用户名: 密码: 验证码:
污水源热泵系统取水换热过程流化除垢与强化换热方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水、江河水、湖水、地下水、海水等是理想的低位冷热源,这些水体以城市污水水质最差,污水源热泵系统在实际工程遇到的问题最为突出,主要表现在污物堵塞换热设备、污垢严重与换热性能低下等方面。本文针对污水中小尺度污物所引起的污垢等问题开展研究,首先探讨污水取水换热过程中污垢的形成机理,进而将流化床换热技术引入污水源热泵系统取水换热过程的防、除垢应用中,理论分析与实验研究均表明流化床换热技术可有效解决污水中小尺度污物所引起的污垢等问题,其在污水源热泵系统中有着广阔的应用前景,本文主要工作及结论如下:
     (1)针对污水源热泵系统取水换热过程中的污垢特征,将污垢的形成过程分为五个部分,将污垢的附着机制分为物理.化学机制与微生物机制;将污水源热泵系统取水换热中的污垢分为紧贴壁面的黏膜层与黏膜生长增厚层;基于污垢在紧贴壁面的黏膜层与黏膜生长增厚层中受力不同的特点,考虑到城市污水中微生物自身的生理特性,采用Kern-Seacon模型探讨了污水源热泵系统取水换热中污垢的形成机理,解释了增大流速可以抑制污垢与高流速条件下污垢仍然存在的原因,指出了彻底解决污水源热泵系统取水换热中污垢问题的关键在于形成剥离力大于附着力的状态。
     (2)探讨了污水源热泵系统取水换热过程中垢层的力学性能,紧贴换热壁面的污垢所能承受的最大破坏应力超过100Pa。在污水源热泵系统取水换热中对流化固体粒子防、除垢机理起主要作用的是液固两相流对垢层的剪应力与固体粒子对垢层的碰撞应力,考虑碰撞应力以接触面中心成对称分布的特点,修正了已有碰撞应力模型,对剪应力与碰撞应力进行分析表明剪应力随着循环流速与固体粒子的体积分率增大而增大,固体粒子对垢层的碰撞应力随着固体粒子径向速度和密度的增大而增大,液固两相流对垢层的剪应力的数量级是帕,而固体粒子对垢层的碰撞应力数量级在千帕以上,单靠剪应力的增大无法达到垢层的最大破坏应力。固体粒子对垢层的随机碰撞可视为垢层受到的碰撞应力是交变出现,具有疲劳特征,引入疲劳理论解释了流化床技术防、除垢的机理。初步探讨了固体粒子的强化换热机理,其主要表现在减轻或者彻底清除污垢热阻与提高污水的对流换热系数。
     (3)总结出液固循环流化床防、除垢主要作用机制:污垢层较稀松的物质随着液固流化床壁面剪应力的增大而被带走;污垢层粘附比较紧密的物质在液固流化床中固体粒子的碰撞应力作用下,变的比较疏松,进而在剪应力的带动下脱离污垢层;紧贴壁面黏着十分牢靠的污垢,在固体粒子的随机碰撞下,污垢层受到周期性的碰撞应力作用,在疲劳机制下,垢层上逐渐产生裂纹,直至脱落进入主流中;固体粒子对垢层的随机碰撞,阻止污垢物质沉积到壁面以及污垢物质在壁面上的生长。
     (4)目前流化床换热技术中的固液分离器需采用动力设备进行固液分离,需消耗额外的动力,本文开发了一种流化床换热器的固液分离装置,在流化床换热设备的水源出口上安装无动力的重力沉降式固液分离器,在不增加额外能耗的基础上,实现了完全将固体粒子从液体中分离出来进入换热设备循环使用。
     (5)搭建单管式液固流化床换热器实验系统,基于Delphi编程语言自主开发了测试分析软件,进行了液固流化床换热器的流动特性、防、除垢特性及换热特性的实验研究。实验结果表明加入粒子后无论是清水还是污水的压降均出现不同程度的增加,并且加入钢球后的压降明显大于加入沙子和无粒子的压降,液固流化床换热器可有效抑制污垢的增长并实现在线清洗,有着明显的强化换热功效。
     (6)对流化除垢与强化换热式污水源热泵系统进行了初步研究,开发了旋转板式和旋转筒式过滤取水装置,采用自动反洗装置将大型污物去除,从而保证系统流量充足稳定,解决了污水源热泵系统取水换热过程中的堵塞问题。结合自动除污取水装置与流化床换热技术,提出一套高效利用低位冷热源的方法,有效解决了污水源热泵系统取水换热过程中出现的污物堵塞换热设备、换热性能低与污垢严重等问题。
Urban sewage, river water, ground water and seawater are generally acknowledged as ideal cool and heat sources of heat pump system. But these waters quality can't conform to correlative standard of heat-transfer equipment, and urban sewage quality is the worst. There are obstruction and pollution problems in sewage source heat pump (SSHP) system project, flow and heat-transfer characteristics are unknown, high thermal resistance resulted by fouling in heat exchanger restricts the application of SSHP. The paper studies the fouling forming mechanism, and then applies solid-liquid fluidized bed technique for fouling prevention and removing of SSHP system. The results of theory and experiment show that solid-liquid fluidized bed technique can effectively solve the fouling problem in SSHP system and have wide application foreground in SSHP system. The main contents of the paper are as follows:
     (1) According to fouling characteristics of SSHP system, fouling forming process is divided into five processes, adhesion mechanism into physical-chemistry mechanism and microbe mechanism and fouling of SSHP system into two layers: mucous membrane and its growth. Based on Kern-Seaton model, taking different stress of fouling in different fouling layer and microbe physiology into account, the paper explains the reason high velocity can prevent and remove fouling and high velocity can't absolutely remove fouling, indicates key way of removing fouling is that adhesion stress is less than peeling stress.
     (2) The destroyed stress of fouling of SSHP system is discussed, shearing stress model of solid-liquid fluidized bed heat-exchanger is analyzed, and collision stress model is modified. It shows that shearing stress increases with particle hold-up and circulating velocity, collision stress increases with particle density and particle radial velocity, and increasing shearing stress can't absolutely remove fouling. The paper explains prevent and remove fouling mechanisms of solid-liquid fluidized bed technique by using fatigue theory, and initially investigates mechanism of strengthening heat transfer.
     (3) Main mechanisms of prevent and remove fouling in solid-liquid fluidized bed heat-exchanger is summarized as follows: incompact fouling is removed from tube surface by increasing shearing stress, compact fouling is removed from tube surface by increasing shearing stress and stochastic collision of particle, more compact fouling is destroyed by discontinuous stochastic collision of particle and then is removed from tube surface, and increasing shearing stress and stochastic collision of particle can prevent fouling forming on tube surface.
     (4) A new solid-liquid separator is invented, the separator can realize the absolute separation and recirculation use of particle, but it doesn't consume extra energy.
     (5) An experimental system of the solid-liquid cycling fluidized bed heat-exchanger (SLCFBE) is built, and the pressure drop and convection coefficient of urban sewage are analyzed by this system. Compared with the conventional shell and tube heat-exchanger, the solid-liquid fluidized bed heat exchanger (SLCFBE) of urban sewage with particle in the liquid can achieve higher convection coefficient, control fouling and on-line clean the system effectively, and the effect of steel ball is better than that of sand, it shows prospect of wide application.
     (6) Sewage source heat pump system with solid-liquid fluidized bed technique is studied; intake water devices of rotary plate and rotary plate are invented by using auto-backflushing, which solve the obstruction of heat-exchange equipment because of large scale sewerage in urban sewage. Combining solid-liquid fluidized bed technique with auto-intake water device; a high efficient system of utilization of cooling and heating source of once-through water (urban sewage, river water, ground water, seawater, etc) is presented, which can solve the fouling problem and low convection coefficient.
引文
[1] 周凌云.世界能源危机与我国的能源安全.中国能源,2001,(01):12~13.
    [2] 吴宗鑫,吕应运.以煤为主多元化的清洁能源战略——我国未来能源可持续发展战略的探讨.清华大学学报(哲学社会科学版),2000,(06):72~76.
    [3] 周凤起.21世纪中国能源工业面临的挑战.暖通空调,2000,(04):23~25.
    [4] 戴彦德,朱跃中.加强节能和提高能源效率保证社会经济可持续发展——有关十六大报告提出全面建设小康社会目标对能源发展要求的思考.电力需求侧管理,2003,(01):2~6.
    [5] 杨秀,魏庆芃,江亿.建筑能耗统计方法探讨.2006,28(10):12~16.
    [6] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告,北京:中国建筑工业出版社,2007.
    [7] 尹军,陈雷,王鹤立.城市污水的资源再生及热能回收利用,北京:化学工业出版社,2003.
    [8] 龙惟定.试论我国暖通空调业的可持续发展.暖通空调,1999,(03):25~30.
    [9] 龙惟定,白玮,张蓓红.中国住宅空调的未来发展.暖通空调,2002,(04):43~47.
    [10] 吴荣华.原生污水源热泵系统研究与工程应用:[博士学位论文].哈尔滨工业大学,2006.
    [11] 朱俊生.国内外新能源和可再生能源发展现状.节能与环保,2001,(04):33~35.
    [12] 刁乃仁,方肇洪.地源热泵——建筑节能新技术.建筑热能通风空调,2004,(03):58~60.
    [13] 端木琳,毕海洋,张晋阳.大连星海污水热泵站可行性分析.见:2005年全国热泵会议.辽宁省大连市:2005:79~84.
    [14] Bi H, Duanmu L. The Feasibility Analysis of Xinghai Sewage-source Heat Pump Station in Dalian. Moscow, Russia: 2006.
    [15] 毕海洋,端木琳,朱颖心.污水源热泵替代原油加热炉的研究.可再生能源,2007,25(2):97~99.
    [16] 毕海洋,端木琳,朱颖心,等.广州地铁制冷站采用珠江水冷却的实践.中国给水排水,2007,23(2):50~52.
    [17] 毕海洋,端木琳,朱颖心.直流式水源利用中要解决的关键问题和研究进展.暖通空调,2007,37(7):27~30.
    [18] 吴荣华,孙德兴,张成虎,等.城市污水源热泵的应用与研究现状.哈尔滨工业大学学报,2006,38(08):1326~1329.
    [19] 吴荣华,张承虎,孙德兴.城市污水冷热源应用技术发展状况研究.暖通空调,2005,35(06):31~37
    [20] Bi H, Duanmu L, Li Z, et al. The Key-question Analysis on Reclamation and Utilization of Non-cycle Water Heat Energy and Its Recent Developments.in: SET2005-4th International Conference on Sustainable Energy Technologies. shandong jinan: 2004:407~410.
    [21] 孙德兴,吴荣华.城市污水冷热源的应用方法和装置.中国,发明专利,ZL03132553.X.2004.
    [22] 孙德兴,吴荣华.设置有滚筒格栅的城市污水水力自清装置.中国,发明专利,ZL200410043654.9.2004.
    [23] 杨善让,徐志明,孙灵芳.换热设备污垢与对策,北京:科学出版社,2004.
    [24] 章熙民,任泽霈,梅飞鸣.传热学(第三版),北京:中国建筑工业出版社,1993.
    [25] 孔庆军.污垢热阻实验装置的开发及珠江水污垢热阻试验研究:[硕士学位论文].华南理工大 学,2002.
    [26] 屠大燕.流体力学与流体机械,中国建筑工业出版社,1994.
    [27] Yoshii T. Technology for Utilizing Unused Low Temperature Difference Energy. Journal of the Japan Institute of Energy, 2001, 80(8): 696~706.
    [28]#12
    [29] 于永辉,郑官振.贵阳市污水源热泵集中供热可行性分析.见:2005年全国空调与热泵节能技术交流会论文集.辽宁省大连市:2005:317~324.
    [30] 吴荣华,张承虎,孙德兴,等.城市原生污水冷热源换热管软垢特性研究.流体机械,2006,34(01):59~62.
    [31] 吴荣华,孙德兴,张成虎,等.热泵冷热源城市原生污水的流动阻塞与换热特性.暖通空调,2005,35(02):86~88.
    [32] 吴荣华,孙德兴.哈尔滨望江宾馆利用城市污水中的能源.中国给水排水,2003,19(12):92~93.
    [33] 吴荣华,张承虎,孙德兴.城市污水类非牛顿幂律湍流流动特性研究.水动力学研究与进展A辑,2005,20(06):708~713.
    [34] 吴荣华,张成虎,孙德兴.城市原生污水源热泵系统运行工况与参数特性.流体机械,2005,33(11):73~76.
    [35] Rankin B H, Adamson W L. Scale Formation as Related to Evaporator Surface Conditions. Desalination, 1973, 13(1): 63~87.
    [36] Baier R E. Substrata Influences on the Adhesion of Micro-0rganisms and Their Resultant New Surface Properties. In: Bitton G, Marshall K S, eds. Adsorption of Micro-organisms to Surface, New York: Wiley-Interscience Publishers, 1980.59~104.
    [37] Kjaer E B. Bioactive Materials for Antifouling Coatings. Progress in Organic Coatings, 1992, 20(9): 339~352.
    [38] Muller-steinhagenH, Zhao Q. Anti-Fouling by Metal Surface Modification. UK, GB96/02681, 1999.
    [39] Muller-steinhagenH, Zhao Q. Investigation of Low Fouling Surface Alloys Made by Ion Implantation Technology. Chemical Engineering Science, 1997, 52:3321~3332.
    [40] Addesso A, Lund D B. Influence of Solid Surface Energy on Protein Adsorption. Journal of Food Processing and Preservation, 1997, 21: 319~333.
    [41] Yoon J, Lund D B. Magnetic Treatment of Milk and Surface Treatment of Plate Heat Exchanger: Effects on Milk Fouling. Journal of Food Science, 1994, 59(5): 964~969.
    [42] Powell C A. Preventing bio-fouling with copper-nickel alloys. Mater World, 1994, 2(4): 181~183.
    [43] 司秀华.改性表面及磁化水防垢的研究:[硕士学位论文].大连理工大学,1999.
    [44] 刘天庆,于瑞红,李香琴,等.材料表面性质影响生物垢形成的综合评价及预测.环境科学学报,2001,21(04):491~495.
    [45] Forster M, Augustin W, Bohnet M. Influence of the Adhesion Force Crystal Heat exchanger Surface on Fouling Mitigation. Chemical Engineering and Processing, 1999, 38(4): 449~461.
    [46] Suwon L, Hyunuk L, Samchul H. Plasma Hydrophilic Surface Treatment for Dehumidifying Heat Exchangers. 2003.
    [47] Epstein N. Fouling in Heat Exchangers. 1979.
    [48] Bott T R. Fouling of Heat Exchangers, Amsterdam: Elservier, 1990.
    [49] Kuppan T.,钱颂文,廖景娱,等.换热器设计手册,北京:中国石化出版社,2004.
    [50] Kern D Q, Seaton R E. A theoretical analysis of thermal surface fouling. Chem. Eng. Prog., 1959, (4): 258~262.
    [51] Epstein N, Kakac S, Shah R K, et al. Fundamentals of heat transfer surface fouling: With special emphasis on laminar flow, in Low Reynolds Number Flow Heat Exchangers. 1982.
    [52] Epstein N. Particle Deposition and Its Mitigation.in: Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc, 1997: 3~21.
    [53] Bryers R W. Fireside Slagging, Fouling and High-temperature Corrosion of Heat Transfer Surface due to Impurities in Steam-raising Fuels. Prog Energy Combust Sci, 1996, 22:29~120.
    [54] 徐志明,杨善让.颗粒污垢剥蚀机制研究.工程热物理学报,1998,19(5):612~615.
    [55] Papavergos P G, Hedley A B. Particle Deposition Behaviour from turbulent Flows. Chemical Engineering Research and Design, 1984, 62: 275~295.
    [56] Maron P, Andre P. A Study of Resuspended Particles from A Line Bed at the Wall of A Fluid Flow. Statistical Aspects. Particle and Particle Systems Characterization, 1997, 14: 41~47.
    [57] Maron P, Andre P. Dynamics of A Particulate Bed at the Wall of a Fluid Flow: Break-Up-Reentrainment.in: Understanding Heat Exchanger Fouling and Its Mitigation. New York: Begell House Inc, 1997: 107~114.
    [58] Adomeit P, Renz U. Deposition of Fine Particles from a Turbulent Liquid Flow: Experiments and Numerical Predictions. Chem Eng Sci, 1996, 57: 3491~3503.
    [59] 赵晓彤,杨善让,徐志明.颗粒均匀散体热导率的分形描述.工程热物理学报,1999,20(4):477~481.
    [60] 张海林,杨善让,徐志明.提高重整化群精度的一个尝试.工程热物理学报,2003,24(6):992~994.
    [61] Melo L F. An Overview of Biofouling: From Basic Science to Mitigation: Understanding Heat Exchanger Fouling and Its Mitigation. Panchal C B, Bott T R, Melo L F, et al. New York: Begell House Inc, 1997: 55~66.
    [62] Debeer D, Stoodley P. Relation between the Structure of An Anaerobic Biofilm and Transport Phenomena. War Sci Tech, 1995, 32(8): 11~18.
    [63] Bott T R, Miller P C. Mechanics of Biofilm Formation on Aluminum Tubes. J Chem Tech Biotechol, 1983, 33B: 177~184.
    [64] Bansal B, Muller-steinhagen H, Chen X D. Effect of Suspended Particles on Crystallisation Fouling in Plate Heat Exchangers. ASME J Heat Transfer, 1997, 119: 569~574.
    [65] Mc Garvey G B, Turner C W. Synergism Models for Heat Exchanger Fouling Mitigation. Italy: Engineering Foudation Conf., 1997.
    [66] Battagalia P J, Bour D P, Burd R M. Biofouling Control Practice and Assessment. Final Report, 1976.
    [67] Lowe M J. The Effect of Inorganic Particulate Materials on the Development of Biological Fouling Films:[University of Birmingham, 1988.
    [68] Pinheiro M M, Melo L F, Pinhero J D. A Model for the Interpretation of Biofouling. 1988.
    [69] Yang S R. Thermal Resistance Prediction of Precipitation Fouling Coexisting with Particulate. 1990.
    [70] Somerscales E F C. Fundamentals of Corrosion Fouling. Experimental Thermal and Fluid Science, 1997, 14: 335~355.
    [71] Sheikholeslami R. Composite Fouling of Heat Transfer Equipment in Aqueous Media-A Review. Heat Transfer Engineering, 2000, 21(3): 34~42.
    [72] Turner C W, Klimas S J. Modelling the Effect of Surface Chemistry on Particulate Fouling under Flow-Boiling Conditions. Heat Exchanger Fouling Fundamental Approaches and Technical Solutions, New York: Unitede Engineering Foundation Inc, 2001.
    [73] Grant D, Bott T R. Biofilms in Aquatic System. Warwick: 1997.
    [74] Bott T R. Aspects of Biofilm Formation and Destruction. Corrosion Rev, 1993, 11(1-2): 1~24.
    [75] Characklis W G. Microbial Fouling, New York: Wiley: 1990.
    [76] Duddridge J E, Kent C A, Laws J F. Bacterial Adhesion to Metallic Surfaces: Progress in the Preventinon of Fouling in Industrial Plant. Nottingham: hastitution of Corrosion Sciences and Technology, 1981 : 127~153.
    [77] Zubair S M, Sheikh A K, Shaik M N. A probabilistic approach to the maintenance of heat-transfer equipment subject to fouling. Energy, 1992, 17(8): 769~776.
    [78] Zubair S M, Sheikh A K, Younas M. A Risk Based Heat Exchanger Analysis Subject to Fouling Part Ⅰ: Performance Evaluation. Energy, 2000, 25: 427~443.
    [79] 徐志明,郭淑青,杨善让,等.基于概率分析的污垢模型.工程热物理学报,2003,24(2):322~324.
    [80] 刘天庆,李香琴,于瑞红,等.表面材料性质对生物垢形成过程的影响.大连理工大学学报,2002,42(02):173~180.
    [81] Kline S J, Reynolds W C, Schraub F A. J Fluid Mech. 1967, 90: 741.
    [82] Corino E R, Brodkey R S. J Fluid Mech. 1969, 37: 1.
    [83] Morrison W P B, Bullock K J, Kronauer R E. J Fluid Mech. 1971, 47: 639.
    [84] Wallace J M, Eckelmann H, S B R. J Fluid Mech. 1972, 54: 39.
    [85] Rao K N, Narasimna R, Naiaiyanan M A B. J Fluid Mech. 1972, 48: 339.
    [86] Cantwell B J. Organized Motion in Turbulent Flow. Ann Rev Fluid Mech, 1981, 13: 457~515.
    [87] Mccabe W L, Robinson C S. Industry & Engineering Chemistry Research: 1984: 164, 478~479.
    [88] Watkinson A P, Epstein N. Gas Oil Fouling in a Sensible Heat Exchanger. Chemical Engineering Progress, 1969, 95: 84.
    [89] Reitzer B J. Rate of Scale Formation in Tubular Heat Exchangers. Industry & Engineering Chemical Process Design and Development, 1964, 3(4): 345~348.
    [90] Pinheiro R S. Heat Exchanger Sourcebook, Heat Transfer Research Inc, 1986.
    [91] Taborek J, Aoki T, Ritter R B. Predictive Methods for Fouling Behaviour. Chemical Engineering Progress, 1972, 68: 69~78.
    [92] Hasson D, Avriel M, Resnick W. Mechanism of Calcium Carbonate Scale Deposition on Heat Transfer Surfaces. Industrial & Engineering Chemistry Fundamentals, 1968, 7: 59~65.
    [93] Liu R. A Study of Fouling in a Heat Exchanger with an Application of an Electronic Anti-Fouling Technology:[Ph.D.学位论文].Philadelphia USA:Drexel University,1999.
    [94] Najibi S H, Muller-steinhagen H, Jamialahmadi M. Calcium Carbonate Scale Formation during Sub-cooled Flow Boiling. Journal of Heat Transfer, 1997, 119: 767~775.
    [95] 辛明道.沸腾传热及其强化,重庆大学出版社,1987.
    [96] Allen C A, Grimmett E S. Liquid-Fluidized-Bed Heat Exchanger Design Parameters. Department of Energy. Idaho Operation Office, Under Contrast, 1978, 4:1570~1574.
    [97] Merjer J A. Inhibition of Calcium Sulfate Scale by a Fluidized Bed:[Ph.D. Dissertation学位论文]. Delft University of Technology, 1984.
    [98] Veenman A W. A Review of New Development in Desalination by Distillation Process. Desalination, 1978, 27.
    [99] Klaren D G. Fluidized Bed Heat Exchanger: A Major Improvement in Severe Heat: New Hemisphere: Hemisphere, 1981: 885~896.
    [100] Klaren D G, Vailie R E. The Non-fouling Fluidized Bed Heat Exchanger. 1989.
    [101] Kollbach J S, Rautenbaeh R. Continuous Cleaning of Heat Transfer in Heat Exchanger with Recirculating Fluidized Bed. Heat Transfer Engineering, 1987, 8(4): 26~32.
    [102] Kollbach J S, Rautenbach R. The Fluidized Bed Technique in the Evaporation of Wastewater with Severe Fouling/Scaling Potential-Latest Development, Application. Limitations Desalination, 1991, 81(1-3): 285~298.
    [103] Klaren D G. Selbstreinigendes Konzept. Chemamlagen Verfahren, 1995, 28(5): 16~18.
    [104] Rautenbach R, Erdmann C, Kollbach J S. The Fluidized Bed Technique in the Evaporation of Wastewater with Severe Fouling/Scaling Potential-latest Developments/Applications/Limitation. Desalination, 1991, 81(1~3): 285~291.
    [105] Meijer J A. Prevention of CalciumSuphate Scale Deposition by a Fluidized Bed. Desalination, 1983, 47(5): 3~15.
    [106] Klaren D G. Apparatus for carrying out a physical and/or chemical process, such as a heat exchanger. US, 5676201, 1997.
    [107] 叶施仁,俞天兰,俞秀民.液固流态化换热器结构改进及应用.化工机械,1998,25(1):31~32.
    [108] 刘吉普,吴金香.管程内循环液固流态化强化换热技术研究.湘潭大学自然科学学报,1996, 18(3):79~84.
    [109] 姜峰,贾丽云,刘明言,等.液固循环流化床换热器中固体颗粒分布.化学工程,2004,32(1): 18~23.
    [110] 王一平,刘俊杰,吴晨曦,等.气液固循环流化床换热器中预分布器结构的优化.化工学报,2006, 57(1):31~35.
    [111] 王一平,刘俊杰,吴晨曦,等.固液分布器中主分布器的实验研究.化工进展,2005,24(12): 1396~1400.
    [112] 王一平,张金利,刘俊杰,等.中国,发明专利,ZL200410093926.6.2004.
    [113] Chuach Y K, Carey V P. Boiling Heat Transfer in a Shallow Fluidized Particles Bed. Journal of Heat Transfer, 1987, 109(1): 196~203.
    [114] Shi M H, Hu Y J. A Study on Solid Particles on Boiling Hysteresis. Journal of Thermal Science, 1992, 1(1).
    [115] Hidetoshi. Mechanism of Calcium Sulfate Deposition on Heat-Transfer Surfaces and Mechanical Removal of scale by particle Abrasion Method.日本海水学会志,1994,48(2):96~106.
    [116] 李修伦,谷俊杰,黄鸿鼎,等.汽液固三相流化床沸腾传热的研究.化工学报,1993,(02):224~229.
    [117] 李修伦,闻建平.三相流沸腾传热.高校化学工程学报,1995,(04):326~331.
    [118] 李修伦,闻建平.垂直管内三相流化床沸腾传热特性.化学工程,1995,(04):50~54.
    [119] 张利斌,李修伦,张金钟,等.三相循环流化床中沸腾传热特性.化工学报,1999,(02):208~214.
    [120] 张少峰.三相循环流化床蒸发器防除垢和强化传热的研究:[博士学位论文].天津大学,2000.
    [121] 贾原媛.三相循环流化床麦草浆黑液蒸发器防、除垢和强化传热研究:[博士学位论文].天津大学,2003.
    [122] 评估专家组.”九五”国家重点科技攻关项目”盐化工业中万吨级新型卤水蒸发装置及设备研究”中期评估报告:1998.
    [123] 于志家,朱冬青,王大明,等.气液固三相流动沸腾传热与抗垢性能的研究.高校化学工程学报,1999,13(05):447~450.
    [124] 于志家.气液固三相流载气蒸发的抗垢性能.工程热物理学报,2003,24(05):807~809.
    [125] 于志家,徐维勤,沈自求.垂直套管环隙内汽液固三相流动沸腾传热的实验研究.工程热物理学报,1997,17(02):234~237.
    [126] 任斌,宋继田.惰性粒子流化床蒸发器浓缩茶浸提液的传热研究.食品与机械,2002,87(1): 18~19.
    [127] 邹克华.三相循环流化床流动沸腾传热和压降的研究:[硕士学位论文学位论文].天津:天津大学.1999.
    [128] 程林,杨培毅,陆煜.换热器运行导论,科学出版社,1995.
    [129] 崔福义,李晓明,周红.污水换热器污垢热阻特性研究.煤气与热力,2005,25(06):9~12.
    [130] Characklis W G. Microbial Fouling: A Process Analysis: Fouling in Heat Transfer Equipment. Somerscales E F C, Knudsen J G. Washington: Hemisphere Publishing Corp., 1981:251~291.
    [131] Characklis W G. Processes Contributing to Biological Fouling. White Haven: 1982.
    [132] Baler R E. Early Events of Micro-Biofouling of All Heat Transfer Equipment. Troy, NY, USA: 1979.
    [133] Baier R F. Substrata Influences on Adhesion of Microorganisms and Their Resuitant New Surface Properties: Microbial adhesion to Surfaces. Bitton G, Marshall K C. New York: John Wiley: 198060~104.
    [134] Fletcher M, Bright J J, Pringle J H. Attachment of Aquatic Bacteria to Solid Surfaces. Rensselaer Polytechnic Institute USA: 1979.
    [135] Marshall K C. Bacterial Behavior at Solid Surfaces-A Prelude to Microbial Fouling. Troy, NY, USA: 1979.
    [136] Ho C S. An Understanding of The Forces in the Adhesion of Microorganisms to Surfaces. Process Biochemistry, 1986, 121(5): 148~153.
    [137] Pugh S Y R, Gosling I S, Simmons H, et al. Analysis of Biofilms Subjected to Flowing Conditions. Oxford: 1988.
    [138] Cleaver J W, Ystes B. A Sublayer Model for the Deposition of Particles in Trubulent Flow. Chem Eng Science, 1975, 30: 983~992.
    [139] Lip A, Jessup N E. Colloidal Aspects of Bacterial Adhesion: Adhesion of Micor-organisms to Surfaces. Ellwood D C, Melling J, Rutter P R. London: Academic Press, 1979: 5~27.
    [140] Pethica B A. Microbial and Cell Adhesion: Mirobial Adhesion to Surfaces. Berkeley R C W, Lynch J M, Melling J. Ellis Horwood: Chichester, 1980: 19~45.
    [141] Kent C A, Duddridge J E. Microbial Fouling of Heat Transfer Surfaces: Cooling Water Systems. AERE Report R 10065. United Kingdom Atomic Energy Authority, 1981.
    [142] Nesaratnam R N. Biofilm and Destruction on Simulated Heat Transfer Surfaces:[dissertation]. University of Birminghaim, 1984.
    [143] Pinheiro M M, Melo L F, Bolt T R. Surface Phenomena and Hydrodynamic Effects on The Deposition of Pseudomonas Fluorescens. The Canadian Journal of Chemical Engineering, 1988, 66.
    [144] Pujo M, Bott T R. Effects of Fluid Velocities and Reynolds Numbers on Biofilm Development in Water Systems: Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Keffer J F, Shah R K, Ganic E N. New York: Elsevier, 1991: 1358~1362.
    [145] Taborek J, Knudsen G, Aoki T. Fouling: the Major Unresolved Problem in Heat Transfer, Partl: Fouling Mechanisms; their Characteristics and Factors Influencing them. Chemical Engineering Progress, 1972, 68(2): 59~67.
    [146] Atkins G T. What To Do About High Coking Rates. Petro/Chem Engineer, 1962, 34: 20~25.
    [147] Bohnet M, Augustin W, Hirsch H. Influence of fouling layer shear strength on removal behaviour: Understanding Heat Exchanger Fouling and its Mitigation. Bolt T R. New York: United Engineering Foundation and Begell House, 1997:201~208.
    [148] G Z D. Microbiology, 1958, 28: 104~108.
    [149] Fowler H W, Mckay A J. The measurement of microbial adhesion: Microbial Adhesion to surfaces. Berkeley R C W, Lynch J M, Melling J, et al. London: Academic Press, 1980: 143~161.
    [150] Duddridge J E, Kent C A, F L J. Effect of Surface Shear Stress on the Attachment of Pseudomonas Fluorescents to Stainless Steel under Defined Flow Conditions. Biotechnol Bioeg, 1982, 26:153~164.
    [151] Watkinson A P. Heat transfer: Theory and Practice: Taborek J, Hewitt G F, Afgan N. Washington, D. C.: Hemisphere Pub. Corp., 1983: 853~861.
    [152] Vatistas N. The Effect of Ashesion Time on Particle Deposition. Chem Eng Sci, 1989, 44(8)i 1603~1608.
    [153] 徐志明.换热设备的污垢及热力学优化:[博士学位论文].西安交通大学,1996.
    [154] 曾春华,邹十践.疲劳分析方法及应用,北京:国防工业出版社,1991.
    [155] Rose H E, Duckworth R A. Transport of solid particles in liquids and gases. The Engineer, 1969, 227: 392~396,430~434,478~483.
    [156] Durand R. The Hydraulic Transportation of Coal and Other Materials in pipes. London: 1952.
    [157] Zandi I, Govatos G. Heterogeneous Flow of Heterogeneous Solids. 1968.
    [158] 钱伟长,叶开沅.弹性力学,北京:科学出版社,1956.
    [159] Qi C, Farag I H. Heat transfer mechanism due to particle convection in circlating fluidized bed. Can. J. Chem. Eng., 1994, 72(4): 354~357.
    [160] 梁五更,张书良,俞芷菁.液固循环流化床的研究(Ⅱ)表观滑落速度及曳力系数.化工学报, 1993,44(6):672~676.
    [161] 王绍亭,陈涛.动量、热量与质量传递:天津:天津科学技术出版社,1988:129~154.
    [162] 王忠保,方向威,何伟康.机械工程材料性能数据手册,北京:机械工业出版社,1995.
    [163] 李溪.浒泊机制砂与河砂混凝土力学性能的对比研究.山西建筑,2005,31(8):112~113.
    [164] 端木琳,毕海洋.一种流化床换热器的固液分离方法.中国,发明专利,申请号200610134381.8,2006
    [165] Bi H, Duanmu L, Zhu Y. Experimental Research on once-through water performance of single pipe solid-liquid fluidized bed heat exchanger.in: The 5th international symposium on heating, ventilating and air conditioning. Beijing: 2007:651~655.
    [166] Bi H, Duanmu L, Zhu Y. Testing and analyzing on once-through water performance of single pipe solid-liquid fluidized bed heat exchanger.in: The 7th International Symposium on Test and Measurement. Beiiing: international Academic Publishers Ltd., 2007: 3161~3164.
    [167] 王树刚,端木琳,毕海洋.利用城市污水低位热能的除污取水装置。中国,实用新型, ZL200420031799.2.2004.
    [168] 端木琳,王树刚,毕海洋.利用城市污水低位热能的取水方法和自动除污装置.中国,发明专利,ZL200410020630.1.2004.
    [169] 端木琳,毕海洋.一种利用直流式水源冷热源的方法.中国,发明专利,申请号200710012009.4.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700