用户名: 密码: 验证码:
碳纳米管/氰酸酯树脂基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高介电常数(高K值)聚合物基电介质复合材料在电子和电机等行业中有着极为重要的运用,因此提高电介质材料的介电常数非常有意义。碳纳米管(CNTs)具有较大的长径比和较高的电导率,使其成为比较合适的高介电复合材料的填料。尽管在过去的一段时间,人们对CNTs填充复合材料的介电行为和渗流现象进行了一定的研究,然而对于CNTs在交变电场下的极化规律,CNTs与基体树脂不同的界面、更高的频率(GHz)以及变化温度的条件下复合材料介电性能和渗流现象的机理研究仍然不清楚。
     本文主要研究了多壁碳纳米管(MWCNTs)/氰酸酯(CE)高介电纳米复合材料的制备方法及其性能。为了提高MWCNTs与CE的相容性,改善MWCNTs与CE的界面性能,采用Fenton试剂对MWCNTs进行表面改性,利用红外光谱、拉曼光谱等对改性后的碳纳米管(MWCNTs-OH)进行表征,结果表明MWCNTs表面接枝了大量的羟基,然后采用原位聚合法分别制备出MWCNTs/CE和MWCNTs-OH/CE高介电纳米复合材料。
     对MWCNTs/CE和MWCNTs-OH/CE复合材料的热性能进行研究,结果表明1wt%MWCNTs加入CE树脂中,降低了树脂的Tg和耐热性能,而加入1wt%MWCNTs -OH后,材料的Tg保持不变,并显著地提高了材料的热稳定性。
     对MWCNTs/CE和MWCNTs-OH/CE复合材料的介电性能进行研究,结果表明两种MWCNTs复合材料的渗流阈值大致相等,大约都为0.62wt%。复合材料达到渗流阈值时,复合材料的介电常数迅速增大。1KHz下MWCNTs/CE复合材料最大介电常数为114,而MWCNTs-OH/CE复合材料最大介电常数为165,填料与基体不同的界面性能对复合材料的介电常数影响显著。复合材料发生渗流效应时,不但介电常数迅速增大,介电损耗也呈非线性的迅速增大。10-3.25×109Hz、MWCNTs含量低于渗流阈值时,复合材料的介电常数和介电损耗随频率的变化很小,然而当MWCNTs含量超过渗流阈值时,介电常数和介电损耗随频率的增大迅速降低。1KHz、-50-200℃范围内,MWCNTs含量低于渗流阈值时,复合材料的介电常数与介电损耗几乎不随温度的变化而变化,当MWCNTs含量超过渗流阈值时,复合材料的介电常数随着温度的升高而下降,介电损耗随着温度升高而升高。
High dielectric constant (high K)polymer matrx composites have a significant future in electron and electric industry, so it is important to enhance the dielectric constant. Carbon nanotubes (CNTs) with large aspect ration and high electric conducitivity have been pursued with the hope of delivering CNTs properties to a processable and synergistic host. In the past years, dielectric performance and percolation effect were studied, but the law of polarization under the alternating current field, the mechanism of dielectric performance and percolation effect under the different interface of CNTs and CE matrix, higher frequency (GHz), changed temperature conditions remains unclear.
     In this thesis, the preparation and properties of multi-walled carbon nanotubes/ cyanate ester (MWCNTs/CE) nanocomposites were studied. In order to enhance the compatibility and improve the property of interface between the filler and the matrix resin, MWCNTs were modified by Fenton reagent, the corresponding modified MWCNTs coded as MWCNTs-OH. MWCNTs-OH were characterized by Fourier transform infrared spectrum(FTIR), Raman spectrum(RM), etc. The results indicated that a large number of hydroxyl were grafted on the surface of MWCNTs. And then, MWCNTs/CE and MWCNTs-OH/CE nanocomposites were prepared by in-situ polymerization.
     The thermal properties of MWCNTs/CE and MWCNTs-OH/CE composites were studied. The results showed that the addition of 1wt% MWCNTs into CE decreased the glass transition temperature (Tg) and thermal stability, while the incorporation of 1wt% MWCNTs-OH did not decline Tg and significantly improved the thermal stability of CE.
     The dielectric properties of MWCNTs/CE and MWCNTs-OH/CE composites were studied. The results showed that the percolation thresholds of the two kinds of composites were approximately equal, about 0.62wt%. The dielectric constants increased remarkably after the percolation threshold. However, the largest dielectric constant of the two kinds of composites was different. 1 KHz, the largest dielectric constant of MWCNTs/CE composites was 114 with 1wt% MWCNTs, while it reached 165 for MWCNTs-OH/CE composites with about 1.5wt% MWCNTs-OH. The different interface of fillers and matrix made great influence on the dielectric constants of composites. The dielectric loss of both kinds of composites increased non-linear as the dielectric constant when the percolation occurred. 101-3.25×109Hz, when the content of MWCNTs was lower than the percolation threshold, the dielectric constants and dielectric loss of both kinds of composites changed little with the increase of the test frequency, however, when the content of MWCNTs was more than the percolation threshold, the dielectric constants and dielectric loss of both kinds of composite decreased quickly with the increase of the test frequency. 1KHz, -50-200℃, the content of CNTs was lower than the percolation threshold, the dielectric constants and dielectric loss were independence on temperature; The content of CNTs was more than the percolation threshold, the dielectric constants decreased with increasing temperature while the dielectric loss increased with increasing temperature.
引文
[1] Murugaraj P. Electron transport in semiconducting nanoparticle and nanocluster carbon-polymer composites. Solid State Communications 2006, 137:422-426
    [2] Zhang QM, Bharti V, Zhao X. Giant Electrostriction and Relaxor FerroelectricBehavior in Electron-Irradiated Poly(vinylidene fluoride - trifluoroethylene) Copolymer. Science 1998, 280:2101-2103
    [3] Zhang QM, Li HF, Poh M, Feng X, Cheng ZY, Xu HS, et al. An all-organic composite actuator material with a high dielectric constant. Nature 2002, 419(6904):284-287
    [4] Dang ZM, Xie D, Zhang YH, Tjong SC. Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Appl Phys Lett 2004, 85(1):97-99
    [5] [5] Xia F, Cheng ZY, Xu HS, Li HF, Zhang QM, Kavarnos GJ, et al. High Electromechanical Response in a Poly(vinylidene fluoride- trifluoroethylene- chlorofluoroethylene) Terpolymer. Adv Mater 2002, 14(21):1574-1577
    [6] Moa TC. Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites. Ceramics International 2008, 34:1767-1771
    [7] Li Q, Xue QZ. Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Mater Lett 2008, 62:4229-4231
    [8] Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated P(VDF-TrFE) copolymer. Science 1998, 280:2101-2104
    [9] Pelrine R, Kornbluh R, Pei Q, Joseph J. High speed electrically actuated elastomers with strain greater than 100%. Science 2000, 287(5454):836-839
    [10] Xu H, Cheng ZY, Olson D, Mai T, Zhang QM, Kavamos G. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride - trifluoroethylene- cholorotrifluo-roethylene) terpolymer. Appl Phys Lett 2001, 78(16):2360-2362
    [11] Dang ZM, Shen Y, Fan LZ, Nan CW. Dielectric behavior of novel three-phase MWNTs/ BaTi03/PVDF composites. Materials Science and Engineering B 2003, 103(2):140-144
    [12] Pant HC, Patra MK, Verma A, Vadera SR, Kumar N. Study of the dielectricproperties of barium titanate-polymer composites. Acta Mater 2006, 54: 3163-3169
    [13] Kuo DH, Chang CC, Wang WK, Lin BY. Dielectric behaviours of multi-doped BaTiO3/epoxy composites. J Eur Ceram Soc 2001, 21(9):1171-1177
    [14] Dang ZM, Yu YF. Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Compos Sci Technol 2008, 68:171-177
    [15]晁芬,梁国正.双马来酰亚胺/钛酸钡复合材料介电性能的研究.功能材料, 2007,增刊(38):654-657
    [16] Chao F, Liang GZ, Kong WF, Zhang X. Study of dielectric property on BaTiO3/ BADCy composite. Mater Chem Phys 2008, 108:306-311
    [17]刘卫东,刘小芬,朱宝库.聚酰亚胺/钛酸钡复合膜介电性能及其影响因素的研究.功能材料,2007,7(38):1106-1109
    [18] Kobayashi Y, Tanase T, Tabata T, Miwa T, Konno M. Fabrication and dielectric properties of the BaTiO3–polymer nano-composite thin films. J Eur Ceram Soc 2008, 28:117-122
    [19] Xiang F, Wang H. Preparation and dielectric properties of bismuth-based dielectric/PTFE microwave composites. J Eur Ceram Soc 2006, 26:1999-2002
    [20] Xie SH, Zhu BK, Wei XZ, Xu ZK, Xu YY. Polyimide/BaTiO3 composites with controllable dielectric properties. Compos part A-Appl S 2005, 36:1152-1157
    [21] Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R.Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos Sci Technol 2008, 68: 106-112
    [22] Adikary SU, Chan HLW, Choy CL, Sundaravel B, Wilson IH. Characterisation ofproton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composites. Compos Sci Technol 2002, 62:2161-2167
    [23] Bai Y, Cheng ZY, Bharti, Xu HS, Zhang QM. High-dielectric-constant ceramic-powder polymer composites. Appl Phys Lett 2000, 76(25):3804-3806
    [24] Gregorio R, Cestari JM, Bernardino FE. Dilectric bahaviour of thin films of p-PVDF/PZT and p-PVDF/BaTiO3 composites. J Mater Sci 1996, 31(11): 2925- 2930
    [25] Popielarz R, Chiang CK. Polymer composites with the dielectric constant comparable to that of barium titanate ceramics. Materials Science and Engineering B 2007, 139:48-54
    [26] Wanga CM, Kaob KS. Processing and properties of CaCu3Ti4O12 ceramics. Journal of Physics and Chemistry of Solids 2008, 69:608-610
    [27] Arbatti M, Shan XB. Ceramic-Polymer Composites with High Dielectric Constant. Adv Mater 2007, 19:1369-1372
    [28] Wu JB, Nan CW. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys Rev Lett, 2002, 89(21): 217601
    [29] Xie SH, Zhu BK. Preparation and properties of polyimide/LTNO composite films with high dielectric constant. Mater Lett, 2005, 59: 2403-2407
    [30] Dang ZM, Nan CW. Dielectric properties of LTNO ceramics and LTNO/PVDF composites. Ceram Int 2005, 31:349-351
    [31] Huang XY, Jiang PK, Kim CU, Ke QQ, Wang GL. Preparation, microstructure and properties of polyethylene aluminum nanocomposite dielectrics. Compo Sci Technol 2008, 68: 2134-2140
    [32] Dang ZM, Lin YH, Nan CW. Novel Ferroelectric Polymer Composites with High Dielectric Constants. Adv Mater 2003, 15(19):1625-1629
    [33] Huang C, Zhang QM, Su J. High-dielectric-constant all-polymer percolative composites. Appl Phys Lett 2003, 82(20):3502-3504
    [34] Lu JX, Moon KS, Kim BK, Wong CP. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications.Polymer 2007, 48: 1510-1516
    [35] Tsotra P, Friedrich K. Electrical and dielectric properties of epoxy resin/polyaniline-DBSA blends. Journal of Materials Science 2005, 40:4415-4417
    [36] Chwang CP, Liu CD, Huang SW, Chao DY, Lee SN. Synthesis and characterization of high dielectric constant polyaniline/polyurethane blends. Synthetic Met 2004, 142(1-3):275-281
    [37] Hao XY, Gai GS, Yang YF, Zhang YH, Nan CW. Development of the conductive polymer matrix composite with low concentration of the conductive filler. Mater Chem Phys 2008, 109(1):15-19
    [38] Nan CW. Physics of inhomogeneous inorganic materials. Prog Mater Sci 1993, 37(1):1-116
    [39] Qi L, Lee BI, Chen S, Samuels WD, Exarhos GJ. High-Dielectric-Constant Silver- Epoxy Composites as Embedded Dielecrics. Adv Mater 2005, 17(14):1777-1781
    [40] Xu JW, Wong CP. Characterization and properties of an organic-inorganic dielectric nanocomposite for embedded decoupling capacitor applications. Compos part A-Appl S 2007, 38(1): 13-19
    [41] Xu JW and Wong CP. Low-loss percolative dielectric composite. Appl Phys Lett 2005, 87(8):082907
    [42] Li Q, Xue QZ, Hao LZ, Gao XL, Zheng QB. Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos Sci Technol 2008; 68(10-11):2290-2296.
    [43] Tjong SC, Liang GD, Bao SP. Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scripta Mater 2007, 57(6):461-464
    [44] Yang C, Lin YH, Nan CW. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 2009, 47(4):1096-1101
    [45] Nan CW. A creation of new materials from nonintuition composite effect. Progress in Nature Science 2004, 14(4):390-396
    [46] Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354(7):56-58
    [47]张力德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2002:6
    [48] Mauricio T. SCIENCE AND TECHNOLOGY OF THE TWENTY-FIRST CENTURY: Synthesis, Properties, and Applications of Carbon Nanotubes. Annu Rev Mater Res 2003, 33:419-501
    [49] Hertel T, Walkup RE, Avouris P. Deformation of carbon nanotubes by surface van der waals forces. Physical Review B 1998, 58(20):13870-13873
    [50] Dresselhaus MS, Dresselhaus G, Saito R. Carbon fibers based on C60 and their symmetry. Physical Review B1992, 45(11):6234-6242
    [51] Venema LC, Meunier V, Lambin P, et al. Atomic structure of carbon nanotubes from scanning tunneling microscopy. Physical Review B 2000, 61(4):2991-2996
    [52] Pan ZW, Xie SS, Lu L, et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl Phys Lett 1999, 74(21):3152-3154
    [53] Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? .Phys Rev Lett 1992, 68(5): 631-6341
    [54] Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett 1992, 60 (18): 2204-2206
    [55] Berber S, Kwon YK, Tmoanck D. Unusually high thermal conductivity of nanotubes. Phys Rev B 2000, 84:4613-4616
    [56]董树荣,张孝彬,等.材料科学与工程, 1998 , 16 (2) :19-23
    [57]洪炳墩,王彪,等.功能高分子学报, 2005 , 18 (4) :617-622
    [58] Zhang XT, Lu Z, Wen MT, et al. Single-Walled Carbon Nanotube-Based Coaxial Nanowires: Synthesis, Characterization, and Electrical Properties. J Phys Chem B 2005, 109 (3): 1101-1107
    [59] Clyatno LM,Sikder AK, et al. Transparent poyl(methy methaycrlate)/single-walled carbon nanotube (PMMA/SWNT) composite films with increased dielectric constants. Adv Function Mater 2005, 15(1):101-106
    [60] Zou HL, YnagYL, Li QW, et al. Electron beam-induced structure transformation of single-walled carbon nanotubes. Carbon 2002, 40(12): 2282-2284
    [61] Chen Q, Dai LM, Gao M, Huang SM, Mau A. Plasma Activation of Carbon Nanotubes for Chemical Modification. J Phys Chem B 2001, 105(3): 618-622.
    [62] Xia HS, Wang Q, Qiu GH. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in suit emulsion polymerization. Chem Mater 2003, 15(20):3879-3886
    [63] Wang Y, Wu J, Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 2003, 41(15):2939-2948
    [64]黄庆华,严军国,等.应用化学, 2005 , 22 (1) :59-62
    [65]李娟,方征平,等.物理化学学报, 2005 , 21 (11) :1244-1248
    [66] Shaffer MSP, Windle AH. Fabrication and characterization of carbon nanotube/ poly(vinyl alcohol) composites. Adv Mater1999, 11(11):937-941
    [67] Musa I, Baxendale M, Amaratunga GAJ, Eccleston W. Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites. Syn Met 1999, 102(1-3):1250
    [68] Gao JF, Li ZM, Meng QJ, Yang Q. CNTs/UHMWPE composites with a two- dimensional conductive network. Mater Lett 2008, 62(20):3530-3532
    [69] Jin ZX, Pramoda KP, Xa GQ, et al. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(metyl methacrylate) composites. Chem Phy Lett 2001, 337, 43-49
    [70] Kumar S, Doshi H, Srinivasarao M, et al. Fibers from polypropylene/nanocarbon fiber composites. Polymer 2002, 43(5):1701-1703
    [71]张麟,梁国正,杨莉蓉,等.碳纳米管改性双马来酰亚胺树脂体系的性能.工程塑料应用,2007,35(2) :4-8
    [72] Yuen SM, Ma CCM, Chuang CY, Yu KC, Wu SY Yang CC, et al.Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites. Compos Sci and Technol 2008,68(3-4): 963-968
    [73] Nogales A, Broza G, Roslaniec Z, Schulte K, Sics I, Hsiao BS, et al. Low Percolation Threshold in Nanocomposites Based on Oxidized Single Wall CarbonNanotubes and Poly(butylene terephthalate). Macromolecules 2004, 37(20):7669- 7672
    [74] Dai LM, Mua AWH. Controlled synthesis and modification of carbon nanoutbes and C60:carbon nanostructures for advanced polymeric composites materials. Adv Mater 2001, 13(12-13), 899-913
    [75] Abed JC, Mercier R, McGrath JE. Synthesis and characterization of new phosphorus and other heteroatom containing aryl cyanate ester monomers and networks. J Polym Sci Part A: Polym Chem 1997, 35(6):977
    [76] Hamerton I. Chemistry and Technology of Cyanate Esters Resins [M]. Glasgow: Chapman and Hall, 1994, 2-4
    [77] Fang T and Shimp DA. Polycyanate esters: Science and applications, Prog Polym Sci, 1995, 20(1): 61-118
    [78] Hamerton I, Barton JM, Chaplin A, Howlin BJ, Shaw SJ. The development of novel functionallised aryl cyanate easters. Part 2. Mechanical Properties of the Polymers and composites. Polymer 2001, 42(6):2307-2319
    [79] Hamerton I. Chemistry and Technology of Cyanate Esters. Glasgow: Blackie A cademic & Professional, 1994
    [80]赵磊,秦华宇,梁国正,等.氰酸酯树脂的研究进展.工程塑料应用,1999,27(12), 41-44
    [81] Georjon O, Galy J, Pascault JP. Isothermal curing of an uncatalyzed dicyanate ester monomer: Kinetics and modeling, J Appl Polym Sci 1993, 49(8):1441-1452
    [82] Grenier LMF, Lartigau C, Metras F, Grenier P. Mechanism of thermal polymerization of cyanate ester systems: Chromatographic and spectroscopic studies. J Polym Sci Part A: Polym Chem 1996, 34(14):2955-2966
    [83] Liu HP, George GA. Mechanism and kinetics of polymerization of a dicyanate ester resin photocatalysed by an organometallic compound. Polymer 1996, 37(16):3675- 3682/1997
    [84] Owusu OA, Martin GC, Gotro JT. Analysis of the curing behavior of cyanate ester resin systems. Polym Eng Sci 1991, 31(22):1604-1609
    [85] Mathew D, Nair CPR, Krishnan K, Ninan KN. Catalysis of the cure reaction of bisphenol A dicyanate. A DSC study. J Polym Sci Part A: Polym Chem 1999, 37(8): 1103-1114
    [86] Shimp DA. Thermal performance of cyanate functional thermoseting resins, SAMPEQ 1987, 19:41-46
    [87] Hamerton I .Chemistry and Technology of Cyanate Ester. Chapman and Hall: Glasgow, 1994
    [88] Brosseau C, Beroual A. Computational electromagnetics and the rational design of new dielectric heterostructures. Progress in Materials Science, 2003, 48(5):373-456
    [89]薛庆忠.二元复合材料的介电理论.胜利油田师范专科学校学报.1999,13(4):25-30
    [90] Wang JJ, Li ZY. Nonlinear response of granular composite medium. Commun Theor Phys, 1996, 25:35-38
    [91] Brosseau C, Queffelec P, Talbot P. Microwave characterization of filled polymers. Journal of Applied Physics 2001, 89(8): 4532-4540
    [92] DolyeW T, Jacobs IS.Effective cluster model of dielectric enhancement in metal- insulator composites.Phys Rev B 1990, 45(15):9319-9327
    [93]江平开,徐传骧,刘辅宜,王寿泰.金属-绝缘体复合材料介电增强的研究.西安交通大学学报,1997,31(2):6-11
    [94] Kuo DH, Chang CC, Su TY, Wang WK, Lin BY. Dielectric behaviors of multi- doped BaTiO3/epoxy composites. J Eur Ceram Soc 2001, 21(9):1171-1177
    [95] Adikary SU, Chan HLW, Choy CL, Sundaravel B, Wilson IH. Characterisation of proton irradiated Ba+0.65Sr+0.35TiO3/P(VDF-TrFE) ceramic-polymer composites. Comp Sci Tech 2002, 62(16):2161-2167
    [96] Lam KH, Chan HLW, Luo HS, Yin QR, Yin ZW, Choy CL. Dielectric properties of 65PMN-35PT/P(VDF-TrFE)0-3 composites. Microelectronic Eng, 2003,66(1-4): 792-797
    [97]邵天奇,任天令,李春晓,朱钧.高介电常数材料在半导体存储器件中的运用.固体电子学研究与进展.2002, 22(3):312-317
    [98]李曹,刘孝波.聚合物/无机复合材料在介电材料领域的运用.材料导报.2003, 17(8):68-70
    [99]李杰,韦平,汪根林,江平开.高介电复合材料及其介电性能研究.绝缘材料,2003,36(5): 3-6
    [100]李晓和.聚丙烯高频功率电容器.电子元件与材料,1995,14(5): 25-28
    [101]邢丽英.隐身材料.第一版.北京:化学工业出版社.2004: 39-84
    [102] Cathie VG, Michel C, Joseph D, Michel T, Pierre D. Surface Characterizations of Carbon Multiwall Nanotubes: Comparison between Surface Active Sites and Raman Spectroscopy. Journal of Physical of Chemistry B 2004, 108: 19361-19367
    [103]陈宪宏,陈小金,钟文斌等.多壁碳纳米管侧壁的功能化与表征.湖南大学学报(自然科学版), 2006, 5:33
    [104] Schrank SG, Jose HJ, Moreira RFPM, Schroder HFr. Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere 2005, 60(5):644-655
    [105] Liu R, Chiu HM, Shiau CS, Yeh RYL, Huang YT. Degradation and sludge production of textile dyes by Fenton and photo-Fenton processes .Dyes and Pigments 2007, 73(1):1-6
    [106] Li W, Bai Y, Zhang YK, Sun ML, Cheng RM, Xu XC. Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth Met 2005, 155: 509-515
    [107] Yin Q, Sun KN, Li AJ, Shao L, Liu SM, Sun C. Study on carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate. Journal of Power Sources 2008, 175: 861-865
    [108] Bossmann SH, Oliveros E, Gob S, et al. New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Photochemically Enhanced Fenton Reactions .J Phys Chem A 1998, 102 (28):5542-5550
    [109] Fukushima M, Tatsumi K, Morimoto K. The Fate of Aniline after a Photo-Fenton Reaction in an Aqueous System Containing Iron (III), Humic Acid, and Hydrogen Peroxide .Environ Sci Technol 2000, 34 (10):2006-2013
    [110] Mathew D, Nair CPR, Ninan KN. Bisphenol a Dicyanate-novolac Epoxy Blend:Cure Characteristics, Physical and Mechanical Properties, and Application in Composites. Journal of Applied Polymer Science 1999, 74 (7): 1675-1685
    [111] Andrews R, Weisenberger M C. Carbon nanotube polymer composites. Current Opinion in Solid State and Materials Science 2004, 8(1): 31
    [112] Wang JH, Liang GZ, Yan HX, He SB. Mechanical and thermal properties of functionalized multiwalled carbon nanotubes/cyanate ester composite. Polymer Engineering and Science 2009, 49: 681-684
    [113] Che JF, Mary B, Park C. Reactive spinning of cyanate ester fibers reinforced with aligned amino-functionalized single wall carbon nanotubes. Advance Functional Materials 2008, 18: 888-897
    [114] Koo JH, Lao SC, Cheng J. Cyanate ester nanocomposites: processing and characterization. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 2007, 4: 4130-4149
    [115] Fang ZP, Wang JG, Gu AJ. Structure and properties of multiwalled carbon nanotubes/cyanate ester composites. Polymer Engineering and Science 2006, 670-679
    [116] Goertzen WK, Kessler MR. Dynamic mechanical analysis of fumed silica/cyanate ester nanocomposites. Composites Part A: Applied Science and Manufacturing 2008, 39(5):761-768
    [117] Dai SK, Gu AJ, Liang GZ, Yuan L. Preparation and properties of cyanate ester /polyorganosiloxane blends with lower dielectric loss and improved toughness. Polym Adv Technol 2009, 20:1-8
    [118]过梅丽.高聚物与复合材料的动态力学热分析[M].化学化工出版社, 2002, 56-57
    [119] Kirkpatrick S. Classical transport in disordered media: scaling and effective- medium theories. Phys Rev Lett 1971, 27(25):1722-1725
    [120] Zhang J, Mine M, Zhu D, Matsuo M. Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 2009, 47(5):1311-1320
    [121] Li J, Ma CP, Chow WS, To CK, Tang BZ, Kim JK. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 2007, 17(16):3207-3215
    [122] Zhao X, Koos AA, Bryan TTC, Johnston C, Grobert N, Grant PS. Spray deposited fluoropolymer/Multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold . Carbon 2009, 47(3), 561-569
    [123] Pecharroman C, Moya JS. Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold. Adv Mater 2000, 12: 294-297
    [124] Dang ZM, Wang L. Giant dielectric permittivities in functionalized carbon- nanotube/electroactive-polymer nanocomposites. Adv Mate 2007, 19:852-857

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700