用户名: 密码: 验证码:
飞翼飞行平台地面滑跑建模与航迹纠偏控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞翼是一种非常规的气动布局,是未来飞行器设计的一种方向。飞翼布局无人机在总体、气动、隐身、结构等方面有其独特的优势,但飞翼布局也给无人机地面滑跑段的控制带来了很多问题。首先飞翼布局无人机的展弦比大、机身短,升降舵操纵力臂与常规布局无人机的相比较短,因此升降舵操纵性能较差,给飞翼无人机从滑跑迅速的拉起进行爬升的控制带来困难。其次飞翼布局的无人机横侧向稳定性差,方向舵效率低,给飞翼无人机由于受到扰动而偏离跑道需要进行纠偏控制带来困难。本文在对飞翼无人机进行详细研究的基础上,针对以上问题,提出了一些控制方案,给出了相应的控制系统的详细设计,并进行了仿真实验和各种控制方案的研究分析,实现了飞翼无人机能够在扰动的作用下保持在正确的跑道上,保证了无人机的正常起飞。
     本论文首先介绍了无人机自动起飞着陆过程,研究了飞翼无人机起飞着陆过程的特点。通过对飞翼无人机在地面滑跑中运动特性地分析,建立了飞翼无人机地面滑跑数学模型,它包含了无人机机体模型、起落架弹性阻尼模型、轮胎弹性阻尼模型等,采用Matlab S函数编写了飞翼无人机地面滑跑仿真分析程序,它能够实现飞翼无人机地面与空中段的连续仿真。建立了前轮转向操纵系统模型与主轮差动刹车系统模型,为飞翼无人机航迹纠偏控制律的设计奠定基础。
     然后设计了前轮转向、主轮差动刹车航迹纠偏控制系统方案,完成了相关控制律的设计,通过仿真验证了两种控制方案在不同滑跑速度下的有效性,提出了低速前轮转向、高速主轮差动刹车航迹纠偏控制选择方案。
     最后建立了飞翼无人机典型爬升状态下的数学模型,分析了飞翼无人机横侧向运动的特点,设计了飞翼无人机的横侧向增稳系统,分析了飞翼无人机纵向运动的特点,设计了飞翼无人机的俯仰角和高度控制系统。为了使飞翼无人机以最大爬升角爬升,设计出精确轨迹跟踪控制系统并进行了仿真实验。为了保证飞翼无人机能够快速的离地起飞,设计出拉起控制系统并进行了仿真实验。
     大量仿真实验证明本文设计的控制方案和控制系统能够使飞翼无人机在扰动的作用下保持在正确的跑道上,这说明设计控制方案和控制系统是切实可行的。
The flying wing, which is an advanced aero configuration, will be the direction of aircraft design in the future. The flying wing unmanned aeroplane vehicle has its unique advantages in the overall layout、areodynamic、stealth、structure and so on. Because of its unconventional configuration, the flying wing brings us a lot of control problems during ground roll of unmanned aeroplane vehicle. First of all, the flying wing unmanned aeroplane vehicle has high aspect ratio and short fuselage, the control arm of force of its elevator is relatively short compared with natural planes, so the control performance of its elevator is not good, it brings many difficultics to rapid pulling up control of flying wing unmanned aeroplane vehicle. Secondly, its lateral stability is not so good compared with natural planes, the areodynamaic efficiency of rudder is very low, and it brings many difficultics to trajectory bias rectification control of flying wing unmanned aeroplane vehicle. In order to those problems, some control schemes are presented in the paper, on the basis of analyze on flying wing modeling during ground roll, simulation and research of different control schemes are given in detail, the designing of control systems can be found in this paper too, through the design of the control schemes, flying wing unmanned aeroplane vehicle can keep on the right course during ground roll when disturbances happen, and can normally safe take-off.
     The take-off and landing stages of unmanned aeroplane vehicle are introduced in detail and the take-off and landing characteristics of flying wing unmanned aeroplane vehicle are firstly studied in this paper. on the basis of analyze on movement characteristics of flying wing unmanned aeroplane vehicle during ground roll, this paper established a nearly perfect of flying wing unmanned aeroplane vehicle during ground roll, the model includes unmanned aeroplane vehicle body model, the spring and damping model of landing gear and tire,and other component’s model. The flying wing unmanned aeroplane vehicle ground roll simulation and analysis program is realized by using matlab s fuction, which can realized the continuous simulation of flying wing unmanned aeroplane vehicle from ground to air or vice versa. This paper also established the nose wheel steering model and main wheel differential brake model, which are the foundation of the trajectory bias rectification control designing for flying wing unmanned aeroplane vehicle during ground roll.
     this paper designed the trajectory bias rectification control scheme of the nose wheel steering and main wheel differential brake. Through simulation this paper validate the effectiveness of this two trajectory bias rectification control scheme in different roll speed, and put forward the solution which use the nose wheel steering at low roll speed as trajectory bias rectification control method and main wheel differential brake at high roll speed as trajectory bias rectification control method.
     At last, the flying wing unmanned aerial vehicle in typical climbing state is modeling in mathematics. By analyze on the several characteristics of lateral active, the control system to add the lateral stability of the flying wing are designed. By analyze on the several characteristics of longitudinal active, the pitching angle and altitude control system of flying wing are designed. In order to make flying wing climb with maximum climbing angle, exact trajectory tracking control system of the flying wing is designed, and simuliation is carried out. In order to ensure the flying wing rapid take-off from ground, pulling up control system of the flying wing is designed, and simuliation is carried out.
     The simulation results verify the good performance of control schemes and control systems.
引文
[1] Karl Nickel,Michael Wohahrt,Tailless in Theory and Practice,Washington DC,American Institute of Aeronautics and Astronautics,1994,117~120.
    [2]飞翼传说,航空史研究,http://www.afwing.com/intro/flying/2.htm.
    [3]巨晓松,陈伯圣,空中“隐型者”飞翼飞机,航空知识,2005,12(11):36~37.
    [4] Richard. M. Wood,Steven. X. S. Bauer.,Flying Wings/Flyings Fuselages,AIAA-2001-0311,2001
    [5] Vladimir. G. Dmitriev,Leonid. M. Shkadov,Vladimir. E. Denisov,etal,The Flying Wing Concept-Chances and Risks , AIAA/ICAS International Air and Space Symposium and Expositions,Dayton,AIAA,2003,1~11.
    [6] A.L. Bolsunovsky,N.P. Buzoverya,B.I. Gurevich,etal,Flying Wing problems and decisions,Aircraft Design,2001,4:193~219.
    [7]詹光,刘艳华,飞翼布局在无人侦察作战飞机上的应用探讨,飞机设计,2007,27(5):7~11.
    [8]王勇,王英勋,无人机滑跑纠偏控制,航空学报,2008,29 Sup:142~149.
    [9]戴宁,无人机自主进场着陆控制系统功能结构研究,飞行力学,2004,22(2):6~10
    [10]宁东方,章卫国,,田娜,无人机自动起飞建模和控制律设计研究,计算机测量与控制,2008, 16(1):66~70.
    [11]马松辉,吴成富,陈怀民,飞翼飞机稳定性与操纵性研究,飞行力学,2006,24(3):17~21.
    [12]唐斌,无人机自动起飞/着陆控制技术研究,[硕士学位论文],南京,南京航空航天大学,2007.
    [13]葛志闪,飞翼布局无人机控制律设计,[硕士学位论文],西安,西北工业大学,2007.
    [14]段松云,无人机着陆数学模型研究-三轮着陆滑行,系统仿真学报,2004,16(6):1296~1299.
    [15]顾宏斌,飞机地面运行的动力学模型,航空学报,2001,22(2):163~167.
    [16] Max. Baarspul,A Review of Flight Simulation Techniques,Progress in the Aerospace,1990,27(1):1~120.
    [17]张曾铝,张江监,王裕昌,飞机起落架滑行载荷识别,航空学报,1994,15(1):18~27.
    [18]张明廉,飞行控制系统,北京,航空工业出版社,1999.
    [19]吴森堂,费玉华,飞行控制系统,北京,航空工业出版社,2006.
    [20]焦振江,飞机起落架动态性能仿真分析研究,[硕士学位论文],西安,西北工业大学,2007.
    [21]陈玉振,主起落架减震支柱的建模方法与强度分析,[硕士学位论文],南京,南京航空航天大学,2007.
    [22]徐冬苓,李玉忍,飞机起落架数学模型的研究,系统仿真学报,2005,17(4):831~834.
    [23] Harvey G,Mccomb Jr,John A.Tanner,Topics in Landing Gear Dynamics Reseach at NASA. Langley,Journal of Aircraft,1988,25(1):84~93.
    [24]隋福成,陆华,飞机起落架缓冲器数学模型研究,飞机设计,2001,2:44~51.
    [25]袁东,飞机起落架仿真数学模型研究,飞行力学,2002,20(4):44~47.
    [26]王纪森,非线性系统控制理论在防滑刹车系统中的应用研究,[博士学位论文],西安,西北工业大学,2001.
    [27]王纪森,李长安,飞机轮胎与跑道间结合系数模型的研究,西北工业大学学报,2000,18(4):519~521
    [28] Multiple,Enhancement of aircraft ground handling simulation capability,AGARD-AG-333,1998.
    [29] Howlett J J,UH-60A Block Hawk Eengineering Simulation Program,NASA-CR-166309,1981.
    [30]徐冬苓,飞机刹车系统建模与地面结合系数的研究,[硕士学位论文],西安,西北工业大学,2005.
    [31]李峰,曹云峰,曹善文,某型无人机着陆过程中地面滑行段的建模与仿真,指挥控制系统与仿真,2006,28(2):92~94.
    [32]黄忠霖,控制系统MATLAB计算与仿真,北京,国防工业出版社,2003:183~202.
    [33]张静,MATLAB在控制系统中的应用,北京,电子工业出版社,2007:92~99.
    [34]邹美英,飞机防滑刹车系统新型控制律设计与仿真研究,[硕士学位论文],西安,西北工业大学,2005.
    [35]王卉,飞机防滑刹车地面半物理仿真研究,[硕士学位论文],西安,西北工业大学,2006.
    [36]王秀霞,丁学工,液压伺服控制技术在飞机机轮刹车系统中的应用,液压气动与密封,2001,87(3):31~32.
    [37]徐冬苓,李玉忍,谢利理,飞机防滑刹车系统的建模与仿真研究,测控技术,2004,23(11):66~68.
    [38]周欣宇,王少萍,焦宗夏,飞机前轮转弯控制系统重构与仿真研究,液压与气动,2005,6:32~34.
    [39]冯昊,无人机自动着陆控制,[硕士学位论文],南京,南京航空航天大学,2003.
    [40]嵇鼎毅,飞翼布局无人机抗侧风自动着陆控制技术研究,[硕士学位论文],南京,南京航空航天大学,2007.
    [41]薛定宇,控制系统仿真与计算机辅助设计,北京,机械工业出版社,2005:174~176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700