEE Transactions on Neural Networks,2008,19(6):1101-1107.
    [123]Pitiot A.,Toga A.W.,Thompson P.M.Adaptive Elastic Segmentation of Brain MRI via Shape-Model-Guided Evolutionary Programming [J].IEEE Transactions on medical imaging,2002,21(8):910-923.
    [124]Buenoa G.,Mussea O.,Heitza F.,et al.Three-dimensional segmentation of anatomical structures in MR images on large data bases [J].Magnetic Resonance Imaging,2001,19(1):73-88.
    [125]Delphine N.,Steven H.,Aaron B.,et al.Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets [J].IEEE Transactions on medical imaging,2007,26(4):598-618.
    [126]Zhou J.,Rajapakse J.C.Segmentation of subcortical brain structures using fuzzy templates [J].Neurolmage,2005,28(4):915-924.
    [127]Dinggang S.,Edward H.H.,.Christos D.An Adaptive-Focus Statistical Shape Model for Segmentation and Shape Modeling of 3-D Brain Structures [J].IEEE Transactions on medical imaging,2001,20(4):257-270.
    [128]Fischl B.,Salat D.,Busa E.,et al.Whole Brain Segmentation:Automated Labeling of Neuroanatomical Structures in the Human Brain,Neuron,2002,33(3):341-355.
    [129]Marius George Linguraru,Miguel Angel Gonzalez Ballester,Nicholas Ayache,Deformable Atlases for the Segmentation of Internal Brain Nuclei in Magnetic Resonance Imaging,International Journal of Computers,Communications & Control,2007,2(1):26-36.
    [130]Szekely G.,Kelemen A.,Brechbiihler C.et al.Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models [J].Medical Image Analysis,1996,1(1):19-34.
    [131]Prastawa M.,Bullitt E.,Ho S.,et al.A brain tumor segmentation framework based on outlier detection [J].Medical Image Analysis Journal,2004,8(3):275-283.
    [132]Liu J.,Udupa J.,Odhner D.,et al.A system for brain tumor volume estimation via mr imaging and fuzzy connectedness [J].Computerized Medical Imaging and Graphics,2005,29(1):21-34.
    [133]Phillips W.E.,Velthuizen R.P.,Phupanich S.,et al.Applications of Fuzzy C-Means Segmentation Technique for Tissue Differentiation in MR Images of a Hemorrhagic Glioblastoma Multiforme [J].Journal of Magnetic Resonance Imaging,1995,13(2):277-290.
    [134]Clark M.C,Hall L.O.,Goldgof D.B.,et al.Automatic tumor segmentation using knowledge-based techniques [J].IEEE Transactions on Medical Imaging,1998,17(2):187-201.
    [135]Fletcher-Heath L.M.,Hall L.O.,Goldgof D.B.,et al.Automatic segmentation of non-enhancing brain tumors in magnetic resonance images [J].Artificial Intelligence in Medicine,2001,21:43-63.
    [136]Prastawa M.,Bullitt E.,Moon N.,et al.Automatic brain tumor segmentation by subject specific modification of atlas priors [J].Academic Radiology,2003,10:1341-1348.
    [137]Kaus M.,Warfield S.,Nabavi A.,et al.Automated segmentation of mr images of brain tumors [J].Radiology,2001,218(2):586-591.
    [138]Ho S.,Bullitt E.,Gerig G.,Level set evolution with region competition:Automatic 3-d segmentation of brain tumors.Proceedings of International Conference on Pattern Recognition,2002,1:532-535.
    [139]Zhu Y.,Yan H.Computerized Tumor Boundary Detection Using a Hopfield Neural Network [J].IEEE Transactions on Medical Imaging,1997,16(1):55-67.
    [140]Lee C.H.,Schmidt M.,Murtha A.,et al.Segmenting brain tumor with conditional random fields and support vector machines.Proceedings of Workshop on Computer Vision for Biomedical Image,2005,3765:469-478.
    [141]Schmidt M.,Levner I.,Greiner R.,et al.Segmenting brain tumors using alignment-based features,International Conference on Machine Learning and Applications,2005,2005:15-17.
    [142]Udupa J.K.,LeBlanc V.R.,Zhuge Y.,et al.A framework for evaluating image segmentation algorithms [J].Computerized Medical Imaging and Graphics,2006,30(2):75-87.
    [1]Guttmann C.,Benson R.,Warfield S.K.et al.White matter abnormalities in mobility-impaired older persons[J].Neurology,2000,54(6):1277-1283.
    [2]Smith S.,Zhang Y.,Jenkinson M.,et al.Accurate,robust,and automated longitudinal and cross-sectional brain change analysis [J].Neurolmage,2002,17(1):479-489.
    [3]Meritxell Bach Cuadra,Leila Cammoun,Torsten Butz,et al.Comparison and validation of tissue modelization and statistical classification methods in T1-Weighted MR brain images [J].IEEE Transactions on Medical Imaging,2005,24(12):1548-1565.
    [4]Liew A.W.C,Yan H.Current methods in the automatic tissue segmentation of 3D magnetic resonance brain Images [J].Current Medical Imaging Reviews,2006,2(1):91-103.
    [5]Bezdek,J.Pattern recognition with fuzzy objective function algorithms [M].New York:Plenum Press,1981.
    [6]Dzung L.Pham,Jerry L.Prince.Adaptive fuzzy segmentation of magnetic resonance images [J].IEEE Transactions on Medical Imaging,1999,18(9):737-752.
    [7]Mohamed N.Ahmed,Sameh M.Yamany,Nevin Mohamed,et al.A Modified fuzzy C-Means algorithm for bias field estimation and segmentation of MRI data [J].IEEE Transactions on Medical Imaging,2002,21(3):193-199.
    [8]Smith S.M.Fast robust automated brain extraction [J].Hum Brain Mapping,2002,17(3):143-155.
    [9]Bezdek J.A convergence theorem for the fuzzy ISODATA clustering algorithms [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(1):1-8.
    [10]Styner M.,Brechbuhler C,Szckely G.Parametric estimate of intensity inhomogeneities applied to MRI [J].IEEE Transactions on Medical Imaging,2000,19(3):153 - 165.
    [11]Sled J.G.,Zijdenbos A.P.,Evans A.C.A nonparametric method for automatic correction of intensity nonuniformity in MRI data [J].IEEE Transactions on Medical Imaging,1998,17(1):87-97.
    [12]Wells W.M.I.,Grimson W.E.L.,Kikinis R.Adaptive segmentation of MRI data [J].IEEE Transactions on Medical Imaging,1996,15(4):429-442.
    [13]Zhang Yong-yue,Michael Brady,Stephen Smith.Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm [J].IEEE Transactions on Medical Imaging,2001,20(1):45-57.
    [14]Sanjay-Gopal S.,Thomas J.Hebert.Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm [J],IEEE Transactions on Image Processing,1998,7(7):1014-1028.
    [15]Shattuck D.W.,Sandor-Leahy S.R.,Schaper K.A.et al.Magnetic resonance image tissue classification using a partial volume model [J],Neurolmage,2001,13(5):856-876.
    [16]Leemput K.V.,Maes F.,Vandermeulen D.,et al.Automated model-based bias field correction of MR images of the brain [J].IEEE Transactions on Medical Imaging,1999,18(10):885-896.
    [1]Wells W.,Grimson W.,Kikinis R.,et al.Adaptive segmentation of MRI data[J].IEEE Transactions on Medical Imaging,1996,15(4):429-442.
    [2]Ballester M.G.,Zisserman A.,Brady M.Combined statistical and geometrical 3D segmentation and measurement of brain structures.IEEE Workshop on Biomedical Image Analysis,1998,14-23.
    [3]Leemput K.V.,Maes F.,Vandermeulen D.,et al.Automated model-based tissue classification of MR images of the brain[J].IEEE Transactions on Medical Imaging,1999,18(10):897-908.
    [4]Warfield S.,Rexilius J.,Kaus M.,et al.Adaptive,template moderated,spatial varying statistical classification[J].Medical Image Analysis,2000,4(1):43-55.
    [5]Zhang Y.,Brady M.,Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm[J].IEEE Transactions on Medical Imaging,2001,20(1):45-57.
    [6]Zijdenbos A.,Foghani R.,Evans A.Automatic 'pipeline' analysis of 3D MRI data for clinical trials:Application to multiple sclerosis[J].IEEE Transactions on Medical Imaging, 2002,21(10):1280-1291.
    [7]Marroquin J.L.,Vemuri B.C,Botello S.,et al.An accurate and efficient Bayesian method for automatic segmentation of brain MRI [J].IEEE Transactions on Medical Imaging,2002,21(8):934-945.
    [8]Marroquin J.L.,Santana E.,Botello S.Hidden Markov measure field models for image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(11):1380-1387.
    [9]Prastawa M.,Gilmore J.,Lin W.,et al.Automatic segmentation of MR images of the developing newborn brain [J].Medical Image Analysis,2005,9(5):457-466.
    [10]Ashburner J.,Friston K.Unified segmentation.Neurolmage,2005,26(3):839-851.
    [11]Greenspan H.,Ruf A.,Goldberger J.Constrained Gaussian mixture model framework for automatic segmentation of MR brain images [J].IEEE Transactions on Medical Imaging,2006,25(9):1233-1245.
    [12]Pierre-Louis Bazin,Dzung L Pham.Topology-preserving tissue classification of magnetic resonance brain images [J].IEEE Trans Med Imaging,2007,26 (4):487-496.
    [13]Heinonen T.,Dastidar P.,Eskola H.,et al.Applicability of semi-automatic segmentation for volumetric analysis of brain lesions [J].Journal of Medical Engineering &Technology,1998,22:173-178.
    [14]Tamez-Pena J.G.,Totterman S.,Parker K.Unsupervised statistical segmentation of multispectral volumetric MR images.SPIE,1999,3661:300-311.
    [15]Pohle R.,Toennies K.D.Segmentation of medical images using adaptive region growing.SPIE,2001,4322:1337-1346.
    [16]Manousakas I.N.,Undrill P.E.,Cameron G.G.,et al.Split-and-Merge Segmentation of Magnetic Resonance Medical Images:Performance Evaluation and Extension to Three Dimensions [J].Computers and Biomedical Research,1998,31(6):393-412.
    [17]Sijbers J.,Scheunders P.,Verhoye M.,et al.Watershed based segmentation of 3D MR data for volume quantization [J].Journal of Magnetic Resonance Imaging,1997,15(6):679-688.
    [18]Bueno G.,Musse O.,Heitz F.,et al.3D Watershed-based segmentation of internal structures within MR brain images.SPIE,2000,3979:284-293.
    [19]Grau V.,Mewes A.,Alcaniz M.,et al.Improved watershed transform for medical image segmentation using prior information [J].IEEE Transactions on Medical Imaging,2004,23(4):447- 458.
    [20]Singh M.,Patel P.,Khosla D.,et al.Segmentation of functional MRI by K-means clustering.IEEE Trans.Nucl.Sci.,1996,43:2030-2036.
    [21]Pham D.L.,Prince J.L.Adaptive fuzzy segmentation of magnetic resonance images [J].IEEE Trans.Med.Imag.,1999,18:737-751.
    [22]Liew A.W.C,Yan H.An Adaptive Spatial Fuzzy Clustering Algorithm for MR Image Segmentation [J].IEEE Trans.Med.Imag.,2003,22(9):1063-1075.
    [23]Duta N.,Sonka M.Segmentation and interpretation of MR brain images:An improved active shape model [J].IEEE Trans.Med.Imag.,1998,17(6):1049-1062.
    [24]Zeng X.,Staib L.H.,Schultz R.T.,et al.Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation [J].IEEE Transactions on MedicalImaging,1999,18(10):927-937.
    [25]Baillard C,Hellier P.,Barillot C.Segmentation of brain 3DMRimages using level sets and dense registration [J].Medical Image Analysis,2001,5(3):185-194.
    [26]Yang J.,Staib L.H.,Duncan J.S.Neighbor-constrained segmentation with level set based 3D deformable models [J].IEEE Transactionson Medical Imaging,2004,23(8):940-948.
    [27]Dawant B.M.,Hartmann S.L.,Thirion J.P.,et al.Automatic 3-D segmentation of inte rnal structures of the head in MR images using a combination of similarity and free formtransformations.I.Methodology and validation on normal subjects [J].IEEE Trans.Med.Imag.,1999,18(10):909-916.
    [28]Han X.,Fischl,B.Atlas renormalization for improved brain MR image segmentation across scanner platforms [J].IEEE Transactions on Medical Imaging,2007,26(4):479- 486.
    [29]Reddick W.E.,Glass J.O.,Cook E.N.,et al.Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks [J].IEEE Trans.Med.Imag.,1997,16(6):911-918.
    [30]Zhu Y.,Yan H.Computerized tumor boundary detection using a Hopfield network [J].IEEE Trans.Med.Imag.,1997,16(1):55-67.
    [31]Shen S.,Sandham W.,Granat M.,et al.MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization [J].IEEE Trans,on Information Technology in Biomedicine,2005,9(3):459-467.
    [32]Song T,Jamshidi M.M.,Lee R.R.,et al.A Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR Image [J].IEEE Transactions on Neural Networks,2007,18(5):1424-1432.
    [33]Worth A.J.,Makris N.,Patti M.R.,et al.Precise segmentation of the lateral ventricles and caudate nucleus in MR brain images using anatomically driven histograms,IEEE Transactions on Medical Imaging,1998,17(2):303-310.
    [34]Pohl K.M.,Bouix S.,Nakamura M.,et al.A hierarchical algorithm for MR brain image parcellation,IEEE Transactions on Medical Imaging,2007,26(9):1201-1212.
    [35]Zhuowen Tu,Narr K.L.,Dollar P.,et al.Brain anatomical structure segmentation by hybrid discriminative/generative models [J].IEEE Transactions on Medical Imaging,2008,27(4):495-508.
    [36]Udupa J.K.,Samarasekera S.Fuzzy connectedness and object segmentation [J].Graphical Models and Image Processing,1996,58:246-261.
    [37]Udupa J.K.,Saha P.K..,Lotufo R.A.Relative fuzzy connectedness and object definition:Theory,algorithms,and applications in image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(11):1485-1500.
    [38]Pednekar A.S.,Kakadiaris I.A.,Image segmentation based on fuzzy connectedness using dynamic weights [J].IEEE Transactions on Image Processing,2006,15(6):1555-1562.
    [39]Yongxin Zhou,Jing Bai.Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI [J].IEEE Transactions on Biomedical Engineering,2007,54(1):122-129.
    [40]Horsfield M.A.,Bakshi R.,Rovaris M.,et al.Incorporating domain knowledge into the fuzzy connectedness framework:Application to brain lesion volume estimation in multiplesclerosis,IEEE Transactions on Medical Imaging,2007,26( 12):1670-1680.
    [41]Geman S.,Geman D.Stochastic relaxation,Gibbs distribution and the Bayesian restoration of images [J].IEEE Trans.Pattern Anal.Mach.Intell.,1984,6(6):721-741.
    [42]Besag J.,On the statistical analysis of dirty pictures [J].J of Royal Statist Soc,Ser B,1986,48(3):259-302.
    [43]Dempster A.P.,Laird N.M.,Rubin D.B.Maximum likelihood from incomplete data via the EM algorithm [J].Journal of the Royal Statistical Society,Series B,39(1):1-38.
    [44]Sled J.G.,Zijdenbos A.P.,Evans A.C.A nonparametric method for automatic correction of intensity nonuniformity in MRI data [J].IEEE Trans.Med.Imag.,1998,17(1):87-97.
    [45]Ruan S.,Jaggi C,Xue J.,et al.Brain tissue classification of magnetic resonance images using partial volume modeling [J].IEEE Trans.Med.Imag.,2000,19(12):1179-1187.
    [46]Descombes X.,Kruggel F.A Markov pixon information approach for low-level image description [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(6):482-494.
    [47]Perona P.,Malik J.Scale-space and edge detection using anisotropic diffusion [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
    [48]Sijbers J.,Dekker D.A.J.,Van A.J.,et al.Estimation of the noise in magnitude MR images [J].Magnetic Rosonance Imaging,1998,16(1):87-90.
    [49]BESAG J.On the statistical analysis of dirty pictures [J].Journal of the Royal Statistical Society,Ser B,1986,48(3):259-302.
    [50]Besag J.Spatial interaction and the statistical analysis of lattice systems [J].J.Royal Statistical Society,Ser B,1974,36:192-225.
    [51]Smith S.M.Fast robust automated brain extraction [J].Hum.Brain Mapping,2002,17(3):143-155.
    [52]Shattuck D.W.,Sandor-Leahy S.R.,Schaper K.A.,et al.Magnetic resonance image tissue classification using a partial volume model [J].Neurolmage,2001,13(5):856-876.
    [53]Bezdek,J.Pattern Recognition With Fuzzy Objective Function Algorithms [M].New York:Plenum Press,1981.
    [54]Zhang Y.Y.,Brady M.,Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J].IEEE Transactions on Medical Imaging,2001,20(1):45-57.
    [1]Caviness V.S.J.,Lange N.T.,Makris N.,et al.MRI-based brain volumetrics:emergence of a developmental brain science[J].Brain and Development,1999,21(5):289-295.
    [2]McInerney T.,Terzopoulos D.Deformable models in medical image analysis:A survey[J].Med.Image Anal.,1996,1(2):91-108.
    [3]Pitiot A.,Delingette H.,Thompson P.,et al.Expert knowledge-guided segmentation system for brain MRI[J],NeuroImage,2004,23(S.1 ):S85-S96.
    [4]Tohka J.,Wallius E.,Hirvonen J.,J.et al.Automatic extraction of caudate and putamen in [11C]Raclopride PET using deformable surface models and normalized cuts,IEEE Trans.Nucl.Sci.,2003.53:200-227.
    [5]Iosifescu D.V..Shenton M.E.,Warfield S.K.,et al.An automated registration algorithm for measuring MRI subcortical brain structures,NeuroImage,1997,6:13-25.
    [6]Kelemen A.,Szekely G.,Gerig G.Elastic model-based segmentation of 3-D neuroradiological data sets,IEEE Trans.Med.Imag.,1999,18(10):828-839.
    [7]Tomas X.,Carmona S.,Vilarroya O.,et al.Automatic caudate segmentation in MRI:Comparison of SPM & INSECT_ANIMAL,Meeting Organization Human Brain Mapp.,2006.
    [8]Fischl B.,Salat D.H.,Busa E.,et al.Whole brain segmentation:Automated labeling of neuroanatomical structures in the human brain[J],Neuron,2002,33:341-355.
    [9]Yushkevich P.,Piven J.,Hazlett H.,et al.User-guided 3-D active contour segmentation of anatomical structures:Significantly improved efficiency and reliability,NeuroImage,2006, 31:1116-1128.
    [10]Xue J.,Ruan S.,Moretti B.Fuzzy modeling of knowledge for MRI brain structure segmentation,Int.Conf.Image Processing,2000,1:617-620.
    [11]Barra V.,Boire J.Y.Automatic segmentation of subcortical brain structures in MR images using information fusion [J].IEEE Trans.Med.Imag.,2001,20(7):549-558.
    [12]Wang Y.,Lei T.Statistical analysis of MR imaging and its applications in image modeling,IEEE Int.Conf.Image Processing,1994,1:866-870.
    [13]Papoulis A.Probability,random variables and stochastic processes,2nd edition,Tokyo:McGraw-Hill,1984.
    [14]Andersen A.H.,Kirsch J.E.Analysis of noise in phase contrast MR imaging [J],Med.Phys.,1996,23:857-869.
    [15]Buades A.,Coll B.,Morel J.M.A review of image denoiseing algorithms,with a new one.Multiscale Modeling & Simulation,2005,4(2):490-530.
    [16]Wang J.,Guo Y.W.,Ying Y.Y.,et al.Fast nonjocal algorithm for image denoising,IC1P 2006,1429-1432.
    [17]Kass M.,Witkin A.,Terzopoulos D.Snakes:Active contour models,International Journal of Computer Vission,1998,1 (4):321-331.
    [18]Osher S.,Sethian J.A.Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi Formulation,Journal of Computational Physics,1988,79(1):12-49.
    [19]Caselles V.,Catte F.,Coll T.,et al.A geometric model for active contours in image processing,Numerische Mathematik,1993,66(1):1-31.
    [20]Malladi R.,Sethian J.A.,Vemuri B.C.Shape modeling with front propagation:A level set .approach,IEEE Trans.Pattern Anal.Machine Intell.,1995,17(2):158-175.
    [21]Chan T.F.,Vese L.A.Active contours without edges.IEEE Transactions on Image Processing,2001,10(2):266-277.
    [22]Mumford D.,Shah J.Optimal approximation by piecewise smooth functions and associated variational problems,Communicaitons on Pure Applied Mathematics,1989,42:577-685.
    [1]Phillips W.E.,Velthuizen R.P.,Phupanich S.L.,et al.Applications of Fuzzy C-Means Segmentation Technique for Tissue Differentiation in MR Images of a Hemorrhagic Glioblastoma Multiforme [J].Magnetic Resonance Imaging,1995,13(2):277-290.
    [2]Clark M.C,Hall L.O.,Goldgof D.B.,et al.Automatic tumor segmentation using knowledge-based techniques [J].IEEE Transactions on Medical Imaging,1998,17(2):187-201.
    [3]Fletcher-Heath L.M.,Hall L.O.,Goldgof D.B.,et al.Automatic segmentation of non-enhancing brain tumors in magnetic resonance images [J].Artificial Intelligence in Medicine,2001,21:43-63.
    [4]Prastawa M.,Bullitt E.,Ho S.,et al.A brain tumor segmentation framework based on outlier detection [J],Medical Image Analysis,2004,8(3):75-283.
    [5]Dickson S.,Thomas B.Using neural networks to automatically detect brain tumours in MR images [J].Neural Systems,1997,4(1):91-99.
    [6]Prastawa M.,Bullitt E.,Moon N.,et al.Automatic brain tumor segmentation by subject specific modification of atlas priors [J].Academic Radiology,2003,10:1341-1348.
    [7]Lee C.H.,Schmidt M.,Murtha A.,et al.Segmenting brain tumor with conditional random fields and support vector machines.Proceedings of Workshop on Computer Vision for Biomedical Image,2005.
    [8]Gering D.Recognizing Deviations from Normalcy for Brain Tumor Segmentation.PhD thesis,MIT,2003.
    [9]Capelle A.,Colot O.,Fernandez-Maloigne C.Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information [J].Information Fusion,2004,5(3):203-216.
    [10]Ho S.,Bullitt E.,Gerig G.Level set evolution with region competition:Automatic 3-d segmentation of brain tumors.International Conference on Pattern Recognition,2002,Ⅰ:532-535.
    [11]Taheri S.,Sim H.O.,Chong V.Threshold-based 3D Tumor Segmentation using Level Set [J].Applications of Computer Vision,2007,7:45-45.
    [12]Cobzas D.,Birkbeck N.,Schmidt M.,et al.3D Variational Brain Tumor Segmentation using a High Dimensional Feature Set [J].Computer Vision,2007,10:1-8.
    [13]Ho S.,Bullitt E.,Gerig G.Level-set evolution with region competition:automatic 3-D segmentation of brain tumors [J].Pattern Recognition,2002,1:532-535.
    [14]Wu Z.,Leahy R.An Optimal Graph Theoretic Approach to Data Clustering:Theory and Its Application to Image Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1101-1113.
    [15]Sarkar S.,Boyer K.L.Quantitative measures of change based on feature organization:eigenvalues and eigenvectors.IEEE Conference Computer Vision and Pattern Recognition,1996,478-483.
    [16]Shi J.,Malik J.Normalized Cuts and Image Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
    [17]Wang S.,Siskind J.M.Image segmentation with ratio cut [J],IEEE Transactions on PAMI,2003,25(6):675-690.
    [18]Carballido-Gamio J.,Belongie S.J.,Majumdar S.Normalized cuts in 3-D for spinal MRI segmentation [J].IEEE Transactions on Medical Imaging,2004,23(1):36-44.
    [19][20]Charles F,Romain MG,Jim W.Automatic Heart Peripheral Vessels Segmentation Based on a Normal MIP Ray Casting Technique.MICCAI 2004,7th International Conference,2004,26-29.
    [20]Grady L.,Funka L .G.Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials.Lecture Notes in Computer Science,2004,3117:230-245.
    [21]Boykov Y.,Funka L.G.Graph Cuts and Efficient N-D Image Segmentation [J].International Journal of Computer Vision,2006,70(2),109-131.
    [22]Corso J.J.,Sharon E.E.,Dube S.S.,et al.Efficient Multilevel Brain Tumor Segmentation Integrated Bayesian Model Classification [J].IEEE Transactions on Medical Imaging,2008,27(5):629-640.
    [23]Stan Z.L.Markov Random Field Modeling in Image Analysis,Tokyo:Springer-Verlag 2001.
    [1]Schnack H.G.,Hulshoff P.H.E.,Baare W.F.C.,et al.Automatic segmentation of the ventricular system from MR images of the human brain [J].Neurolmage,2001,14(1):95-104.
    [2]Wang Y.,Staib L.H.Boundary finding with correspondence using statistical shape models.IEEE Conference on Computer Vision and Pattern Recognition,1998,1998:338-345.
    [3]Kaus M.R.,Warfield S.K.,Nabavi,A.,et al.Automated segmentation of MR images of brain tumors [J].Radiology,2001,218(2):586-591.
    [4]Holden M.,Schnable J.A.,Hill D.L.G.,Quantifying small changes in brain ventricular volume using non-rigid registration.MICCAI,2001,2208:49-56.
    [5]Baillard C,Hellier P.,Barillot C.Segmentation of 3D brain structures using level sets and dense registration.IEEE Workshop on Mathematical Methods in Biomedical Image Analyais,2000,2000:94-101.
    [6]Worth A.J.,Makris N.,Patti M.R.,et al.Precise segmentation of the lateral ventricles and caudate nucleus in MR brain images using anatomically driven histograms [J].IEEE Trans.Med.Imag.1998,17(2):303-310.
    [7]Sonka M.,Tadikonda S.K.,Collins S.M.,Knowledge-based interpretation of MR brain images [J].IEEE Trans.Med.Imag.,1996,15(4):443- 452.
    [8]Yan Xia,Qingmao Hu,Aamer Aziz,et al.A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages [J].Neurolmage,2004,21(1):269-282.
    [9]Wu Z,Leahy R.An Optimal Graph Theoretic Approach to Data Clustering:Theory and Its Application to Image Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1101-1113.
    [10]Sarkar S,Boyer K.L.Quantitative measures of change based on feature organization:eigenvalues and eigenvectors.IEEE Conference Computer Vision and Pattern Recognition,1996,478-483.
    [11]Shi J.,Malik J.Normalized Cuts and Image Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
    [12]Wang S,Siskind J.M.Image segmentation with ratio cut [J],IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):675-690.
    [13]Carballido-Gamio J.,Belongie S.J.,Majumdar S.Normalized cuts in 3-D for spinal MRI segmentation [J].IEEE Transactions on Medical Imaging,2004,23(1):36-44.
    [14]Florin C,Moreau-Gobard R.,Williams J.Automatic Heart Peripheral Vessels Segmentation Based on a Normal MIP Ray Casting Technique.MICCAI,2004,483-489.
    [15]Grady L.,Funka L.G.Multi-Label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials.Lecture Notes in Computer Science,2004,3117:230-245.
    [16]Boykov Y.,Funka L G.Graph Cuts and Efficient N-D Image Segmentation [J].International Journal of Computer Vision,2006,70(2):109-131.
    [17]Corso J.J.,Sharon E.,Dube S.,et al.Efficient Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification [J].IEEE Transactions on Medical Imaging,2008,27(5):629-640.
    [18]Ford,L.,Fulkerson D,Flows in Networks [M].Princeton University Press,1962.
    [19]Smith S.M.Fast robust automated brain extraction [J].Hum Brain Mapping,2002,17(3):143-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700