用户名: 密码: 验证码:
短链烃类在离子交换ZSM-5分子筛上催化转化反应的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳四烃以ZSM-5分子筛为催化剂催化裂解制丙烯和乙烯是增产丙烯的有效方法之一,对解决国内碳四烃富集问题及提高石化企业的效益均具有极其重要的意义。此外,短链烃类尤其是甲烷在分子筛上催化转化为高附加值的有机原料也是解决烃类资源优化利用的重要途径之一。本论文主要利用量子化学的密度泛函方法,采用原子簇模型,细致而深入地研究了C_4烃类在酸性分子筛上的催化裂解反应;分子筛酸性的模拟;短链烯烃在酸性分子筛上的二聚反应;甲烷在离子交换的Ag-ZSM-5和In-ZSM-5分子筛上的催化活化机理;Re-ZSM-5分子筛的水热稳定性及吸附性能。主要结论如下:
     1.研究了正丁烷在酸性分子筛上单分子裂解反应。通过研究正丁烷不同序位C原子的解氢反应,廓清了正丁烷在酸性分子筛上解氢反应机理。反应路径以及反应能垒的结果显示正丁烷在分子筛发生的脱氢反应主要发生在β位C原子上。正丁烷在酸性分子筛表面发生催化转化反应的反应得难易程度的顺序为:α位C原子脱氢>β位C原子脱氢>第一C-C裂解>第二C-C裂解。
     2.对分子筛5T簇模型的结构变化及去质子能研究发现,通过改变分子筛簇封端Si-H键的键长可以来模拟分子筛酸性变化。随着封端Si-H键长增加,分子筛去质子能降低,分子筛酸性增加,而正锻榇呋呀飧鞣从Φ姆从δ芾菟嬷档汀T谡⊥榱呀獾乃母龇从χ?第一C-C裂解反应是对分子筛酸性最敏感的反应。应用Bronsted-Polanyi原则得出正丁烷反应能垒与分子筛的去质子能呈线性关系。所得的线性关系可以用来预测未知分子筛上的正丁烷反应的能垒,并且可以仅计算分子筛的去质子能来求得不同酸性情况下正丁烷在分子筛表面的催化反应能垒。
     3.研究了1-丁烯在酸性分子筛表面发生单分子催化裂解反应。结果表明,其反应不是通过吸附的丁基烷氧化合物,而是质子化的1-丁烯发生C-C裂解,进而生成丙烯和甲基烷氧化合物。能量计算结果显示1-丁烯要比正丁烷更容易在酸性分子筛上催化裂解。
     4.短链烯烃在分子筛上二聚反应的计算结果表明,第二个烯烃分子与第一个烯烃在分子筛上化学吸附的烷氧化合物发生二聚反应。烯烃二聚的反应研究发现,烯烃二聚属于放热反应,其速控步为烯烃分子与烯烃化学吸附生成的烷氧化合物的二聚反应步骤。同时计算结果显示,随着碳链的正常,其反应的活化能垒逐渐降低,其反应也越容易发生。短链烯烃在酸性分子筛上发生催化二聚反应的难易顺序为乙烯>丙烯>1-丁烯。能量的计算结果表明了1-丁烯在酸性分子筛上更容易发生双分子裂解反应。
     5.研究了甲烷在Ag-ZSM-5和In-ZSM-5分子筛上的催化活化的不同反应路径:“碳正离子”和“烷基”路径。计算结果表明甲烷的C-H键活化主要经由“烷基”路径进行。据此本文提出了甲烷在乙烯存在下Ag-ZSM-5上催化转化的反应机理。甲烷C-H键在Ag~+离子和InO~+离子交换分子筛上催化活化的机理不同,主要是由于两分子筛存在不同的Lewis酸基对。与甲烷在H-ZSM-5分子筛上催化活化相比的结果表明,孤立的额外骨架Ag~+离子和InO~+离子的存在是甲烷能够在Ag-ZSM-5和分子筛上发生催化活化反应的基础,同时也是Ag-ZSM-5和In-ZSM-5良好催化活性的原因。
     6.研究了Re-ZSM-5的微观结构、水热稳定性以及烷醇分子的吸附性能。对Re-ZSM-5分子筛的水热稳定性研究表明,在高达823 K时,Re-ZSM-5分子筛仍然保持稳定,ReO_3~+离子并未脱落分子筛骨架,而且分子筛骨架也未坍塌。说明了Re-ZSM-5在高温富水情况的反应条件下,仍然能保持其良好的催化活性。烷醇的吸附研究表明,随着碳链的增长,相应的醇类分子在Re-ZSM-5分子筛上吸附的能量在逐渐下降。
C4 hydrocarbons catalytic cracking over ZSM-5 zeolites is an effective way enchancing propene and ethene production, which is important to utilize C4-riched hydrocarbon and increase the profits of petrochemical industry. In addition, catalytic conversion of light hydrocaron in zeolites, especially methane into valuable raw chemicals, is an important approach to optimize the utilization of hydrocarbon. Serveral reactions were investigated by using density functional theory (DFT) with cluster model in this paper, including the reaction of C4 hydrocarbon catalytic cracking over acidic zolites, the simulation of zeolitic acidity, light olefine dimerizaiton over acidic zeolites, methane conversion over Ag-ZSM-5 and In-ZSM-5 zeolites, and structure, hydrothermal stability and adsorption performance of Re-ZSM-5. The main and important conclusion are summarized as follows.
     1. The reaction of n-butane monomolecular cracing over acidic zeolites was investigated. The mechanism of n-butane dehydrogenating over acidic zeolites was revealed by comparing the dehydrogenation at different order C atoms in n-butane. The calculated results show that the dedydrogenation is expected to be perferred atβ-C atoms in n-butane. The reactivity sequence found for n-butane cracking over acidic zeolite is: Secondary cracking > Primary cracking > dehydrogenation atα-C atom > dehydrogenation atβ-C atom.
     2. The relation between the acidity and structure of the cluster shows that the acidity effect of the zeolite can be simulated by modifying the peripheral bonds of the cluster for the 5T cluster. With the increase of the length of terminal Si-H bond, the acidity of zeolites will increase and the deprotonation energy will decrease. The reaction barriers of n-butane monomolecular cracking decrease with the increase of zeolitic acidity. In addition, the reaction of primary C-C bond cracking is most sensible to zeolitic acidity. The relationship between reaction barriers and deprotonation energies was deduced by applying Bransted-Polanyi principle. Therefore, from the correlations, the activation barriers could be predicted for the reactions on other zeolites from the calculated deprotonation energy.
     3. The reaction of 1-butene monomolecular catalytic cracking over acidic zeolites was investigated in this paper. The results show that the reaction of C-C cracking does not proceed with the protonated 1-butene but with butoxide. Compared with the reaction barriers of n-butane, 1-butene is cracked over acidic zeolites more easily. The reactivity sequence found for light alkene dimerization over acidic zeolite is: 1-butene > propene > ethane.
     4. The reactions of light alkene dimerization were investigated in this paper. The results show that the reactions proceed with the dimerization between the second alkene molecule and the first alkene molecule chemsorbed product alkoxide. The reactions of alkene dimerization are exothermic, and the controlled step of reaction is the dimeraztion step. The calculated results of reactions barriers show that the activation barriers decrease with the increase of molecular chain. The reactivity sequence found for light alkene dimerization over acidic zeolite is: 1-butene > propene > ethane. It is found that the reaction of 1-butene bimolecular cracking is easier to occur over acidic zeolites.
     5. Two different pathways of methane catalytic activation over Ag-ZSM-5 and In-ZSM-5 were taken into account in this paper: the "carbenium" and the "alkyl" pathways. It is found that the "alkyl" is the preferential reaction pathway for methane catalytic activation over Ag-ZSM-5 and In-ZSM-5. Consequently, the mechanism of methane catalytic conversion in the presence of ethane was proposed in this paper. The mechanism of methane activation over Ag-ZSM-5 and In-ZSM-5 are different because of different Lewis acid-base pairs existing in Ag~+ and InO~+ ion-exchanged ZSM-5. In addition, it is found that the Ag~+ and InO~+ cations play an important role in the methane activation by comparing with the reaction of methane activation over H-ZSM-5.
     6. The structure, hydrothermal stability and alkanol adsorption performances of Re-ZSM-5 are investigated in this paper. It is found that the Re-ZSM-5 remain stable and the ReO_3~+ cations do not lost from the framework of zeolites even in the presence of steam in 823 K. As a consequence, the Re-ZSM-5 still remain its catalytic activity at high temperatures and water-rich conditions. The results of alkanol adsorption on Re-ZSM-5 show that the adsorption energies will be decrease with the increase of molecular chain.
引文
[1]白尔铮,胡云光.四种增产丙烯催化工艺的技术经济比较[J].工业催化,2003,11(5):7-12
    [2]化工经济技术信息,2006,3:16
    [3]Ivanov P,Papp H.In situ FT—IR study on the reaction path of skeletal isomerization of n-butene over different zeolites[J].Appl.Sur.Sci.,2001,179:234-239
    [4]Tanabe K,Holderich W F.Industrial application of solid acid-base catalysts[J].Appl.Catal.A,1999,181:199-434
    [5]任丽萍,赵国良,腾加伟,等.La修饰ZSM-5分子筛催化剂用于C_4烯烃催化裂解制丙烯[J].工业催化,2007,15(3):30-34
    [6]Liu Z Y,Coal Bed Methane Recovery and Prospects for a Hydrogen Economy[R].Beijing:Tsinghua Univ.,1999
    [7]Crabtree R H.Aspects of methane chemistry[J].Chem.Rev.,1995,95(4):987-7007
    [8]马丁.甲烷芳构化催化剂的构效关系[D].大连:中国科学院大连化学物理研究所,2001
    [9]缪少军.甲烷在担载V、Mo和Ag基催化剂上的直接活化转化的研究[D].大连:中国科学院大连化学物理研究所,2005
    [10]Johnson L D,Vermeiren W,Herrenbout K.Catalytic production of light olefins rich in propylene[P].US Patent,6 222 087.2001
    [11]Harandi M N.Fluidizer catalytic process for upgrading olefins[P].US Patent,5 164 071.1992
    [12]Bolt H V,Glanz S.Increase propylene yields cost-effectively[J].Hydrocarbon processing,2002,12:77-80
    [13]彭琳。开发出新的丙烯源[J].国外石油化工快报,2002,32(8):2-3
    [14]宋芙蓉.可提高丙烯收率的Propylur工艺[J].国外石油化工快报,2000,30(7):4
    [15]宋芙蓉.可提高丙烯产量的Superflex技术[J].国外石油化工快报,1999,29(9):3
    [16]饶兴鹤.丙烯供需现状及增产技术[J].中国石油和化工,2005,2:24-28
    [17]Guo X D,Huang S P,Teng J W,et al.Adsorption of isobutene on Na_nZSM-5type zeolite with various Si/Al ratios:molecular simulation study[J].Chin.J. Chem.,2005,23(12):1593-1599
    [18]郭向丹,黄世萍,滕加伟,等.水在NanZSM—5型分子筛中吸附的研究:分子模拟[J].物理化学学报,2006,22(3):270-274
    [19]Wang F,Wang W C,Huang S P,et al.Experiment and modeling of pure and binary adsorption of n-butane and butene-1 on ZSM-5 zeolites with different Si/Al ratios[J].Chin.J.Chem.Eng.,2007,15(3):376-386
    [20]王斐,汪文川,黄世萍,等.正丁烷和丁烯-1在不同Si/Al比及温度下ZSM-5分子筛上的吸附和扩散性质[J].过程工程学报,2007,7(4):661-667
    [21]Guo X D,Huang S P,Teng J W.,et al.Investigation of water adsorbed on HZSM—5:Experiment and molecular simulation[J].计算机与应用化学,2006,23(6):486-490
    [22]腾加伟,赵国良,谢在库,等.烯烃催化裂解增产丙烯催化剂[J].石油化工,2004,33(2):100-103
    [23]腾加伟,赵国良,谢在库,等.ZSM-5分子筛晶体尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报,2004,25(8):602-606
    [24]Takemoto T,Tabata K,Teng Y H,et al.Selective oxidation of methane in CH_4-O_2-NO_2 over MoO_3[J].Catal.Today,2001,71:47-53
    [25]Formes V,Lopez C,Lopez H H,et al.catalytic performance of mesoporous VO_x/SBA-15 catalysts for the partial oxidation of methane to formaldehyde[J].Appl.Catal.A,2003,249(2):345-354
    [26]Koranne M M,Goodwin J G,Marcelin G.Partial oxidation methane over silica-supported and alumina-supported vanadia catalysts[J].J.Catal.,1994,148(1):388-391
    [27]Wang Y N,Herman R G,Klier K.Dissociative adsorption of methane on Pd(679)surface[J].Surf.Sci.,1992,279(1-2):33-48
    [28]Brass S G,Ehrlich G.Dissociative and molecular adsorption of methane on Rhodium[J].Surf.Sci.,1987,187(1):21-35
    [29]Wu M C,Xu Q,Goodman D W.Investigation of graphitic overlayers formed from methane decomposition on Ru(0001)and Pt(1120)catalysts with scanning-tunneling-microscopy and high-resolution electron-energy-loss spectroscopy[J].J.Phys.Chem.,1994,98(19):5104-5110
    [30]Belgued M,Amariglio H,Pareja P,et al.Low-temperature catalytic homologation of methane on platinum,ruthenium and cobalt[J].Catal.Today,1992,13(437-445)
    [31] Burns S, Hargreaves J S J, Pal P, et al. The effect of dopants on the activity Of MoO3/ZSM-5 catalysts for the dehydroaromatisation of methane[J]. Catalysis Today, 2006, 114(4): 383-387
    [32] Hassan A, Sayari A. Oxygen-free dehydroaromatization of methane over Mo-based catalysts supported on MCM-41 and MCM-22. in: Sayari, A. and Jaroniec, M., editors. Nanoporous Materials Iv, Amsterdam: Elsevier Science Bv; 2005
    [33] Wang L S, Tao L X, Xie M S, et al. Dehydrogenation and aromatization of methane under nonoxidizing conditions[J]. Catal. Lett., 1993, 21(35-41)
    [34] Liu S T, Wang L, Ohinishi R, et al. Bifunctional catalysts of Mo/HZSM-5 in the dehydroaromatization of methane to benzene and naphthalene XAFS/TG/DTA/MASS/FTIR characterization supporting effects[J]. J. Catal., 1999, 181(2): 175-188
    [35] Chen L Y, Lin L W, Xu Z S, et al. Promotional effect of Pt on non-oxidative methane transformation over Mo-HZSM-5 catalys[J]. Catal. Lett., 1996, 39: 169-172
    [36] Shu Y Y, Xu Y D, Wang S T, et al. Promotional effect of Ru on the dehydrogenation and aromatization of methane in the absence of oxygen over Mo/HZSM-5 catalysts[J]. J. Catal., 1997, 170(1): 11-19
    [37] Lu Y, Ma D, Xu Z S, et al. A high coking-resistance catalyst for methane aromatization[J]. Chem. Comm., 2001,1(20): 2048-2049
    [38] Wang L S, Ohnishi R, Ichikawa M. Selective dehydroaromatization of methane toward benzene on Re/HZSM-5 catalysts and effects of CO/CO_2 addition[J]. J. Catal., 2000, 190(2): 276-283
    [39] Baba T, Abe Y, Nomoto K, et al. Catalytic Transformation of methane over In-loaded ZSM-5 zeolite in the presence of ethene[J]. J. Phys. Chem. B, 2005, 109: 4263-4268
    [40] Baba T, Iwase Y, Inazu K, et al. Catalytic properties of silver-exchanged zeolites for propene producation by conversion of methane in the presence of ethene[J]. Microporous and Mesoporous Materials, 2007,101: 142-147
    [41] Baba T, Sawada H, Takahashi T, et al. Chemisorption study of hydrogen and methane by H~1 MAS NMR and conversion of methane in the presence of ethylene on Ag-Y zeolite[J]. Appl. Catal. A Gen., 2002,231: 55-63
    [42] Baba T, Komatsu N, Sawada H, et al. H~1 magic angle spinning NMR evidence for dissociative adsorption of hydrogen on Ag-exchanged A-and Y-zeolites[J].Langmuir,1999,15:7894-7896
    [43]Baba T,Abe Y.Metal cation-acidic proton bifunctional catalyst for methane activation:conversion of ~(13)CH_4 in the presence of ethylene over metal cations-loaded H-ZSM-5[J].Appl.Catal.A,2003,250(2):265-270
    [44]Fang T,Yeh C.Interactions of methane with ThO_2-SiO_2 surface at 1073 K[J].J.Catal.,1981,69(1):227-229
    [45]Van Der Zwet G P,Hendriks P A J M,Van Santen R A.Prolysis of methane and role of surface area[J].Catal.Today,1989,6(3-4):365-369
    [46]Mochida I,Aoyagi Y,Fujitsu H.Pyrolysis of methane into higher hydrocarbon on carbon-fibers[J].Chem.Lett.,1990,19:1525-1526
    [47]Davis M E.Ordered porous materials for emerging applications[J].Nature,2002,417:813-821
    [48]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学技术出版社,2004.39
    [49]Weitkamp J.Zeolites and catalysis[J].Solid State Ionics,2000,131(1-2):175-188
    [50]Ghobarkar H,Schaf O,Guthc U.Zeolites—from kitchen to space[J].Progress in Solid State Chemistry 1999,27(2-4):29-73
    [51]Corma A.Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions[J].Chem.Rev.,1995,95:559-614
    [52]Cundy C S,Cox P A.The hydrothermal synthesis of zeolites:history and development from the earliest days to the present time[J].Chem.Rev.,2003,103(3):663-702
    [53]Olson D H,Kokotallo G T,Lawton S L,et al.Crystal structure and structure-related properties of ZSM-5 zeolite[J].J.Phys.Chem.,1981,85:2238-2243
    [54]Sen S E,Smith S M,Sullivan K A.Organic transformations using zeolites and zeotype materials[J].Tetraheron,1999,55:12657-12698
    [55]Borade R B,Hegda S G,Kulksrni S B,et al.Active centers over H-ZSM-5zeolites for paraffin cracking[J].Appl.Catal.,1984,13:27-38
    [56]Yuan S P,Wang J G,Li Y W,et al.Siting of B,Al,Ga or Zn and bridging hydroxyl groups in mordenite:an ab initio study[J].J.Mol.Catal.A:Chem,2001,175(1-2):131-138
    [57]Armor J N.Ion exchange of non-framework cations in zeolites for catalysis,in:Centi,G.,Wichterlova,B.and Bell,A.T.,editors.Catalysis by Unique Metal Ion Structures in Solid Matrices:from Science to Application,Dordrecht:Kluwer Academic Publ;2001
    [58]Armor J N.Metal-exchanged zeolites as catalysts[J].Microporous and Mesoporous Materials,1998,22(1-3):451-456
    [59]Schay Z,Guczi L,Koppany Z,et al.Decomposition of NO over Cu-AITS-1zeolites[J].Catalysis Today,1999,54(4):569-574
    [60]Schay Z,Knozinger H,Guczi L,et al.On the mechanism of NO decomposition on Cu-ZSM-5 catalysts[J].Appl.Catal.B,1998,18(3-4):263-271
    [61]Spoto G,Zecchina A,Bordiga S,et al.Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl:Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide[J].Appl.Catal.B,1994,3(2-3):151-172
    [62]Palomino G T,Fisicaro P,Bordiga S,et al.Oxidation States of Copper Ions in ZSM-5 Zeolites.A Multitechnique Investigation[J].J.Phys.Chem.B,104(17):4064-4073
    [63]Xin M,Hwang I C,Woo S I.In situ FTIR study of the selective catalytic reduction of NO on Pt/ZSM-5[J].Catal.Today,1997,38(2):187-192
    [64]Yatsimirsky V K,Oleksenko L P,Zub V Y,et al.Investigation of metal state in metal-containing zeolite catalysts by DTA and ESR methods[J].Journal of Thermal Analysis and Calorimetry,2000,62(2):555-560
    [65]Davis M E.Zeolite-based catalysts for improving the environment impact of chemical synthesis[J].Abstracts of Papers of the American Chemical Society,2005,229:350-INOR
    [66]Davis M E.Zeolite-based catalysts for chemicals synthesis[J].Microporous and Mesoporous Materials,1998,21(4-6):173-182
    [67]Krishna K,Makkee M.Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NOx[J].Catalysis Today,2006,114(1):23-30
    [68]Kiwi-Minsker L,Bulushev D A,Renken A.Low temperature decomposition of nitrous oxide over Fe/ZSM-5:Modelling of the dynamic behaviour[J].Catalysis Today,2005,110(3-4):191-198
    [69]Hulman M,Li L,Tang Z K,et al.Raman spectroscopy of SWNTs in zeolite crystals,in:Kuzmany,H.,Fink,J.,Mehring,M.and Roth,S.,editors.Molecular Nanostructures,Melville:Amer Inst Physics;2003
    [70]Kazansky V B.Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons[J].Catalysis Today,1999,51(3-4):419-434
    [71]Tielens F,Geerlings P.An ab initio study of adsorption related properties of diatomic molecules in zeolites[J].Journal of Molecular Catalysis a-Chemical,2001,166(1):175-187
    [72]Schwarz K,Nusterer E,Blochl P E.First-principles molecular dynamics study of small molecules in zeolites[J].Catalysis Today,1999,50(3-4):501-509
    [73]刘丹,张晓彤,桂建舟,等.分子模拟在分子筛催化研究中的应用[J].石油化工高等学校学报,2004,17(3):9-12
    [74]Lewis D W,Catlow C R A,Sankar G,et al.Structure of iron-substituted ZSM-5[J].J.Phys.Chem.,1995,99:2377-2383
    [75]Lewis D W,Sankar G,Catlow C R A,et al.Computer simulation of Fe-ZSM-5--comparison to EXAFS studies[J].Nuclear Instruments & Methods in Physics Research Section B,1995,97:44-:53
    [76]Zhou D,Ma D,Liu X,et al.Study with density functional theory method on methane dehydro-aromatization Mo/HZSM-5 catalysts Ⅰ:Optimization of active Mo species bonded to ZSM-5 zeolite[J].J.Chem.Phys.,2001,114(20):9125-9129
    [77]Bhering D L,Ramirez-Solis A,Mota C J A.A density functional theory based approach to extrafamework aluminum species in zeolites[J].J.Phys.Chem.B,2003,107:4342-4347
    [78]Schroder K-P,Sauer J,Leslie M,et al.Bridging hydrodyl groups in zeolitic catalysts:a computer simulation of their structure,vibrational properties and acidity in protonated faujasites(H---Y zeolites)[J].Chem.Phys.Lett.,1992,188(3-4):320-325
    [79]Derouane E G,Fripiat J G.Non-empirical quantum chemical study of the siting and pairing of aluminium in the MFI framework[J].Zeolites,1985,5(3):165-172
    [80]Lonsinger S R,Chakraborty A K,Theodorou D N,et al.The effects of local structural relaxation on aluminum siting within H-ZSM-5[J].Catal.Lett.,1991,11(2):209-217
    [81] Derouane E G, Fripiat J G Quantum mechanical calculations on molecular sieves. 1. Properties of the Si-OT (T= Si, Al, B) ... [J]. J. Phys. Chem., 1987, 91: 145-148
    [82] van Santen R A. Quantum-chemistry of zeolite acidity[J]. Catal. Today, 1997, 38:377
    [83] Millini R. Application of modeling in zeolite science [J]. Catal. Today, 1998, 41:41
    [84] Dwyer J, Khodakov A, Bates S, et al. Broensted acidity in zeolites[J]. Nuovo Cimento Delia Societa Italiana Di Fisica D-Condensed Matter Atomic Molecular and Chemical Physics Fluids Plasmas Biophysics, 1997, 19(11): 1673-1678
    [85] O'Melley P J, Dwyer J. Ab initio molecular orbital calculations on the acidic properties of Boralite[J]. J. Chem. Soc, Chem. Comm., 1987: 72-73
    [86] O'Malley P J, Dwyer J. An ab initio quantum chemical investigation on the effect of the magnitude of the T-O-T angle on the Bronsted acid characeristic of zeolites[J]. J. Phys. Chem., 1988, 92: 3005-3007
    [87] O'Malley P J, Dwyer J. Ab initio molecular orbital calculations on the acidic characteristics of isomorphously substituted zeolites[J]. Chem. Phys .Lett, 1988,143(1): 97-100
    [88] Corma A, LLopis F, Viruela P, et al. Acid softness and hardness in large-pore zeolites as a determinant parameter to control selectivity in orbital-controlled reactions[J]. J. Am. Chem. Soc, 1994,116: 134-142
    [89] Langenaeker W, Coussement N, Proft F D, et al. Quantum Chemical Study of the Influence of Isomorphous Substitution on the Catalytic Activity of reactivity indexs [J]. J. Phys. Chem., 1994, 98(3010-3014)
    [90] Stave M S, Nicholas J B. Density functional studies of zeolites. 2. structure and acidity of [T]-ZSM-5 models (T = B, Al, Ge, and Fe)[J]. J. Phys. Chem., 1995, 99: 15046-15061
    [91] Chu C T W, Chang C D. Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-,[Fe]-,[Ga]-, and [Al]-ZSM-5 [J]. J. Phys. Chem., 1985, 89: 1569-1571
    [92] Kyrlidis A, Cook S J, Chakraborty A K, et al. Electronic Structure Calculations of Ammonia Adsorption in H-ZSM-5 Zeolites [J]. J. Phys. Chem., 1994, 99: 1505-1515
    [93] Haase F, Sauer J. A Kyrlidis, SJ Cook, AK Chakraborty, AT Bell, DN [J]. J. Am. Chem. Soc., 1995,117(3780-3789)
    [94] Parker L M, Bibby D M, Burns G R. An infrared study of H_2O and D_2O on HZSM-5 and DZSM-5[J]. Zeolites, 1993, 13: 107-112
    [95] Jentys A, Warecka G, Derewinski M, et al. Adsorption of water on ZSM 5 zeolites [J]. J. Phys. Chem., 1989, 93(4837-4843)
    [96] Sauer J, Horn H, Haser M, et al. Formation of hydronium ions on Bronsted sites in zeolitic catalysts: a quantum-chemical ab initio study[J]. Chem. Phys .Lett., 1990, 173(1): 26-32
    [97] Pelmenschikov A G, van Santen R A. Water adsorption on zeolites: ab-initio interpretation of IR data [J]. J. Phys. Chem., 1993, 97: 10678-10680
    [98] Rice M J, Arup K C, Alexis T B. A dengsity functional theory study of the interaction of H_2O with H-ZSM-5, Cu-ZSM-5,and Co-ZSM-5[J]. J. Phys. Chem. A, 1998, 102: 7498-7504
    [99] Yang G, Wang Y, Zhou D, et al. Density functional theory calculations on various M/ZSM-5 zeolites: interaction with probe molecule H_2O and relative hydrothermal stability predicted by binding energies[J]. J. Mol. Catal. A: Chem., 2005, 237: 36-44
    [100] Sinclair P E, Catlow C R A. Generation of carbenes during methanol conversion over Bronsted acidic aluminosilicates: A computational study[J]. J. Phys. Chem., 1997,101: 295-298
    [101] Andzelm J, Govind N, Fitzgerald G, et al. DFT study of methanol conversion to hydrocarbons in a zeolite catalyst[J]. International Journal of Quantum Chemistry, 2003, 91(3): 467-473
    [102] Blaszkowski S R, Nascimento M A C, Santen R A v. Activation of C-H and C-C bonds by an acidic zeolites: A density functional study[J]. J. Phys. Chem., 1996, 100: 3463-3472
    [103] Blaszkowski S R, Jamen A P J, Nascimento M A C, et al. Density functional theory calculations of the transition states for hydrogen exchange and dehydrogenation of methane by a Bronsted zeolitic proton[J]. J. Phys. Chem., 1994,98: 12938-12944
    [104] Zheng X, Blowers P. Reactivity of alkanes on zeolites: A computational study of propane conversion reactions[J]. J. Phys. Chem. A, 2005, 109: 10734-10741
    [105] Zheng X, Blowers P. An ab initio study of ethane conversion reactions on zeolites using the complete basis set composite energy method[J]. J. Mol. Catal. A: Chem., 2005, 229: 77-85
    [106] Zheng X, Blowers P. Reactivity of isobutane on zeolites: A first principles study[J]. J. Phys. Chem. A, 2006,110: 2455-2460
    [107] Blint R J. Active site structure in zeolite-supported lean NOx catalysts, in: Phillpot, S. R., Bristowe, P. D., Stroud, D. G and Smith, J. R., editors. Microscopic Simulation of Interfacial Phenomena in Solids and Liquids, Warrendale: Materials Research Society; 1998
    [108] Pietrzyk P, Sojka Z, Gil B, et al. Speciation and structure of cobalt carbonyl and nitrosyl adducts in ZSM-5 zeolite investigated by EPR, IR and DFT techniques, in: Aiello, R., Giordano, G and Testa, F., editors. Impact of Zeolites and Other Porous Materials on the New Technologies at the Beginning of the New Millennium, Pts a and B, Amsterdam: Elsevier Science Bv; 2002
    [109] Pietrzyk P, Sojka Z. EPR spectroscopy and DFT calculations of the g tensors of {VO}(1)/ZSM-5, {CuNO}(11)/ZSM-5 and {NaNO}(1)/ZSM-5 intrazeolitic complexes, in: Cejka, J., Zilkova, N. and Nachtigall, P., editors. Molecular Sieves: from Basic Research to Industrial Applications, Pts a and B, Amsterdam: Elsevier Science Bv; 2005
    [110] Dubkov K A, Starokon E V, Paukshtis E A, et al. Mechanism of the low-temperature interaction of hydrogen with alpha-oxygen on FeZSM-5 zeolite[J]. Kinetics and Catalysis, 2004,45(2): 202-208
    [111] Soscun H, Castellano O, Arrieta F, et al. The interaction between NO and Z-CuO zeolite models: ab initio and density functional theory (DFT) study [J]. Journal of Molecular Structure-Theochem, 2002, 592: 29-36
    [112] Zhanpeisov N U, Matsuoka M, Mishima H, et al. Interaction of NO molecules with a copper-containing zeolite, a theoretical ab initio study[J]. Theochem-Joumal of Molecular Structure, 1998, 454(2-3): 201-207
    [113] van Beest B W H, Kramer G J, van Santen R A. Force fields for silicas and aluminophosphates based on ab initio calculations[J]. Phys. Rev. Lett., 1990, 64(1955)
    [114] de Vos B, E. Studies on zeolites: molecular mechanics, framework stability, and crystal growth[D]. Zuid Holland: Technische Universiteit Delft, 1992
    [115] Mayo S L, Olafson B D, Goddard W A. Dreiding: a generic force field for molecular simulation[J]. J. Phys. Chetn., 1990,94: 8897-8909
    [116] Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulation[J]. J. Am. Chem. Soc, 1992, 114: 100024-100035
    [117] Yashonath S, Thomas J M, Nowak A K, et al. The siting, energetics and mobility of saturated hydrocarbons inside zeolitic cages: methane in zeolite-Y[J]. Nature, 1988, 331(601-604)
    [118] Demontis P, Yashonath S, Klein M L. Localization and mobility of benzene in sodium-Y zeolite by molecular dynamics calculations [J]. J. Phys. Chem., 1989, 93: 5016-5019
    [119] Pickett S D, Nowak A K, Thomas J M, et al. Mobility of adsorbed species in zeolites: a molecular dynamics simulation of xenon in silicalite [J]. J. Phys. Chem., 1994, 94: 1233-1236
    [120] Watanabe K, Austin N, Stapleton M R. Investigation of the Air Separation Properties of Zeolites Types A, X and Y by Monte Carlo Simulations [J]. Molecular Simulation, 1995, 15(4): 197-221
    [121] Calero S, Dubbeldam D, Krishna R, et al. Understanding the Role of Sodium during Adsorption: A Force Field for Alkanes in Sodium-Exchanged Faujasites[J]. J. Am. Chem. Soc, 2004, 126: 11377-11386
    [122] Bezus A G, Kiselev A V, Lopatk A A, et al. Molecular statistical calculation of the thermodynamic adsorption characteristics of zeolites using the atom-atom approximation. Part 1.—Adsorption of methane by zeolite NaX[J]. J. Chem. Soc, Faraday Trans. 2, 1978, 74: 367-379
    [123] Woods G B, Rowlinson J S. Computer simulations of fluids in zeolites X and Y[J]. J. Chem. Soc, Faraday Trans. 2, 1989, 85: 765-781
    [124] Chihara K, Mellot C F, Cheetham A K, et al. Molecular simulation for adsorption of chlorinated hydrocarbon in zeolites[J]. Korean Journal of Chemical Engineering, 2000,17(6): 649-651
    [125] Roussel T J, Bichara C, Pellenq R J M. A grand canonical Monte Carlo simulation study of carbon structural and adsorption properties of inzeolite templated carbon nanostructures, in: Popov, V. N. and Lambin, P., editors. Carbon Nanotubes: from Basic Research to Nanotechnology, Dordrecht: Springer; 2006
    [126] Nascimento M A C. Computer simulations of the adsorption process of light
    alkanes in high-silica zeolites[J]. Theochem-Journal of Molecular Structure, 1999,464(1-3): 239-247
    [127] Hansenne C, Jousse F, Leherte L, et al. Dynamics of benzene in zeolite KL[J]. Journal of Molecular Catalysis a-Chemical, 2001, 166(1): 147-165
    [128] Liszkay L, Kajcsos Z, Duplatre G, et al. Positronium interactions in synthetic zeolites: Effect of adsorbed water, in: Triftshauser, W., Kogel, G. and Sperr, P., editors. Positron Annihilation - Icpa-12, Zurich-Uetikon: Trans Tech Publications Ltd; 2001
    [129] Neves C D C, Schvartzman M. CO2 separation by the pressure swing adsorption technique[J]. Quimica Nova, 2005, 28(4): 622-628
    [130] Nitta T, Furukawa S. Simulation performance of a non-equilibrium molecular dynamics method using density difference as driving force[J]. Molecular Simulation, 2000,25(3-4): 197-208
    [131] Zhang Y, Furukawa S, Nitta T. Computer simulation studies on gas permeation of propane and propylene across ZSM-5 membranes by a non-equilibrium molecular dynamics technique[J]. Separation and Purification Technology, 2003, 32(1-3): 215-221
    [132] Simon J M, Decrette A, Bellat J B, et al. Kinetics of adsorption of n-butane on an aggregate of silicalite by transient non-equilibrium molecular dynamics[J]. Molecular Simulation, 2004, 30(9): 621-629
    [133] Solans-Monfort X, Bertran J, Barnehadell V, et al. Keto-Enol isomerization of acetaldehyde in HZSM-5: A theoretical study using the ONIOM method[J]. J. Phys. Chem. B, 2002, 106: 10220-10226
    [134] Rattanasumrit A, Ruangpornvisuti V. Theoretical study of conversion reactions of ketone to hydroxyalkylene in cluster models of zeolites H-ZSM-5[J]. J. Mol. Catal. A: Chem, 2005, 239: 68-75
    [135] Hillier I H. Chemical reactivity studied by hybrid QM/MM methods[J]. Theochem-Journal of Molecular Structure, 1999,463(1-2): 45-52
    [1]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学技术出版社,1982.295
    [2]廖木真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社,1984.1
    [3]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算方法[M].北京:科学技术出版社,1985.678
    [4]Moller C,Plesset M S.Note an approximation treatment for many-electron systems[J].Phys.Rev.,1934,46:618-622
    [5]Bobrowicz F W,Goddard W A.Method of Electronic Structure Theory[M].New York:Plenum,1997.79-126
    [6]Hegarty D,Robb M A.Application of unitary group methods to configuration interaction calculations[J].Mol.Phys.,1979,38:1795-1812
    [7]Pople J A,Krishnan R,Schlegel H B,et al.Electron correlation theories and their application to the study of simple reaction potential surfaces[J].Int.J.Quant.Chem.,1978,14(5):545-560
    [8]Ziegler T.Approximate density functional theory as a practical tool in molecular energies and dynamics[J].Chem.Rev.,1991,91:651-667
    [9]Hohenberg P,Kohn W.Inhomogeneous Electron Gas[J].Phys.Rev.B,1964,136:864-881
    [10]Parr R G,Yang W.Density-functional theory of atoms and molecules[M].Oxford:Oxford Univ.Press,1989.1
    [11]Gunnarsson o,Lundqvist B I.Exchange and correlation in atoms,molecules,and solids by the spin-density-functional formalism[J].Phys.Rev.B,1976,13:4274-4298
    [12]Becke A D.Density-functional exchange-energy approximation with correct asymptotic behavior[J].Phys.Rev.A,1988,38:3098-3100
    [13]Becke A D.Density functional calculations of molecular bond energies[J].J.Chem.Phys.,1986,84:4524-4529
    [14]Vosko S H,Wilk L,Musair M.Accurate spin-dependent electron liquid correlation energies for local spin-density calculation-A critical analysis[J].Canadian Journal of Chemical Engineering,1980,104(21):4811-4815
    [15]Lee C,Yang W,Parr R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B,1988,37:785-789
    [16]Peredew J P.Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J].Phys.Rev.B,1986,33(8822-8824)
    [17]Neurock M.Perspeectives on the first principles eluciation and design of active sites[J].J.Catal.,2003,216(1-2):73-88
    [18]van Santen R A,Neurock M.Concepts in Theoretical Heterogeneous Catalytic Reactivity[J].Catal.Rev.Sci.Eng.,1995,37(4):557-698
    [19]Head-Gordon M.Quantum chemistry and molecular processes[J].J.Phys.Chem.,1996,100:13213-13215
    [20]Whitten J L,Yang H.Theory of chemisorption and reactions on metal surfaces [J].Surf.Sci.Rep.,1996,24(3-4):59-112
    [21]Sauer J,Ugliengo P,Garrone E,et al.Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment[J].Chem.Rev.,1994,94(7):2095-2160
    [22]Sauer J.Molecular Models in ab Initio Studies of Solids and Surfaces:From Ionic Crystals and Semiconductors to Catalystst[J].Chem.Rev.,1989,89(1):199-255
    [23]Hafner J.Atomic-scale computational materials science[J].Acta Mat.,2000,48:71-92
    [24]Stampfl C,Ganduglia-Pirovano M V,Reuter K,et al.Catalysis and corrosion:the theoretical surface-science context[J].Surf.Sci.,2002,500:368-394
    [25]Aleksandrov H A,Vayssilov G N,Rosch N.Theoretical investigation of Zn-containing species in pores of ZSM-5 zeolites,in:Cejka,J.,Zilkova,N.and Nachtigall,P.,editors.Molecular Sieves:from Basic Research to Industrial Applications,Part A and B,Amsterdam:Elsevier Science Bv;2005
    [26]Sierraalta A,Bermudez A,Rosa-Brussin M.Density functional study of the interaction of Cu+ ion-exchanged zeolites with H2O and SO2 molecules[J].Journal of Molecular Catalysis a-Chemical,2005,228(1-2):203-210
    [27]Liu X,Meng C G,Liu C H.Theoretical study towards liquid phase crystal transformation of zeolite[J].Abstracts of Papers of the American Chemical Society,2004,228:176
    [28]Rattanasumrit A,Ruangpornvisuti V.Theoretical study of conversion reactions of ketone to hydroxyalkylene in cluster models of zeolites H-ZSM-5[J].J.Mol. Catal.A:Chem,2005,239:68-75
    [29]Hay P J,Redondo A,Guo Y J.Theoretical studies of pentene cracking on zeolites:C-C beta-scission processes[J].Catalysis Today,1999,50(3-4):517-523
    [30]Chatterjee A,Ebina T,Iwasaki T,et al.Chlorofluorocarbons adsorption structures and energetic over faujasite type zeolites-a first principle study[J].Journal of Molecular Structure-Theochem,2003,630:233-242
    [31]Frisch M J,Rucks G W,Schlegel H B,et al.Gaussian03,Revision C.02[CP].Wallingford CT:Gaussian,Inc.,2004
    [1] Corma A. Inorganic Solid Acids and Their use in acid-catalyzed hydrocarbon reactions[J]. Chem. Rev., 1995, 95: 559-614
    [2] Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes[J]. Catal.Rev., 2001, 43(1-2): 85-146
    [3] McCusker L B. The art of zeolite structure analysis, in: VanSteen, E., Claeys, M. and Callanan, L. H., editors. Recent Advances in the Science and Technology of Zeolites and Related Materials, Pts a - C, Amsterdam: Elsevier Science Bv; 2004
    [4] Benco L, Bucko T, Hafner J, et al. A DFT study of the adsorption of butane in MOR and activation on the Lewis center, in: Cejka, J., Zilkova, N. and Nachtigall, P., editors. Molecular Sieves: from Basic Research to Industrial Applications, Pts a and B, Amsterdam: Elsevier Science Bv; 2005
    [5] Truong T N. Reaction class transition state theory: Hydrogen abstraction reactions by hydrogen atoms as test cases[J]. J. Chem. Phys., 2000, 113(12): 4957-4964
    [6] Truong T N, Truong T T T. A reaction class approach with the integrated molecular orbital + molecular orbital methodology -[J]. Chem. Phys .Lett, 1999, 314(5-6): 529-533
    [7] Sojka Z, Pietrzyk P, Martra G, et al. EPR and DFT study of NO interaction with Ni/SiO2 catalyst: Insight into mechanistic steps of disproportionation process promoted by tripodal surface nickel complex[J]. Catalysis Today, 2006, 114(2-3): 154-161
    [8] Kazansky V B. Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons [J]. Catalysis Today, 1999, 51(3-4): 419-434
    [9] van Santen R A. Quantum-chemistry of zeolite acidity[J]. Catal. Today, 1997, 38: 377
    [10] Rattanasumrit A, Ruangpornvisuti V. Theoretical study of conversion reactions of ketone to hydroxyalkylene in cluster models of zeolites H-ZSM-5[J]. J. Mol. Catal. A: Chem, 2005,239: 68-75
    
    [11] Makarova M A, Ojo A F, Karim K, et al. FTIR study of weak hydrogen bonding of Broensted hydroxyls in zeolites and aluminophosphates[J]. J. Phys. Chem., 1994, 98: 3619-3623
    [12] Krannila H, Haag W O, Gates B C. Monomolecular and bimolecular mechanisms of paraffin cracking. n-butane cracking catalyzed by ZSM-5 [J]. J. Catal., 1992,135:115-124
    [13] Narbeshuber T F, Brait A, Seshan K, et al. Dehydrogenation of Light Alkanes over Zeolites[J]. J.Catal., 1997, 172: 127-136
    [14] Trombetta M, Armaroli T, Alejandre A G, et al. Conversion and hydroconversion of hydrocarbons on zeolite-based catalysts: an FT-IR study[J]. Catalysis Today, 2001, 65(2-4): 285-292
    [15] Bhan A, Joshi Y V, Delgass W N, et al. DFT investigation of alkoxide formation from olefins in H-ZSM-5[J]. J. Phys. Chem. B, 2003, 107: 10476-10487
    [16] Collins S J, O'Malley P J. The mechanism of alkane activation over zeolite Bronsted acid sites. A density-functional study[J]. Chem. Phys. Lett., 1995, 246:555-561
    [17] Zheng X, Blowers P. Reactivity of alkanes on zeolites: A computational study of propane conversion reactions[J]. J. Phys. Chem. A, 2005,109: 10734-10741
    [18] Zheng X, Blowers P. An ab initio study of ethane conversion reactions on zeolites using the complete basis set composite energy method[J]. J. Mol. Catal. A: Chem., 2005, 229: 77-85
    [19] Lercher J A, van Santen R A, Vinek H. Carbonium ion formation in zeolite catalysis[J]. Catal.Lett., 1994, 27: 91-96
    [20] van Santen R A, Neurock M. Concepts in Theoretical Heterogeneous Catalytic Reactivity[J]. Catal. Rev. Sci. Eng., 1995, 37(4): 557-698
    [21] Head-Gordon M. Quantum chemistry and molecular processes [J]. J. Phys. Chem., 1996, 100: 13213-13215
    [22] Whitten J L, Yang H. Theory of chemisorption and reactions on metal surfaces [J]. Surf. Sci. Rep., 1996, 24(3-4): 59-112
    [23] Sauer J, Ugliengo P, Garrone E, et al. Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment [J]. Chem. Rev., 1994, 94(7): 2095-2160
    [24] Sauer J. Molecular Models in ab Initio Studies of Solids and Surfaces: From Ionic Crystals and Semiconductors to Catalystst[J]. Chem. Rev., 1989, 89(1): 199-255
    [25] Hafner J. Atomic-scale computational materials science [J]. Acta Mat., 2000, 48:71-92
    [26] Stampfl C, Ganduglia-Pirovano M V, Reuter K, et al. Catalysis and corrosion: the theoretical surface-science context [J]. Surf. Sci., 2002, 500: 368-394
    [27] Aleksandrov H A, Vayssilov G N, Rosch N. Theoretical investigation of Zn-containing species in pores of ZSM-5 zeolites, in: Cejka, J., Zilkova, N. and Nachtigall, P., editors. Molecular Sieves: from Basic Research to Industrial Applications, Pts a and B, Amsterdam: Elsevier Science Bv; 2005
    [28] Hay P J, Redondo A, Guo Y J. Theoretical studies of pentene cracking on zeolites: C-C beta-scission processes[J]. Catalysis Today, 1999, 50(3-4): 517-523
    [29] Chatterjee A, Ebina T, Iwasaki T, et al. Chlorofluorocarbons adsorption structures and energetic over faujasite type zeolites - a first principle study[J]. Journal of Molecular Structure-Theochem, 2003, 630: 233-242
    [30] Zygmunt S A, Curtiss L A, Zapol P, et al. Ethane cracking in Zeolite H-ZSM-5[J]. J.Phys.Chem.B, 2000, 104: 1944-1949
    [31] van Koningsveld H, van Bekkum H, Jansen J C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta. Cryst. B, 1987, 43: 127-132
    [32] Lonsinger S R, Chakraborty A K, Theodorou D N, et al. The effects of local structural relaxation on aluminum siting within H-ZSM-5 [J]. Catal.Lett., 1991, 11(2): 209-217
    [33] Derouane E G, Fripiat J G Non-empirical quantum chemical study of the siting and pairing of aluminium in the MFI framework[J]. Zeolites, 1985, 5(3): 165-172
    [34] Frisch M J, Rucks G W, Schlegel H B, et al. Gaussian03, Revision C.02[CP]. Wallingford CT: Gaussian, Inc., 2004
    [35] Scott A P, Radom L J. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Mller-Plesset, Quadratic configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors [J]. J. Phys. Chem., 1996, 100: 16502-16513
    [36] Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J. Chem. Phys., 1989, 90(4): 2154-2161
    [37] Stach H, Fiedler K, Janchen J. Correlation between initial heats of adsorption and structural parameters of molecular sieves with different chemical composition -a calorimetric study[J]. Pure Appl. Chem., 1993, 65(10): 2193-2200
    [38] Blaszkowski S R, Nascimento M A C, Santen R A v. Activation of C-H and C-C bonds by an acidic zeolites: A density functional study[J]. J. Phys. Chem., 1996, 100: 3463-3472
    [39] Zheng X, Blowers P. Reactivity of isobutane on zeolites: A first principles study[J]. J. Phys. Chem. A, 2006, 110: 2455-2460
    [40] Kazansky V B, Frash M V, Van Santen R A. Quantumchemical study of the isobutane cracking on zeolites [J]. Appl. Catal. A, 1996, 146(1): 225-247
    [41] Rigby A M, Frash M V. Ab initio calculations on the mechanisms of hydrocarbon conversion in zeolites: Skeletal isomerisation and olefin chemisorption [J]. J. Mol. Catal. A: Chem., 1997,126: 61-72
    [42] kramer G J, van Santen R A, Emeis C A, et al. Understanding behaviour of zeolites from theory and experiment[J]. Nature, 1993, 363(10): 529-531
    [43] Brand H V, Curtiss L A, Iton L E. Computational studies of acid sites in ZSM-5: dependence on cluster size[J]. J. Phys. Chem., 1992, 96: 7725-7732
    [44] Van Santen R A, Kramer G J. Reactivity theory of zeolitic Bronsted acidic sites[J]. J. Chem. Rev., 1995, 95: 637-660
    [1]滕加伟,赵国良,谢在库,等.ZSM-5分子筛晶体尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报,2004,25(8):602-606
    [2]滕加伟,赵国良,谢在库,等.烯烃催化裂解增产丙烯催化剂[J].石油化工,2004,33(2):100-103
    [3]Whitmore F C.Mechanism of the Polymerization of Olefins by Acid Catalysts[J].Ind.Eng.Chem.,1934,26(94-99)
    [4]Malkin V G,Chesnokov V V,Paukshtis E A,et al.Quantum-chemical calculations of ~(13)C chemical shifts of the alkoxide form in zeolites[J].J.Am.Chem.Soc.,1990,112(666-669)
    [5]Boronat M,Viruela P,Corma A.Theoretical Study of the Mechanism of Zeolite-Catalyzed Isomerization Reactions of Linear Butenes[J].J.Phys.Chem.A,1997,102(6):982-989
    [6]Bhan A,Joshi Y V,Delgass W N,et al.DFT investigation of alkoxide formation from olefins in H-ZSM-5[J].J.Phys.Chem.B,2003,107:10476-10487
    [7]Roger H P,Kramer M,Moller K P,et al.Effects of in-situ chemical vapour deposition using tetraethoxysilane on the catalytic and sorption properties of ZSM-5[J].Microporous and Mesoporous Materials,1998,21(4-6):607-614
    [8]Hay P J,Redondo A,Guo Y J.Theoretical studies of pentene cracking on zeolites:C-C beta-scission processes[J].Catalysis Today,1999,50(3-4):517-523
    [9]Rigby A M,Kramer G J,van Santen R A.Mechanisms of Hydrocarbon Conversion in Zeolites:A Quantum Mechanical Study[J].J.Catal.,1997,170(1):1-10
    [10]Abbot J,Wojciechowski B W.The mechanism of catalytic cracking of n-alkenes on ZSM-5 zeolite[J].Can.J.Chem.Eng.,1985,63(3):462-469
    [11]Buchanan J S,Santiesteban J G,Haag W O.Mechanistic considerations in acid-catalyzed cracking ofolefins[J].J.Catal.,1996,158(1):279-287
    [12]Buchanan J S.Gasoline selective ZSM-5 FCC additives:Model reactions of C6-C10 olefins over steamed 55:1 and 450:1 ZSM-5[J].Appl.Catal.A,1998,171(1):57-64
    [13]刘俊涛,钟思青,徐春明,et al.碳四烯烃催化理解制低碳烯烃反应性能的 研究 [J]. 石油化工, 2005, 34(1): 9-13
    [14] Spoto G, Bordiga S, Ricchiardi G, et al. IR study of ethene and propene oligomerization on H-ZSM-5: hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers[J]. J. Chem. Soc., Faraday Trans., 1994, 90(2827-2835)
    [15] Geobaldo F, Spoto G, Bordiga S, et al. Propene oligomerization on H-mordenite: Hydrogen-bonding interaction, chain initiation, propagation and hydrogen transfer studied by temperature-programmed FTIR and UV-VIS spectroscopies[J]. J. Chem. Soc, Faraday Trans., 1997, 93: 1243-1249
    [16] Frisch M J, Rucks G W, Schlegel H B, et al. Gaussian03, Revision C.02[CP]. Wallingford CT: Gaussian, Inc., 2004
    [17] Scott A P, Radom L J. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Mller-Plesset, Quadratic configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors [J]. J. Phys. Chem., 1996, 100: 16502-16513
    [18] Cant N W, Hall W K. Studies of the hydrogen held by solids : XXI. The interaction between ethylene and hydroxyl groups of a Y-zeolite at elevated temperatures[J]. J. Catal., 1972, 25(1): 161-172
    
    [19] Barthomeuf D, Ha B H. Adsorption of benzene and cyclohexane on faujasite-type zeolites. Part 1.—Thermodynamic properties at low coverage[J]. J. Chem. Soc,. Faraday Tran., 1973, 69: 2147-2157
    [20] Ruthven D M, Goddard M. Sorption and diffusion of C8 aromatic hydrocarbons in faujasite type zeolites. I. Equilibrium isotherms and separation factors[J]. Zeolites, 1986, 6(4): 275-282
    [21] Evleth E M, Kassab E, Jessri H, et al. Calculation of the Reaction of Ethylene, Propene, and Acetylene on Zeolite Models[J]. J. Phys. Chem., 1995, 100(27): 11368-11374
    [22] Correa R J, Mota C J A. Theoretical study of protonation of butene isomers on acidic zeolite: the relative stability among primary, secondary and tertiary alkoxy intermediates[J]. Phys. Chem. Chem. Phys., 2002, 4: 375-380
    [23] Namuangruk S, Pantu P, Limtrakul J. Investigation of Ethylene Dimerization over Faujasite Zeolite by the ONIOM Method [J]. Chem. Phys. Chem., 2005, 6(7): 1333-1339
    [1] Crabtree R H. Aspects of methane chemistry[J]. Chem. Rev., 1995, 95(4): 987-7007
    [2] Lunsford J H. The catalytic oxidative coupling of methane[J]. Angew. Chem. Int. Edit. Engl., 1995, 34(9): 970-980
    [3] Blegued M, Pareja P, Amariglio A. Conversion of methane into higher hydrocarbons on platinum[J]. Nature, 1991, 352(6338): 789-790
    [4] Corma A. Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions[J]. Chem. Rev., 1995, 95: 559-614
    [5] Kissin Y V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes[J]. Catal.Rev., 2001,43(1-2): 85-146
    [6] McCusker L B. The art of zeolite structure analysis, in: VanSteen, E., Claeys, M. and Callanan, L. H., editors. Recent Advances in the Science and Technology of Zeolites and Related Materials, Pts a - C, Amsterdam: Elsevier Science Bv; 2004
    [7] Biscardi J A, Meitzner G D, Iglesia E. Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts [J]. J. Catal., 1998, 179: 192-202
    [8] Ding W, Li S, Meitzner G D, et al. Methane Conversion to Aromatics on Mo/H-ZSM5: Structure of Molybdenum Species in Working Catalysts [J]. J. Phys. Chem. B, 2001,105: 506-513
    [9] Price G L, Kanazirev V, Dooleym K M, et al. On the Mechanism of Propane Dehydrocyclization over Cation-Containing, Proton-Poor MFI Zeolite[J]. J. Catal., 1998, 173: 17-27
    [10] Baba T, Abe Y, Nomoto K, et al. Catalytic Transformation of methane over In-loaded ZSM-5 zeolite in the presence of ethene[J]. J. Phys. Chem. B, 2005, 109: 4263-4268
    
    [11] Baba T, Iwase Y, Inazu K, et al. Catalytic properties of silver-exchanged zeolites for propene producation by conversion of methane in the presence of ethene[J]. Microporous and Mesoporous Materials, 2007, 101: 142-147
    
    [12] Baba T, Komatsu N, Sawada H, et al. H~1 magic angle spinning NMR evidence for dissociative adsorption of hydrogen on Ag-exchanged A- and Y-zeolites[J]. Langmuir, 1999,15: 7894-7896
    [13] Baba T, Sawada H, Takahashi T, et al. Chemisorption study of hydrogen and methane by H~1 MAS NMR and conversion of methane in the presence of ethylene on Ag-Y zeolite[J]. Appl. Catal. A Gen., 2002, 231: 55-63
    [14] Miao S, Wang Y, MA D, et al. Effect of Ag~+ cations on nonoxidative activation of methane to C_2-hydrocarbon[J]. J. Phys. Chem. B, 2004,108:17866-17871
    [15] Hadjiivanov K, Knozinger H. Low-Temperature CO Adsorption on Ag~+/SiO_2 and Ag-ZSM-5: An FTIR Study[J]. J. Phys. Chem. B, 1998, 102:10936-10940
    [16] Frash M V, van Santen R A. Activation of small alkanes in Ga-Exchanged zeolites: A quantum chemical study of ethane dehydrogenation[J]. J. Phys. Chem. A, 2000,104: 2468-2475
    [17] Pidko E A, Hensen E J M, van Santen R A. Dehydrogenation of light alkanes over isolated gallyl ions is Ga/ZSM-5 zeolites[J]. J. Phys. Chem. C, 2007, 111: 13068-13075
    [18] Pereira M S, Nascimento M A C. Theoretical study of the dehydrogenation reaction of ethane catalyzed by zeolites containing non-framework gallium species: The 3-step mechanism × the 1-step concerted mechanism[J]. Chem. Phys. Lett., 2005, 406: 446-451
    [19] Pereira M S, Nascimento M A C. Theoretical study on the dehydrogenation reaction of alkanes catalyzed by zeolites containing nonframework gallium species[J]. J. Phys. Chem. B, 2006, 110: 3231-3238
    [20] Benaliouche F, Boucheffa Y, Magnous P. Effect of carbonaceous compounds on diffusion of alkanes in 5A zeolite, in: Conner, W. C. and Fraissard, J., editors. Fluid Transport in Nanoporous Materials, Dordrecht: Springer; 2006
    [21] Sierraalta A, Bermudez A, Rosa-Brussin M. Density functional study of the interaction of Cu+ ion-exchanged zeolites with H2O and SO2 molecules [J]. Journal of Molecular Catalysis a-Chemical, 2005, 228(1-2): 203-210
    [22] Payne M C, Hytha M, Stich I, et al. First principles calculation of the free energy barrier for the reaction of methanol in a zeolite catalyst[J]. Microporous and Mesoporous Materials, 2001, 48(1-3): 375-381
    [23] Olson D H, Kokotallo G T, Lawton S L, et al. Crystal structure and structure-related properties of ZSM-5 zeolite[J]. J. Phys. Chem., 1981, 85: 2238-2243
    [24] Rice M J, Arup K C, Alexis T B. A dengsity functional theory study of the interaction of H_2O with H-ZSM-5, Cu-ZSM-5,and Co-ZSM-5[J]. J. Phys. Chem. A, 1998, 102: 7498-7504
    [25] Yang G, Zhou L, Liu X, et al. H2 adsorption on Fe/ZSM-5 zeolites: A theoretical approach[J]. J. Phys. Chem. B, 2006,110(22295-22297)
    [26] van Koningsveld H, van Bekkum H, Jansen J C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta. Cryst. B, 1987, 43: 127-132
    [27] Lonsinger S R, Chakraborty A K, Theodorou D N, et al. The effects of local structural relaxation on aluminum siting within H-ZSM-5 [J]. Catal. Lett., 1991, 11(2): 209-217
    [28] Derouane E G, Fripiat J G Non-empirical quantum chemical study of the siting and pairing of aluminium in the MFI framework[J]. Zeolites, 1985, 5(3): 165-172
    [29] Lee C, Yang W, Parr R G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789
    [30] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38: 3098-3100
    [31] Frisch M J, Rucks G W, Schlegel H B, et al. Gaussian03, Revision C.02[CP]. Wallingford CT: Gaussian, Inc., 2004
    [32] Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J. Chem. Phys., 1989, 90(4): 2154-2161
    [33] Baba T, Tohjo Y, Takahashi T, et al. Properties of chemisorbed hydrogen species on Ag-A zeolite partially reduced with hydrogen as studied by H-1 MAS NMR[J]. Catalysis Today, 2001, 66(1): 81-89
    [34] Furtado E A, Milas I, Lins J, et al. The dehydrogenation reaction of light alkanes catalyzed by zeolites[J]. Physica Status Solidi a-Applied Research, 2001,187(1): 275-288
    [35] Bhan A, Joshi Y V, Delgass W N, et al. DFT investigation of alkoxide formation from olefins in H-ZSM-5[J]. J. Phys. Chem. B, 2003, 107: 10476-10487
    [36] Baba T, Abe Y. Metal cation-acidic proton bifunctional catalyst for methane activation: conversion of ~(13)CH_4 in the presence of ethylene over metal cations-loaded H-ZSM-5[J]. Appl. Catal. A, 2003, 250(2): 265-270
    [37] Blaszkowski S R, Jamen A P J, Nascimento M A C, et al. Density functional theory calculations of the transition states for hydrogen exchange and dehydrogenation of methane by a Bronsted zeolitic proton[J]. J. Phys. Chem., 1994, 98: 12938-12944
    [1] Baba T, Abe Y, Nomoto K, et al. Catalytic Transformation of methane over In-loaded ZSM-5 zeolite in the presence of ethene[J]. J. Phys. Chem. B, 2005, 109: 4263-4268
    [2] Lee C, Yang W, Parr R G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B, 1988, 37: 785-789
    [3] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988,38: 3098-3100
    [4] Frisch M J, Rucks G W, Schlegel H B, et al. Gaussian03, Revision C.02[CP]. Wallingford CT: Gaussian, Inc., 2004
    [5] Gonzalez C, Schlegel H B. An improved algorithm for reaction path following[J]. J. Chem. Phys., 1989, 90(4): 2154-2161
    [6] Furtado E A, Milas I, Lins J, et al. The dehydrogenation reaction of light alkanes catalyzed by zeolites[J]. Physica Status Solidi a-Applied Research, 2001, 187(1): 275-288
    [7] Bhan A, Joshi Y V, Delgass W N, et al. DFT investigation of alkoxide formation from olefins in H-ZSM-5[J]. J. Phys. Chem. B, 2003, 107: 10476-10487
    [8] Pidko E A, Hensen E J M, van Santen R A. Dehydrogenation of light alkanes over isolated gallyl ions is Ga/ZSM-5 zeolites[J]. J. Phys. Chem. C, 2007, 111: 13068-13075
    [9] Pereira M S, Nascimento M A C. Theoretical study of the dehydrogenation reaction of ethane catalyzed by zeolites containing non-framework gallium species: The 3-step mechanism × the 1-step concerted mechanism[J]. Chem. Phys. Lett., 2005, 406: 446-451
    [10] Pereira M S, Nascimento M A C. Theoretical study on the dehydrogenation reaction of alkanes catalyzed by zeolites containing nonframework gallium species[J]. J. Phys. Chem. B, 2006,110: 3231-3238
    [1]Jehng J M,Hu H,Gao X,et al.The dynamic states of silica-supported metal oxide catalysts during methanol oxidation[J].Catal.Today,1996,28:335-341
    [2]Mol J C.Industrial applications of olefin metathesis[J].J.Mol.Catal.,2004,213(1):39-45
    [3]Daniell W,Weingand T,Knozinger H.Redox properties of Re207/Al203 as investigated by FTIR spectroscopy of adsorbed CO[J].J.Mol.Catal.A:Chem,2003,204:519-526
    [4]Wang L,Ohnishi R,Ichikawa M.Novel rhenium-based catalysts for dehydrocondensation of methane with CO/CO_2 towards ethylene and benzene [J].Catal.Lett.,1999,62:29-33
    [5]Liu H,Iglesia E.Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H_(3n)V_nMo_(12-n)PO_(40)Keggin structures[J].J.Phys.Chem.B,2003,107:10840-10847
    [6]Bein T,Huber C,Moller K,et al.Methyltrioxorhenium encapsulated in zeolite Y:Tunable olefin metathesis catalyst[J].Chem.Mater.,1997,9:2252-2254
    [7]Lacheen H S,Cordeiro P J,Iglesia E.Isolation of rhenium and ReOx species within ZSM5 channels and their catalytic function in the activation of alkanes and alkanols[J].Chem.Eur.J.,2007,13:3048-3057
    [8]Lacheen H S,Cordeiro P J,Iglesia E.Structure and catalytic function of Re-Oxo species grained onto H-MFI zeolite by sublimation of Re_2O_7[J].J.Am.Chem.Soc.,2006,128:15082-15085
    [9]Lee C,Yang W,Parr R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.B,1988,37:785-789
    [10]Becke A D.Density-functional exchange-energy approximation with correct asymptotic behavior[J].Phys.Rev.A,1988,38:3098-3100
    [11]Frisch M J,Rucks G W,Schlegel H B,et al.Gaussian03,Revision C.02[CP].Wallingford CT:Gaussian,Inc.,2004
    [12]Kachurovskaya N A,Zhidomirov G M,Van Santen R A.Computational Study of Benzene-to-Phenol Oxidation Catalyzed by N2O on Iron-Exchanged Ferrierite[J].J.Phys.Chem.B,2004,108(19):5944-5950
    [13]Rice M J,Arup K C,Alexis T B.A dengsity functional theory study of the interaction of H_2O with H-ZSM-5, Cu-ZSM-5,and Co-ZSM-5[J]. J. Phys. Chem. A, 1998, 102: 7498-7504
    [14] Barbosa L, van Santen R A. Theoretical study of nitrile hydrolysis reaction on Zn(II) ion exchanged zeolites[J]. J. Mol. Catal. A, 2001, 166(1): 101-121
    [15] Sundermeyer J, Weber K, Peters K, et al. Modeling Surface Reactivity of Metal Oxides: Synthesis and Structure of an Ionic Organorhenyl Perrhenate Formed by Ligand-Induced Dissociation of Covalent Re207[J]. Organometals, 1994,13:2560-2562
    [16] Krossner M, Sauer J. Interaction of Water with Brnsted Acidic Sites of Zeolite Catalysts. Ab Initio Study of 1:1 and 2:1 Surface Complexes [J]. J. Phys. Chem., 1996, 100(15): 6199-6211
    [17] Brand H V, Redondo A, Hay P J. Theoretical studies of CO adsorption on H-ZSM-5 and hydrothermally treated H-ZSM-5 [J]. J. Mol. Catal. A: Chem, 1997, 121(1): 45-62
    [18] Greatbanks S P, Hillier I H, Burton A, et al. Adsorption of water and methanol on zeolite Bronsted acid sites: An ab initio, embedded cluster study including electron correlation[J]. J. Chem. Phys., 1996, 105(9): 3770-3776
    [19] Blint R J. Copper Coordination in Zeolite-Supported Lean NOx Catalysts [J]. J. Phys. Chem., 1996, 100(50): 19518-19524
    [20] Fischer D, Krebs B Z. Die Reaktion des Rhenium(VII)-oxides mit 1,4-Dioxan Re_2O_6(u2-OH)_2·3C_4H_8O_2-ein neues xidhydroxid mit Metall-(1,4-Dioxan)-Bindung[J]. Z. Anorg. Allg. Chem., 1982, 491(1): 73-82
    [21] Tuma C, Boese A D, Handy N C. Predicting the binding energies of H-bonded complexes: A comparative DFT study[J]. Phys. Chem. Chem. Phys., 1999, 1: 3939-3947
    [22] Halkier A, Jorgensen P, Gauss J, et al. CCSDT calculations of molecular equilibrium geometries[J]. Chem. Phys .Lett, 1997, 274(1-3): 235-241
    [23] Yang G, Wang Y, Zhou D, et al. Density functional theory calculations on various M/ZSM-5 zeolites: interaction with probe molecule H_2O and relative hydrothermal stability predicted by binding energies[J]. J. Mol. Catal. A: Chem., 2005, 237: 36-44
    [24] Laage D, Hynes J T. A Molecular Jump Mechanism of Water Reorientation [J]. Science 2006, 311:832-835

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700