用户名: 密码: 验证码:
岩石SHPB实验技术数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了岩石动态压缩力学性能方面的有关研究进展,并对SHPB实验装置与原理进行了简单的叙述,应用ANSYS/LS-DYNA有限元平台建立了SHPB实验装置的三维有限元模型,并从有限元原理、单元选取、沙漏控制、网格划分、接触设置以及初始加载以及等几方面进行了讨论。在此基础上对SHPB实验技术中若干关键问题进行了数值模拟分析。主要包括如下内容:
     1)对比分析了传统矩形波和改进的半正弦波加载下,不同直径入射杆,不同加载率,不同传播距离的波形弥散情形,显示并验证了SHPB半正弦加载波受杆径,加载率、及传播距离的影响很小,不会产生弥散现象,进一步证明了半正弦波加载方式是用于岩石类脆性材料大直径SHPB测试的理想形式。
     2)对比分析了SHPB试验中半正弦入射波和传统的矩形入射波加载条件下试样早期应力均匀化过程。从试样达到应力平衡所需时间的快慢来考虑,验证了半正弦入射波加载方式对于岩石类脆性材料动态特性的测试具有显著优势。
     3)在加载应变率方面,分析得出了半正弦波加载条件下波形应力峰值、持续时间、SHPB杆径、试样长径比与试样加载平均应变率之间的关系。
     4)利用半正弦波加载得到了与试验结果比较吻合的应力-应变关系曲线,并分析了不同加载条件下试样的力学特性。采用H-J-C模型模拟岩石破碎过程,研究了不同应变率下的岩石破坏形态。
     5)利用数值模拟验证了波的传播、以及早期应力均匀性并不受轴向预应力影响,模拟分析了一维波理论在动静组合实验中的适用性。
The development and present state of the study on the dynamic compression mechanics properties of rock by SHPB are reviewed and described in the paper. With the help of software ANSYS/LS-DYNA, the three dimensional numerical simulation of the feasibility of measure of rock dynamic properties by SHPB is presented. The finite element theory, the element selection, the hourglass control, the mesh divide, the contact control, and initial loading are discussed in detail. On this basis, numerical modeling for several key problems about the SHPB test on rocks are given as follows:
     1) Wave dispersion of different diameters input bar, different loading rates, and the different propagation distances in SHPB with rectangle and half-sine wave-loading are analyzed by using the 3D non-linear dynamic finite element code. The results show that the dispersion effect on the diameter of input bar, loading rate, and propagation distance is very small for half-sine waveform loading Compared with the rectangle wave loading. It is validated further that the half-sine wave should be a relatively perfect loading waveform in the test for rock-like materials.
     2) The stress uniformity process under rectangle and half-sine input wave loading were compared in SHPB tests and the time required for stress uniformity is calculated for the above different loadings. It is confirmed that the half-sine pulse loading method can realized the stress uniformity more easily than the rectangle pulse loading and has significant advantages in the dynamic test of rock-like materials.
     3) The effect of pulse amplitude and duration, SHPB diameter, specimens’aspect ratio on the average strain rate was analyzed under half-sine input waves loading.
     4) The stress-strain curves well fitted with the experimental results are obtained under the half-sine input wave loading by using the software. The mechanics properties are analysis under different loading conditions. The HOLMQUIST-JOHNSON-CONCRETE constitutive model is introduced to simulate the failure mechanism in this numerical, and failure and fragmentation characteristics of rock under different strain rates.
     5) It is demonstrated the axial pre-compression stress has no impact on the wave propagation in the bars and the stress equilibrium in early stage specimen, and it is also found that 1-D stress wave theory is valid for coupled static and dynamic loads on SHPB.
引文
[1] 李夕兵,古德生. 岩石冲击动力学[M]. 长沙:中南工业大学出版社,1994.
    [2] ZHOU Zilong, LI Xibing and HONG Liang et al. Mechanical behavior of silt rock subjected to coupling static and impact loads [J], Transactions of Tianjin University, 2006, 12(s): 205-209. Poc of 1st Intern Conf on ADSEI, 2006.9, Tianjin, China.
    [3] Kumar A.The effect of stress rate and temperature on the strength of basalt and granite [M]. Geophysics, 1968, 33(3):510-510.
    [4] Tang T, Malvern L E and Jenking D A. Rate Effects in Uniaxial Dynamic Compression of Concrete [J]. J. Eng. Mech., 1992, 118(1):108-124.
    [5] Ross C A, Tedesco J W, Kuennen S T. Effects of Strain Rate on Concrete Strength [J]. ACI Mater. J., 1995, 92(1):37-47.
    [6] 胡时胜. 霍普金森压杆技术[J]. 兵器材料科学与工程, 1991,11: 40-47.
    [7] Davis R M. A Critical Study of the Hopkinson Pressure Bar [J]. Philosophical Transactions, 1948, A240: 375-457.
    [8] Kolsky H. Stress Waves in Solids [M]. New York: Dover Publications, 1963.
    [9] Wasley R J. Stress Wave Propagation in Solids [M]. New York: Marcel Dekker, 1973.
    [10] Duffy J, Campbell J D, Hawley R H. On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminum[J]. Transactions of the ASME, Journal of Applied Mechanics, 1971, 37: 83-91.
    [11] Christensen R J, Swanson S R, Brown W S. Split-Hopkinson-Bar Tests on Rocks under Confining Pressure[J]. Experimental Mechanics, 1972, November, 508-513.
    [12] Lee O S, Kim S H, Han Y H. Thickness effect of pulse shaper on dynamic stress equilibrium and dynamic deformation behavior in the polycarbonate using SHPB technique [J]. Journal of Experimental Mechanics, 2006, 21(1): 51-60.
    [13] 李为民,许金余. 大直径分离式霍普金森压杆实验中的波形整形技术研究[J].兵工学报, 2009,30(3):350-355 .
    [14] 王鲁明, 赵坚,华安增,等. 脆性材料 SHPB 实验技术的研究[J]. 岩石力学与工程学报, 2003, 22(11): 1798-1802.
    [15] Follansbee P S, Frantz C. Wave Propagation in the Split Hopkinson Pressure Bar.Transactions of the ASME, Journal of Engineering Materials and Technology,1983, 105:61-66.
    [16] Gorham D A. A Numerical Method for the Correction of Dispersion in Pressure Bar Signals.Journal of Physics E: Scientific Instrumentation, 1983, 16: 477-479.
    [17] Gong J C, Malvern L E, Jenkins D A. Dispersion Investigation in the Split Hopkinson Pressure Bar. Journal of Engineering Materials and Technology, 1990, 112: 309-314.
    [18] Parry D J, Walker A G, Dixon P R. Hopkinson Bar Pulse Smoothing [J]. Measurment Science and Technology, 1995, 6: 443-446.
    [19] Frantz, C. E., Follansbee, P. S., and Wright, W. T., 1984, “Experimental Techniques with the Split Hopkinson Pressure Bar,” Proceedings of the 8th International Conference on High Energy Rate Fabrication, Texas, TX, 229-236.
    [20] Ellwood S, Griffiths L J, Parry D J. Materials Testing at High Constant Strain Rates[J]. Journal of Physics E: Scientific Instrumentation, 1982, 15: 280-282.
    [21] 宋博,姜锡权,陈为农. 霍普金森压杆实验中的脉冲整形技术[C]. 青岛:第三届全国爆炸力学实验技术交流会论文集,2004.
    [22] 李夕兵. 岩石在不同加载波下的 σ ? ε?ε&关系[J]. 中国有色金属学报,1994,4: 16-22.
    [23] 李夕兵, 陈寿如, 古德生. 岩石在不同加载波下的动载强度[J]. 中南矿冶学院学报,1994,25: 301-304.
    [24] 李夕兵,刘德顺,古德生. 消除岩石动态实验曲线振荡的有效途径[J]. 中南工业大学学报,1995,26:457-460.
    [25] 李夕兵,古德生. 冲击载荷下岩石动态应力应变全图测试中的合理加载波形[J], 爆炸与冲击. 1993, 13(2):125-131.
    [26] 左宇军,李夕兵,张义平. 动静组合加载下的岩石破坏特性[M]. 北京:冶金工业出版社,2008.
    [27] 张继春,刘浩吾.岩体爆破松裂区的损伤机制及其数值模拟[J]. 爆炸与冲击,1996,16(3):250-258.
    [28] Christophe Denoual, Francois Hild . A damage model for the dynamic fragmentation of brittle Solids[J]. Comput. Methods Appl. Mech. Engrg. 2000,183:247-258.
    [29] 李世平,吴振业,贺永年 等.岩石力学简明教程[M]. 煤炭工业出版社 1996.11:39-58
    [30] Chen Z., Hu W. , Shen L. , Xin X., Brannon R.. An evaluation of the MPM for simulating dynamic failure with damage diffusion[J]. Engineering FractureMechanics, 2002,69:1873-1890
    [31] 杨小林,王树仁. 岩石爆破损伤断裂的细观机理[J]. 爆炸与冲击,2000, 20(3):247-252
    [32] Tang Guoyi, Yan Yunjie, Chen Xihua, Zhang Jin, Xu Bin, Feng Zhihai. Dynamic damage and fracture mechanism of three-dimensional braided carbon fiberrepoxy resin composites[J]. Materials and Design, 2001, 22: 21-25
    [33] 殷有泉.岩石的塑性、损伤及其本构表述[J]. 地质科学,1995,30(1):63-70
    [34] 谢和平, 董毓利, 李世平. 不同围压下混凝土受压弹塑性损伤本构模型的研究[J]. 煤炭学报,1996,21(3):265-270
    [35] Zhang Xi, Mai Yiu-Wing, Jeffrey Rob G.. A cohesive plastic and damage zone model for dynamic crack growth in rate-dependent materials[J]. International Journal of Solids and Structures, 2003,40:5819-5837
    [36] 吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报,1996,15(1):55-61
    [37] 杨军,王树仁.岩石爆破分形损伤模型研究[J]. 爆炸与冲击,1996,16(1):5-10
    [38] 叶洲元. 动力扰动下高应力岩石力学特性研究[博士学位论文]. 长沙:中南大学,2008
    [39] Q.M.Li. Strain energy density failure criterion [J]. International Journal of Solids and Structures, 2001, 38: 6997-7013
    [40] Rinehart J.S. Dynamic fracture strengths of rocks,Proccedings of 7th Symp. On Rock Mech. ALME, 205-208,1965.
    [41] Attewell P.B. Dynamic fracturing of rocks,Part I,Ⅱ,Ⅲ,ColIiery,Engineering,203-210,248-252,289-294,1963.
    [42] Olsson W.A. the compressive strength of tuff as a function of strain rate from 10-6 to 103 /sec.,Rock Mech.Min.Sci&Geomech .Abstr.,1991,28(1):115-118.
    [43] 李夕兵,古德生,赖海辉.岩石在不同应力波下的动态响应.第三届全国岩石动力学论文选集[C]. 武汉:武汉测绘科技大学出版社,1992,10:142-151.
    [44] 李夕兵,赖海辉,朱成忠.冲击载荷下岩石破碎能耗及其力学性能的探讨[J].矿冶工程,1988,8(1):15-19.
    [45] 戚承志,钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报,2003,22(2):177-181.
    [46] Zhao Fu-jun, Li Xi-bing and Feng Tao, Experimental study of a new multifunctional device for rock fragmentation[J]. Journal of Coal Science & Engineering, 2004, 10(1): 29-32
    [47] 赵伏军,李夕兵,冯涛. 动静载荷耦合作用下岩石破碎理论分析及试验研究[J]. 岩石力学与工程学报, 2005, 24(8):1315-1321
    [48] Li Xibing, Zhao Fujun, and Feng Tao, et al. A Multifunctional Testing Device for Rock Fragmentation by Combining Cut with Impact[J]. Tunnelling and Undergroung Space Technology, 2004, 19(4-5): 526
    [49] 李夕兵,左宇军,马春德,动静组合加载下岩石破坏的应变能密度准则及突变理论分析[J]. 岩石力学和工程学报, 2005,24(16):2814-2825.
    [50] Zuo Yu-jun, Li Xi-bing, Zhou Zi-long et al, Damage and failure rule of rock undergoing uniaxial compressive load and dynamic load [J]. J. Cent. South Univ. Technol., 2005, 12(6): 742-749
    [51] Li XB, Zhou ZL, and Lok TS et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. Int. J. of Rock Mech. and Min. Eng. 2008,40(1): 739-748
    [52] 周子龙. 岩石动静组合加载实验与力学特性研究[博士学位论文]. 长沙:中南大学,2007.
    [53] Li X. Zhou Z.and Q. Li Testing equipment for rock under coupling loads[C], ISRM International Symposium 2006, Proceedings of 4th Asian Rock Mechanics Symposium,253(6p), 2006.11, Singapore
    [54] 董钢. 分离式霍普金森压杆实验技术数值模拟[硕士学位论文]. 合肥:合肥工业大学,2005
    [55] 曹吉星,陈虬,张吉萍. 混凝 SHPB 实验的数值模拟及应力均匀性[J]. 西南交通大学学报,2008,43(1):67-70.
    [56] 刘孝敏,胡时胜. 大直径SHPB弥散效应的二维数值分析[J]. 实验力学,2000,15(4):371-376.
    [57] 董钢,巫绪涛等. 直锥变截面 Hopkinson 压杆实验的数值模拟[J]. 合肥工业大学学报,2005,28(7):795-798.
    [58] 巫绪涛,杨伯源,李和平,董钢.大直径 SHPB 装置的数值模拟及实验误差分析[J]. 应用力学学报,2006,23(3):432-434.
    [59] Bertholf L D, Karnes C H. Two-dimensional analysis of the split Hopkinson pressure bar system[J]. J.Meeh.Phys.Solids.1975,23:1-19
    [60] 谭柱华,盖秉政,庞宝君,贾斌.影响 Hopkinson 压杆实验结果因素的数值模拟分析[J].哈尔滨工业大学学报,2007,39(3):363-366
    [61] 王勇华,袁玉娟. RPC 材料 Hopkinson 压杆冲击压缩试验的数值模拟与分析[J]. 建筑与结构设计,2007,8:34-38
    [62] 孙善飞,巫绪涛,李和平. SHPB 实验中试样形状和尺寸效应的数值模拟[J]. 合肥工业大学学报(自然科学版),2008,31(9):1509-1512
    [63] 崔栋梁. 三维动静组合载荷下高应力岩体动力特性及岩爆研究[硕士学位论文]. 长沙:中南大学,2007.
    [64] 胡时胜.SHPB 与混凝土材料动态力学性能研究[J]. 青岛:第三届全国爆炸力学实验技术交流会论文集[C],2004.
    [65] 巫绪涛,胡时胜,杨泊源,董钢. SHPB 技术研究混凝土动态力学性能存在的问题和改进[J]. 合肥工业大学学报,2004,27(1):63-66.
    [66] Lok. T. S,Li. X B,Liu D,Zhao P J. Testing and Response of large Diameter Brittle Materials Subjeeted to High StrainRate[J]. Joumal of Materials in Civil Engineering,2002,14:262-269
    [67] 李夕兵,刘德顺,古德生. 消除岩石动态实验曲线振荡的有效途径[J]. 中南工业大学学报,1995,26:457-460.
    [68] 周子龙,李夕兵,赵国彦等. 岩石类 SHPB 实验理想加载波形的三维数值分析[J]. 矿冶工程,2005,25(3):18-21
    [69] Field J E, Walley S M, Proud W G, et al. Review of experimental techniques for high rate deformation and shock studies[J]. International Journal of Impact Engineering, 2004, 30(7): 725-775
    [70] 陈德兴,胡时胜,张守保. 大尺寸 Hopkinson 压杆及其应用[J].实验力学,2005,20(3):399-402.
    [71] 刘德顺,李夕兵,朱萍玉. 冲击机械动力学与反演设计[M]. 科学出版社,2007.
    [72] X B Li, T S Lok, J Zhao. Dynamic Characteristics of Granite Subjected to Intermediate Loading Rate [J]. Rock Mechanics and Rock Engineering 2005,38: 21-39.
    [73] 洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[博士学位论文]. 长沙:中南大学,2008.
    [74] 王焕定,王伟. 有限单元法教程[M]. 哈尔滨:哈尔滨工业大学出版社,2003.
    [75] 康国政. 大型有限元程序的原理、结构与使用[M]. 成都:西南交通大学出版社,2004.
    [76] 李裕春. ANSYS11.0/LS-DYNA 基础理论与工程实践[M]. 北京:中国水利水电出版社,2007.
    [77] 赵海鸥. LS-DYNA 动力分析指南[M]. 北京:兵器工业出版社,2003.
    [78] 余旭东,赵育善. 飞行器结构动力学[M]. 西安:西北工业大学出版社,1998.
    [79] J.Q.Hallquist. LS-DYNA Theoretical Manual. Livermore Software TechnologyCorporation, Livermare, 1998.
    [80] Holmquist T J,Johnson G R,Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [A]. Jackson N, Dickert S. The 14th International Symposium on Ballistics [C]. USA: American Defense Prepareness Association, 1993:591-600.
    [81] 白金泽. LS-DYNA3D 理论基础与实例分析[M]. 北京:科学出版社,2005.
    [82] 曹吉星,陈虬,张吉萍. 混凝土 SHPB 实验的数值模拟及应力均匀性[J]. 西南交通大学学报,2008,43(1):67-70.
    [83] 焦楚杰,孙伟,高培正. 钢纤维超高强混凝土动态力学性能[J].工程力学, 2006,23(8):86-89.
    [84] 王礼立. 应力波基础[M]. 北京:国防工业出版社,2005.
    [85] X.B.Li, T.S.Lok, J. Zhao, P.J.Zhao. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks [J]. Int. J. of Rock Mech. and Min. Sci. 2000, 37(7): 1055-1060.
    [86] Davies E D H, Hunter S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of Mechanical Physics Solids, 1963, 11 (1):155 - 179.
    [87] 宋力,胡时胜. SHPB 测试中的均匀性问题及恒应变率[J]. 爆炸与冲击,2005,25(3):207-215.
    [88] Meng H. and Li Q.M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments[J]. International Journal of Impact Engineering. 2003, 28(5):537-555.
    [89] Wu X.J. and Gorham D.A. Stress equilibrium in the split Hopkinson pressure bar test[J]. J. Physic. In France. 1997, 7(3):91-96
    [90] 徐明利,张若棋,张光莹. SHPB 实验中试件内早期应力平衡分析[J]. 爆炸与冲击,2003, 23(3): 235-241.
    [91] 卢芳云,Chen W. and Frew D.J. 软材料的 SHPB 实验设计[J],爆炸与冲击,2002, 22(1):15-20.
    [92] Parry D J, Dixon P R, Hodson S, et al. Stress equilibrium effects within Hopkinson bar specimens [J]. J Phys IV, 1994, (C8):107 - 112.
    [93] Ravichandran G, Subhash G. Critical appraisal of limiting st rain rates for compression testing of ceramics in a split Hopkinson pressure bar [J] . Journal of the American Ceramic Society , 1994 ,77 (1) : 263-267;
    [94] 徐明利,张若棋,张光莹. SHPB 实验中试件内早期应力平衡分析[J] . 爆炸与冲击,2003 ,23 (3) :235~240;
    [95] Yang L M , Shim V P W. An analysis of st ress uniformity in split Hopkinson bar test specimens[J].International Journal of Impact Engineering,2005,31 (2) :129-150
    [96] 朱钰,胡时胜,王礼立. SHPB 试验中粘弹性材料的应力均匀性分析[J].爆炸与冲击,2006 ,26 (4) :315-322.
    [97] 宋力,胡时胜. SHPB 测试中的应力均匀性问题及恒应变率[J].爆炸与冲击,2005 ,25 (3) :207-216;
    [98] 宋力,胡时胜. 软材料的霍普金森压杆测试新技术[J].工程力学,2006,23 (5) :207-216.
    [99] Zencker U,Clos R. Limiting Conditions for Compression Testing of Flat Specimens in the Split Hopkinson Pressure Bar[J].Experimental Mechanics, 1998, 39:343-348.
    [100] 李夕兵,左宇军,马春德. 中应变率下动静组合加载岩石的本构模型[J]. 岩石力学与工程学报,2006, 25(5): 865-874.
    [101] Lundberg B.A split Hopkinson bar study of energy absorption in dynamic rock fragmentation[J]. Int. J. Rock Mech. Min.Sci. & Geomech Abstr., 1976, 13:187-197.
    [102] 李夕兵. 矿岩中应力波的传输效应和能量耗散规律的研究[博士学位论文]. 长沙:中南工业大学,1992.
    [103] K. Xia, M.H.B.Nasseri, B.Mohanty, et al. Effects of microstructures on dynamic compression of Barre granite[J]. Int. J. of Rock Mech. and Min. Sci. 2008, 45(6): 879-887.
    [104] 陈荣,林玉亮,卢芳云,夏开文. Barre 花岗岩动态压缩破坏特性研究[J]. 岩石力学与工程学报,2009, 28(supt.1): 2743-2748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700