用户名: 密码: 验证码:
典型含氧八面体金属氧化物的高压结构相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以稀土倍半氧化物﹑钙钛矿和尖晶石结构氧化物为代表的典型含氧八面体金属氧化物,因其独特的﹑优异的光学、电学﹑热学﹑磁学等性能以及在光学领域、电子器件、多功能材料等方面广泛的应用价值而成为材料科学的研究热点。利用高压极端条件来研究材料的结构和物理性质的变化,是当前高压物理学领域重要的研究方向,对获得新结构﹑合成新材料﹑发现新现象、总结新规律具有重要的指导意义和潜在的应用价值。然而,对于以上三种典型含氧八面体金属氧化物以及氧相关体系的高压结构相变研究目前仍然存在亟待解决的问题,即高压下含氧八面体金属氧化物的新型压致相变和高压新结构的发现以及纳米效应对其相变行为的影响。针对以上问题,我们开展了相关研究工作。
     本论文以稀土倍半氧化物、钙钛矿氧化物以及尖晶石结构氧化物等几种典型含氧八面体金属氧化物以及限域于单晶分子筛一维纳米孔道内双原子分子氧为主要对象,利用金刚石对顶砧装置对它们开展了详细的高压结构相变研究,获得如下结果:
     1)纳米尺寸效应对准一维稀土倍半氧化物以及纳米尖晶石氧化物相变行为的影响和新型压致相变以及异常压缩行为的发现
     以稀土倍半氧化物准一维Gd2O3/Er3+纳米棒和尖晶石氧化物Co3O4为例,利用原位高压同步辐射X射线衍射和高压拉曼等实验研究了它们的高压相变行为。发现Gd2O3/Er3+纳米棒经历了不同于体材料和纳米颗粒的相变过程,其并没有发生由立方结构向高压六方相的结构转变,而是转变为一种非晶结构。利用TEM观测了样品加压前和卸压后的形貌变化,发现卸压后的样品仍然能够保持原始样品的棒状形貌。这是首次在Gd2O3/Er3+一维纳米材料中发现了压致非晶化现象。这一实验结果进一步深化了纳米尺寸效应以及特殊形貌对稀土倍半氧化物纳米晶高压结构相变行为的认识。对比研究了典型尖晶石氧化物Co3O4体/纳米材料的高压相变行为,发现了Co3O4体材料和纳米材料高压下完整的相转变行为。并且,观测到了Co3O4纳米材料的体积不连续变化这一异常的压缩行为。经研究分析,Co3O4尖晶石结构中独特的阳离子排布以及纳米材料的高表面能等纳米效应是影响Co3O4高压行为的主要因素。这些实验结果丰富了对纳米尖晶石高压行为的认识,同时对材料相变机制以及制备新功能材料具有重要的指导意义。
     2)发现了钙钛矿氧化物的新型重构式结构相变和高压新相
     以钙钛矿氧化物CaZrO3和BaZrO3为例,利用原位高压同步辐射X光衍射方法研究了它们的高压相变行为。在高达50GPa的压力范围内,发现了正交相CaZrO3可以稳定保持至30GPa,之后其发生了由正交结构向高压新相-单斜相的结构相变。这是首次发现CaZrO3的高压新相,其相变行为不同于先前研究报道的其他钙钛矿氧化物的相变行为,是一种新型的重构式结构相变。ZrO6八面体的旋转或倾斜在CaZrO3的高压行为中发挥重要的作用。发现立方相BaZrO3在压力达到17.2GPa时,发生了从立方相(空间群为Pm3m)到四方相(空间群为I4/mcm)的转变。这是首次在实验中观测到BaZrO3的结构相变。这些实验结果使我们对钙钛矿氧化物的结构转变行为有了新的认识,极大地丰富了钙钛矿氧化物相转变的内容。
     3)发现了压力作用下限域于AlPO4-5一维纳米孔道内氧的新型结构转变
     利用原位高压同步辐射和高压拉曼光谱技术,以单晶分子筛AFI为模板,以限域于单晶分子筛孔道内双原子分子氧为例,首次开展了限域于纳米孔道内氧的高压行为研究。对比研究了限域于AFI纳米孔道内部氧和体材料氧的高压行为。观察到在6.0GPa左右,氧的拉曼振动模式发生了明显了的变化,对比体材料氧在此压力区间发生的由液态-β相(6.0GPa)的相变,发现限域于分子筛内部的氧经历了液态氧-γ相氧的转变,表明限域氧的高压行为明显不同于体材料氧。这是利用限域的方法,首次在常温条件下获得了低温条件下存在的γ-O2。XRD实验结果表明AFI的非晶化转变压力由8.5GPa明显提高到17.5GPa,进一步表明利用高压手段将氧成功限域到AFI纳米孔道中。此实验结果对高压下纳米限域体系等纳米功能材料的设计具有重要的指导意义,并对小分子的捕获和储存方面有重要的应用前景。
Due to the unique and excellent chemical and physical properties and extensivepotential applications in the fields of optical, electronic device and multi-functionalmaterials, metal oxides, such as rare earth sesquioxide, perovskite oxides and spineloxides have been the subject of intense studies. The studies on the structural phasetransition and physical properties of materials by means of high pressure experimentaltechnology have been an important research subject in high pressure physical science,and it has important scientific significance and potential application value forobtaining new structures, synthesizing new materials, discovering new phenomenaand revealing new rules. However, there still exists some urgent problems to solve inthe pressure-induced phase transition studies of the above mentioned three typicalmetal oxides containing oxygen octahedral and oxygen, including the new type ofpressure-induced phase transitions, novel high pressure structures of metal oxidescontaining oxygen octahedra and the influence of nano effects on the phase transitionbehavior. Therefore, we carried out the related researches about the above mentionedproblems.
     In this thesis, we performed high pressure experimental researches on severaltypical metal oxide materials, such as rare earth sesquioxide, perovskite oxides andspinel oxides by using diamond anvil cell (DAC) to make detailed studies on theirstructural phase transitions under pressure. In addition, we study the high pressurebehavior of oxygen confined in the one-dimensional nano channels of AFI by in situhigh pressure experiments.
     1) The influence of nano effects on the phase transitions of one-dimensionalrare-earth sesquioxides nanomaterials and spinel oxides nanomaterials, and discoveries of new type of pressure-induced transition and abnormal compressionbehavior.
     Taking the rare-earth sesquioxides Gd2O3/Er3+nanorods and spinel oxides Co3O4as typical examples, we have performed high pressure studies by using in situsynchrotron X-ray diffraction and Raman spectroscopy. Compared with the bulkmaterials and nanoparticles, we found that Gd2O3/Er3+nanorods undergo a differentphase transition process. The experimental results show that it does not transformform cubic phase to hexagonal phase under high pressure, but transforms into anamorphous phase. The TEM observation of the quenched samples clearly shows thatthe samples almost maintain their pristine nanorod shape. This is the first time that wediscovered the pressure-induced amorphous structure in the Gd2O3/Er3+nanorods. Theexperimental results provide a further understanding of the influence of nano effectsand special morphology on the phase transition behavior of rare-earth sesquioxides.For spinel oxides Co3O4, we found the complete phase transition process. Importantly,it is found the abnormal compression behavior of the discontinuous volume change inCo3O4nanomaterials. It is suggested that the unique cation distribution and thenano-size effect play vital roles in the high pressure behaviors of Co3O4. These resultsenrich the understanding of high pressure behavior in nano spinels and have animportant significance of the phase transition mechanism and preparation of newfunctional materials.
     2) Discoveries of a new type of reconstructive phase transition and new highpressure phases in perovskites.
     Taking CaZrO3and BaZrO3perovskites as examples, we have performed thehigh pressure studies by using in situ synchrotron X-ray diffraction. In the study of thehigh pressure behavior of CaZrO3up to50.1GPa, we found that the orthorhombicphase CaZrO3can be stable up to30GPa, then it transforms into a new high pressuremonoclinic structure. This new high pressure phase of CaZrO3is found for the firsttime, and it is different from the high pressure structures that were reported for theother perovskite oxides in previous studies. It is a new type of reconstructive phase transition. In addition, we found that a phase transition from cubic phase (Pm3m) totetragonal phase (I4/mcm) takes place at a pressure of17.2GPa in BaZrO3. This phasetransition was found for the first time. It is proposed that the distorted and rotation ortilting of octahedra play an important role in the high pressure behavior of perovskites.These results provide a new understanding of phase transition behaviors of perovskiteoxides and greatly enrich the content of phase transition of perovskite oxides.
     3)Discovery of the new structure change of oxygen confined in the channels ofAlPO4-5under high pressure.
     The high pressure behaviors of oxygen confined inside the AFI channels havebeen studies by in situ X-ray diffraction and Raman spectroscopy for the first time. Itis found that the liquid oxygen solidifies to β phase in bulk oxygen at about6.0GPa.Compared with bulk oxygen, the Raman mode of confined oxygen has an obviouschange at6.0GPa. The result indicates that the confined oxygen undergoes a phasetransition from liquid oxygen to γ phase at6.0GPa. We obtained the low temperatureγ-O2through the confinment effect for the first time. In addition, the XRD experimentresults show that the transition pressure of crystalline-to-amorphous phase transitionfor AFI obviously increased from8.5GPa to17.5GPa, indicating that oxygenmolecules can be inserted into the channels of AFI single crystals. The experimentalresults show a great significance for designing the one-dimensional nanometerfunctional materials and an important application prospect for the capture and storageof small molecules.
引文
[1]MA Y M, EREMETS M, OGANOV A R, et al. Transparent Dense Sodium[J].Nature,2009,458:183-186.
    [2]MAO H K, HEMLEY R. J. Optical Study of Hydrogen Above200Gigapascals:Evidence for Metallization by Band Overlap[J]. Science,1989,244:1462-1465.
    [3]WEIR S T, MITCHELL A C, NELLIS W J. Metallization of Fluid MolecularHydrogen at140GPa (1.4Mbar)[J]. Physical Review Letters,1996,76:1860-1863.
    [4]LIU H Z, WANG L H, XIAO X H, et al. Anomalous High-Pressure Behavior ofAmorphous Selenium from Synchrotron X-ray Diffraction and Microtomography[J].PNAS,2008,105(36):13229-13234.
    [5]AKAISHI M, KANDA H, YAMAOKA S. Phosphorus: An elemental catalyst fordiamond synthesis and growth[J]. Science,1993,259:1592-1593.
    [6]NOGUERA C. Physics and Chemistry at Oxide Surfaces[M]. Cambridge, UK:Cambridge University Press,1996.
    [7]KUNG H H. Transition Metal Oxides: Surface Chemistry and Catalysis[M].Amsterdam: Elsevier,1989.
    [8]HENRICH V E, COX P A.The Surface Chemistry of Metal Oxides[M]. Cambridge,UK: Cambridge University Press,1994.
    [9]BRAUER G. in Progress in the Science&Technology of the Rare Earths, vol.3(Ed.: L. Eyring), Pergamon Press: Oxford,1968,434.
    [10]HAIRE R G, EYRING L. in Handbook of the Physics and Chemistry of the RareEarths, vol.18(Eds: K. A. Gschneidner Jr, L. Eyring, G. R. Chopping, G. R. Lander),Lanthanides/Actinides: Chemistry, Elsevier Science BV: Amsterdam,1994,413.
    [11]GOLDSCHMIDT V M, ULRICH E, BARTH T. Norske Vidensk. Akad. Skrifter IMat. Naturv. K1.1925,5,5.
    [12]ZINKECICH M. Thermodynamics of rare earth sesquioxides[J]. Prog. Mater. Sci.2007,52:597-647.
    [13]刘光华.稀土材料学[M].北京:化学工业出版社,2007.
    [14]刘光华.稀土固体材料学[M].北京:机械工业出版社,1997.
    [15]TANAKA H, MISONO M. Advances in designing perovskite catalysts[J]. CurrentOpinion in Solid State and Materials Science,2001,5:381-387.
    [16]GOLDSCHMIDT V M. Die Gesetze der Krystallochemie[J].Naturwissenschaften,1926,14(21):477-485.
    [17]GOODENOUGH J B. Electronic and ionic transport properties and other physicalaspects of perovskites[J]. Reports on Progress in Physics,2004,67:1915-1993
    [18]JIN C Q, ZHOU J S, GOODENOUGH J B, et al. High-pressure synthesis of thecubic perovskite BaRuO3and evolution of ferromagnetism in ARuO3(A=Ca, Sr, Ba)ruthenates[J]. Proeeedings of the National Aademy of Seience,2008,105(20):7115-7119.
    [19]BEDNORZ J G, MULLER A K. Perovskite-type oxides-The new approach tohigh-Tc superconductivity[J]. Angewandte Chemie,1988,60:585-600.
    [20]VALDERRAMA G, NAVARRO C U d, GOLDWASSER M R. CO2reforming ofCH4over CoeLa-based perovskite-type catalyst precursors[J]. J. Power Sources,2013,234:31-37.
    [21]RICOTE S, BONANOS N, M. C. MARCO DE LUCAS, et al. Structural andconductivity study of the proton conductor BaCe(0.9x)ZrxY0.1O(3δ)at intermediatetemperatures[J]. J. Power Sources,2009,193:189-193.
    [22]BERNARDO S M, JARDIEL T, PEITEADO M, et al. Intrinsic CompositionalInhomogeneities in Bulk Ti-Doped BiFeO3: Microstructure Development andMultiferroic Properties[J]. Chem. Mater.,2013,25:1533-1541.
    [23]KAWASAKI M, TAKAHASHI K, MAEDA T, et al. Atomic Control of theSrTiO3Crystal Surface[J]. Science,1994,266:1540-1542.
    [24]LUMPKIN G R. Alpha-decay damage and aqueous durability of actinide hostphases in natural systems[J]. J. Nucl. Mater.,2001,289:136-166.
    [25]ALN C H, RABE K M, TRICONE J M. Ferroelectricity at the nanoscale: localpolarization in oxide thin films and heterostructures[J]. Science,2004,303:488-491.
    [26]RINGWOOD A E, REID A. HIGH PRESSURE TRANSFORMATIONS OFSPINELS (I)[J]. Earth Planet. Sci. Lett.,1969,6,245-250.
    [27]LEVY D, PAVESE A, HANFLAND M. Phase transition of synthetic zinc ferritespinel (ZnFe2O4) at high pressure, from synchrotron X-ray powder diffraction[J].Phys. Chem. Miner.,2000,27:638-644.
    [28]ZHANG Q, YANG J, WU X, et al. Phase stability and elasticity of Sc2O3at highpressure[J]. Eur. Phys. J.,2011, B84:11-16.
    [29]WANG L, PAN Y X, DING Y, et al. High-pressure induced phase transitions ofY2O3and Y2O3:Eu3+[J]. Applied Physics Letters,2009,94:061921.
    [30]GUO Q X, ZHAO Y S, JIANG C, et al. Phase transformation in Sm2O3at highpressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation[J].Solid State Communications,2008,145:250-254.
    [31]JIANG S, BAI L G, LIU J, et al. The Phase Transition of Eu2O3under HighPressures[J]. Chinese Physical Letters,2009,26(7):076101.
    [32]ZHANG F X, LANG M, WANG J W, et al. Structural Phase Transitions of CubicGd2O3at High Pressures[J]. Physical Review B,2008,78:064114.
    [33]刘丹. A2O3(C-RES)和BO3型金属氧化物的高压结构相变研究[D].长春:吉林大学原子与分子物理研究所,2009.
    [34]JIANG S, LIU J, Lin C L, et al. Structural transformations in cubic Dy2O3at highpressures[J]. Solid State Communications,2013,169:37-41.
    [35]LONAPPANA D, SHEKAR N V, RAVINDRAN T R, et al. High-pressure phasetransition in Ho2O3[J]. Materials Chemistry and Physics,2010,120:65-67.
    [36]GUO Q X, ZHAO Y S, JIANG C, et al. Pressure-Induced Cubic to MonoclinicPhase Transformation in Erbium Sesquioxide Er2O3[J]. Inorganic Chemistry,2007,46(15):6164-6169.
    [37]SAHU P C, LONAPPAN D and SHEKAR N V. High Pressure Structural Studieson Rare-Earth Sesquioxides[J]. Journal of Physics: Conference Series,2012,377:012015.
    [38]MEYER C, SANCHEZ J P, THOMASSON J, et al. M ssbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phasetransition in C-type Yb2O3[J]. Physical Review B,1995,51(18):12187-12193.
    [39]JIANG S, LIU J, Lin C L, et al. Pressure-induced phase transition in cubicLu2O3[J]. Journal of Applied Physics,2010,108:083541.
    [40]SWAMY V, KUZNETSOV A, DUBROVINSKY L S, et al. Finite-size AndPressure Effects on The Raman Spectrum of Nanocrystalline Anatase TiO2[J].Physical Review B,2005,71:184302.
    [41]CHEN B, PENWELL D, BENEDETTI R L, et al. Particle-size effect on thecompressibility of nanocrystalline alumina[J]. Physical Review B,2002,66:144101.
    [42]JIANG J Z, STAUN J O, GERWARD L, et al. Enhanced bulk modulus andreduced transition pressure in γ-Fe2O3Nanocrystals[J]. Europhysics Letters,1998,44(5):620-626.
    [43]HE Y, LIU J R, CHEN W, et al. High-pressure behavior of SnO2nanocrystals[J].Physical Review B,2005,72:212102.
    [44]WANG Z W, GUO Q X. Size-Dependent Structural Stability and TuningMechanism: A Case of Zinc Sulfide[J]. J. Phys. Chem. C,2009,113:4286-4295.
    [45]WICKHAM J N, HERHOLD A B, ALIVISATOS A P. Shape Change as anIndicator of Mechanism in the High-Pressure Structural Transformations of CdSeNanocrystals[J]. Physical Review Letters,2000,84:923-926.
    [46]SAN-MIGUEL A. Nanomaterials under High-Pressure[J]. Chem. Soc. Rev.,2006,35:876-889.
    [47]WANG Z W, ZHAO Y S, SCHIFERL D, et al. Threshold Pressure forDisappearance of Size-Induced Effect in Spinel-Structure Ge3N4Nanocrystals[J]. J.Phys. Chem. B,2003,107:14151-14153.
    [48]WANG Y J, ZHANG J Z, WU J, et al. Phase Transition and Compressibility inSilicon Nanowires[J]. Nano Letters,2008,8,2891-2895.
    [49]GUO Q X, ZHAO Y S, MAO W L, et al. Cubic to Tetragonal PhaseTransformation in Cold-Compressed Pd Nanocubes[J]. Nano Letters,2008,8(3):972-975.
    [50]SHARMA N D, SINGH J, DOGRA S, et al. Pressure-induced anomalous phasetransformation in nano-crystalline dysprosium sesquioxide[J]. Journal of RamanSpectroscopy,2011,42:438-444.
    [51]WANG L, YANG W G, DING Y, et al. Size-Dependent Amorphization ofNanoscale Y2O3at High Pressure[J]. Physical Review Letters,2010,105:095701.
    [52]LI Q J, LIU B B, WANG L, et al. Pressure-Induced Amorphization andPolyamorphism in One-Dimensional Single-Crystal TiO2Nanomaterials[J]. TheJournal of Physical Chemistry Letters,2010,1:309-314.
    [53]LIU B, YAO M G, LIU B B, et al. High-Pressure Studies on CeO2Nano-Octahedrons with a (111)-Terminated Surface[J]. Journal of Physical Chemistry C,2011,115:4546-4551.
    [54]ZHU H Y, MA Y Z, YANG H B, et al. Ultrastable structure and luminescenceproperties of Y2O3nanotubes[J]. Solid State Communications,2010,150:1208-1212.
    [55]李泽鹏.二元金属硫/氧化物纳米材料的高压相变研究[D].长春:吉林大学原子与分子物理研究所,2010.
    [56]KOBAYASHI K I, KIMURA T, SAWADA H, et al. Room-temperaturemagnetoresistance in an oxide material with an ordered double-perovskite structure[J].Nature,1998,395(6703):677-680.
    [57]MURAKAMI M, HIROSE K, KAWAMURA K, et al. Post-Perovskite PhaseTransition in MgSiO3[J]. Science,2004,304:855-858.
    [58]OGANOV R A and ONO S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3in Earth’s D’’layer[J]. Nature,2004,430:445-448.
    [59]YAMANAKA T, HIROSE K, MAO W L, et al. Crystal structures of(Mg1x,Fex)SiO3postperovskite at high pressures[J]. PNAS,2012,109(4):1035-1040.
    [60]CHENG J G, KWEON K E, ZHOU J S, et al. Anomalous perovskite PbRuO3stabilized under high pressure[J]. PNAS,2013,110(50):20003-20007.
    [61]JANOLIN P E, BOUVIER P, KREISEL J, et al. High-Pressure Effect on PbTiO3:An Investigation by Raman and X-Ray Scattering up to63Gpa[J]. Physical ReviewLetters,2008,101:237601.
    [62]FLEURY P A, SCOTT J F, WORLOCK J M. SOFT PHONON MODES ANDTHE110'K PHASE TRANSITION IN SrTiO3[J]. Physical Review Letters,1968,21(1):16-19.
    [63]K HLER J, DINNEBIER R, BUSSMANN-HOLDER A. Structural instability ofEuTiO3from X-ray powder diffraction[J]. Phase Transitions,2012,85:949-955.
    [64]GUENNOU M, BOUVIER P, KRIKLER B, et al. Pressure-temperature phasediagram of SrTiO3up to53GPa[J]. Physical Review B,2010,81:054115.
    [65]XIAO W S, TAN D Y, XIONG X L, et al. Large volume collapse observed in thephase transition in cubic PbCrO3perovskite[J]. PNAS,2010,107(32):14026-14029.
    [66]RUSHCHANSKII Z K, SPALDIN A N, LE AI M. First-principles prediction ofoxygen octahedral rotations in perovskite-structure EuTiO3[J]. Physical Review B,2012,85:104109.
    [67]SEO S Y and AHN S J. Pressure dependence of the phonon spectrum in BaTiO3polytypes studied by ab initio calculations[J]. Physical Review B,2013,88:014114.
    [68]VALI R. Lattice dynamics of cubic SrZrO3[J]. J. Phys. Chem. Solids,2008,69:876-879.
    [69]THONHAUSER T and RABE K M. Fcc breathing instability in BaBiO3from firstprinciples[J]. Physical Review B,2006,73:212106.
    [70]AMISI S, BOUSQUET E, KATCHO K, et al. First-principles study of structuraland vibrational properties of SrZrO3[J]. Physical Review B,2012,85:064112.
    [71]TOMENO I, TSUNODA Y, OKA K. Lattice dynamics of cubic NaNbO3: Aninelastic neutron scattering study[J]. Physical Review B,2009,80:104101.
    [72]REI A, RINGWOOD A. Newly observed high-Pressure transformations in Mn3O4,CaAl2O4[J]. Earth Planet Sei. Lett.,1969,6:205-211.
    [73]IRIFULLE T, FUJINO K, OHTANI E. A new high-Pressure form of MgA12O4[J].Nature,1991,349:409-411.
    [74]FUNAMORI N, JEANLOZ R, NGUYEN J, et al. High-Pressure transformationsin MgA12O4[J]. Geophys. Res.,1998,103:20813-20818.
    [75]MAO H K, TAKAHASHI T, BASSETT W A, et al. Isothermal compression ofmagnetite to320kbar and pressure-induced phase transformation [J]. J. Geophys. Res,1974,79(8):1165.
    [76]FEI Y W, FROST D J, MAO H K, et al. In situ structure determination of thehigh-pressure phase of Fe3O4[J]. Am Mineral,1999,84:203-206.
    [77]HAAVIK C, STOLEN S, FJELLVAG H, et al. Equation of state of magnetite andits high-pressure modification: Thermodynamics of the Fe-O system at high pressure[J]. Am Mineral,2000,85(3-4):514-523.
    [78]JU S, CAI Y T, LU S H, et al. Pressure-Induced Crystal Structure and Spin-StateTransitions in Magnetite (Fe3O4)[J]. J. Am. Chem. Soc.,2012,134:13780-13786.
    [79]WANG Z W, SAXENA S K, ZHA C S. In situ x-ray diffraction and Ramanspectroscopy of pressure-induced phase transformation in spinel Zn2TiO4[J]. PhysicalReview B,2002,66:024103.
    [80]LóPEZ S, ROMERO A H, RODR GUEZ-HERNáNDEZ P, et al. First-principlesstudy of the high-pressure phase transition in ZnAl2O4and ZnGa2O4: From cubicspinel to orthorhombic post-spinel structures[J]. Physical Review B,2009,79:214103.
    [81]LEVY D, PAVESE A, HANFLAND M. Phase transition of synthetic zinc ferritespinel (ZnFe2O4)[J]. Phys. Chem. Minerals,2000,27:638-644.
    [82]YAMANAKA T, UCHIDA A, NAKAMOTO Y, et al. Structural transition ofpost-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4under high pressure up to80GPa[J]. American Mineralogist,2008,93:1874-1881.
    [83]ROZENBERG K G, AMIEL Y, XU M W, et al. Structural characterization oftemperature-and pressure-induced inverse normal spinel transformation inmagnetite[J]. Physical Review B,2007,75:020102.
    [84]HALEVY I, DRAGOI D, üSTüNDAG E, et al. The effect of pressure on thestructure of NiAl2O4[J]. J. Phys.: Condens. Matter2002,14:10511-10516.
    [85]LIN Y, YANG Y, MA H. W, et al. Compressional Behavior of Bulk and NanorodLiMn2O4under Nonhydrostatic Stress[J]. J. Phys. Chem. C,2011,115:375-361.
    [86]LV H, YAO M G, LI Q J, et al. Effect of Grain Size on Pressure-InducedStructural Transition in Mn3O4[J]. J. Phys. Chem. C,2012,116:2165-2171.
    [87]BRIDGMAN P W. The Physics of High Pressure Dover. New York (1970)Reprint of1930.
    [88]LAWSON A W and TANG T Y. A Diamond Bomb for Obtaining Powder Picturesat High Pressures[J]. Rev. Sci. Instrum.,1950,21:815-816.
    [89]JAMIESON J C, LAWSON A W, NACHTRIEB N D. New Device for ObtainingX-Ray Diffraction Patterns from Substances Exposed to High Pressure[J]. Rev. Sci.Instrum.,1959,30:1016-1019.
    [90]WEIR C E, LIPPINCOTT E R, VALKENBURG A V, et al. Studies in the1to15micron region to30000atmospheres[J]. J. Res. Natl. Bur. Stand., Sec. A,1959,63:55-62.
    [91]MAO H K, BELL P M. High-pressure physics: sustained static generation to1.36to1.72megabars[J], Science,1978,200:1145-1147.
    [92]MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray DiffractionMeasurements of Single-Crystal Hydrogen to26.5Gigapascals[J]. Science (New York,N.Y.),1988,239:1131-1134.
    [93]JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations[J]. Rev. Mod. Phys.,1983,55:65-108.
    [94]ZOU G T, MA Y Z, MAO H K, et al. A diamond gasket for the laser-heateddiamond anvil cell[J]. Review of Scientific Instruments,2001,72:1298-1301.
    [95]ASAUMI K, RUOFF A. Nature of the state of stress produced by xenon and somealkali iodides when used as pressure media[J]. Physical Review B,1986,33:5633-5636.
    [96]MILLS R, LIEBENBERG D, BRONSON J, et al. Procedure for loading diamondcells with high-pressure gas[J]. Review of Scientific Instruments,1980,51:891-895.
    [97]YOUNG D A, MCMAHAN A K, ROSS M. Equation of state and melting curveof helium to very high pressure[J]. Physical Review B,1981,24(9):5119-5127.
    [98]CHOU I, BLANK J G, GONCHAROV A F. In Situ Observations of aHigh-Pressure Phase of H2O Ice[J]. Science,1998,281:809-812.
    [99]BORN M, HUANG K. Dynamical Theory of Crystal Lattices (Oxford UniversityPress, Oxford)1956.
    [100]ANDERSON O L, ISAAK D G, YAMAMOTO S. Anharmonicity and theequation of state for gold[J]. Journal of Applied Physics,1989,65:1534-1543.
    [101]ZHA C S, MIKE K, BASSETT W A, et al. P-V-T equation of state of platinumto80GPa and1900K from internal resistive heating/x-ray diffractionmeasurements[J]. Journal of Applied Physics,2008,103:054908.
    [102]PIERMARINI G J, BLOCK S. Ultrahigh pressure diamond-anvil cell andseveral semiconductor phase transition pressures in relation to the fixed point pressurescale[J]. Review of Scientific Instruments,1975,46:973-919.
    [103]DEWAELE A, LOUBEYRE P, MEZOUAR M. Equations of state of six metalsabove94GPa[J]. Physical Review B,2004,70:094112.
    [104]FORMAN R A, PIERMARINI G J, BARNETT J D, et al. Pressure measurementmade by the utilization of Ruby sharp-line luminescence[J]. Science,1972,176:284-285.
    [105]PIERMARINI G J, BLOCK S, BARNETT J D, et al. Calibration of the pressuredependence of the R1ruby fluorescence line to195kbar[J]. Journal of AppliedPhysics,1975,46:2774-2780.
    [106]MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to800kbarunder quasi-hydrostatic conditions[J]. Journal of Geophysical Research,1986,91:4673-4676.
    [107]MAO H K, BELL P M, SHANER J W, et al. Specific volume measurements ofCu, Mo, Pd, and Ag and calibration of the ruby R1fluorescence pressure gauge from0.06to1Mbar[J]. J. Appl. Phys.,1978,49:3276-3283.
    [108]CHEN N H, SILVERA I F. Excitation of ruby fluorescence at multimegabarpressures[J]. Rev. Sci. Instu.,1996,67:4275-4278.
    [109]CHIJIOKE A D, NELLIS W J, SOLDATOV A, et al. The ruby pressure standardto150GPa[J]. J. Appl. Phys.,2005,98:114905.
    [110]RAMAN C V. A Change of Wave-length in Light Scattering[J]. Nature,1928,121:619-619.
    [111]KNEIPP K, KNEIPP H, ITZKAN I. Ultrasensitive Chemical Analysis by RamanSpectroscopy[J]. Chemical Reviews,1999,99:2957-2975.
    [112]杨序刚,吴琪琳.拉曼光谱的分析与应用[M].北京:国防工业出版社,2008.
    [113]FLANK A M, LAGARDE P, ITIé J P, et al. Pressure-Induced Amorphizationand a Possible Polyamorphism Transition in Nanosized TiO2: An X-ray AbsorptionSpectroscopy Study[J]. Physical Review B,2008,77:224112.
    [114]HUANG C C, LIU T Y, SU C H, et al. Superparamagnetic Hollow andParamagnetic Porous Gd2O3Particles[J]. Chem. Mater.,2008,20:3840-3848.
    [115]BRIDOT L J, FAURE C A, LAURENT S, et al. Hybrid Gadolinium OxideNanoparticles: Multimodal Contrast Agents for in Vivo Imaging[J]. J. Am. Chem,Soc.,2007,129:5076-5084.
    [116]BALESTRIERI D, PHILIPPONNEAU Y, DECROIX, G M, et al. Pseudo-Plasticity of Monoclinic Gd2O3[J]. J. Eur. Ceram. Soc.,1998,18:1073-1077.
    [117]DEBOY J M, HICKS R F. The Oxidative Coupling of Methane over Alkali,Alkaline Earth, and Rare Earth Oxides[J]. Ind. Eng. Chem. Res.,1988,27:1577-1582.
    [118]NICHKOVA M, DOSEV D, GEE S J, et al. Microarray Immunoassay forPhenoxybenzoic Acid Using Polymer Encapsulated Eu: Gd2O3Nanoparticles asFluorescent Labels[J]. Anal. Chem.,2005,77:6864-6873.
    [119]LEI Y Q, SONG H W, YANG L M, et al. Upconversion Luminescence, IntensitySaturation Effect, and Thermal Effect in Gd2O3: Er3, Yb3+Nanowires[J]. J. Chem.Phys.,2005,123:174710.
    [120]ROPP R C. Luminescence of Europium in the Ternary System: La2O3-Gd2O3-Y2O3[J]. Journal of the Electrochemical Society,1965,112(2):181-184.
    [121]SUN L D, YAO J, LIU C H, et al. Rare earth activated nanosized oxidephosphors: synthesis and optical properties[J]. Journal of Luminescence,2000,87-89:447-450.
    [122]BAI L G, LIU J, LI X D, et al. Pressure-Induced Phase Transformations in CubicGd2O3[J]. Journal of Applied Physics,2009,106:073507.
    [123]ZOU X, GONG C, LIU B B, et al. X-Ray Diffraction of Cubic Gd2O3/Er underHigh Pressure[J]. Phys. Stat. Solidi B,2011,248:1123-1127.
    [124]DILAWAR N, VARANDANI D, MEHROTRA S, et al. Anomalous HighPressure Behaviour in Nanosized Rare Earth Sesquioxides[J]. Nanotechnology,2008,19:115703.
    [125]CHEN H Y, HE C Y, GAO C X, et al. Structural Transition of Gd2O3:Eu Inducedby High Pressure[J]. Chin. Phys. Lett.,2007,24:158-160.
    [126]ZHANG C C, ZHANG Z M, DAI R C, et al. High Pressure Luminescence andRaman Studies on the Phase Transition of Gd2O3:Eu3+Nanorods[J]. J. Nanosci.Nanotechnol,2011,11:9887-9891.
    [127]MISHIMA O, CALVERT L D, WHALLEY E. Melting ice’I at77K and10kbar:a new method of making amorphous solids[J]. Nature,1984,310:393-395.
    [128]PEROTTONI C A, JORNADA J A H. Pressure-induced amorphization andnegative thermal expansion in ZrW2O8[J]. Science,1998,280:886-889.
    [129]HEMLEY R J, JEPHCOAT A P, Mao H K, et al. Pressure-inducedamorphization of crystalline Silica[J]. Nature,1988,334:52-54.
    [130]DEB S D, WILDING M, SOMAYAZULU M, et al. Pressure-inducedamorphization and an amorphous-amorphous transition in densified porous silicon[J].Nature,2001,414:528-530.
    [131]MCMILLAN P F, WILSON M, DAISENBERGER D, et al. A density-drivenphase transition between semiconducting and metallic polyamorphs of silicon[J].Nature Materials,2005,4:680-684.
    [132]SWAMY V, KUZNETSOV A, DUBROVINSKY L S, et al. Size-dependentpressure-induced amorphization in nanoscale TiO2[J]. Physical Review Letters,2006,96:135702.
    [133]BAI X, SONG H W, PAN G H, et al. Improved Upconversion LuminescenceProperties of Gd2O3:Er3+/Gd2O3:Yb3+Core-Shell Nanorods[J]. J. Nanosci.Nanotechnol.,2009,9:2677-2681.
    [134]MITRIC M, ANTIC B, BALANDA M, et al. An X-Ray Diffraction andMagnetic Susceptibility Study of YbxY2xO3[J]. J. Phys.: Condens. Matter,1997,9:4103-4111.
    [135]CHANG N C, GRUBER J B. Spectra and Energy Levels of Eu3+in Y2O3[J]. J.Chem. Phys.,1964,41:3227-3234.
    [136]SILVER J, MARTINEZ-RUBIO M I, IRELAND T G, et al. Yttrium OxideUpconverting Phosphors. Part2: Temperature Dependent UpconversionLuminescence Properties of Erbium in Yttrium Oxide[J]. J. Phys. Chem. B,2001,105:7200-7204.
    [137]TOLBERT S H, ALIVISATOS A P. Size Dependence of a First OrderSolid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSeNanocrystals[J]. Science,1994,265:373-376.
    [138]DILAWAR N, MEHROTRA S, VARANDANI D, et al. A Raman SpectroscopicStudy of C-type Rare Earth Sesquioxides[J]. Mater. Charact.,2008,59:462-467.
    [139]ZAREMBOWITCH J, GOUTERON J, LEJUS A M. Raman Spectrum of SingleCrystals of Monoclinic B-type Gadolinium Sesquioxide. J. Raman Spectrosc.,1980,9,263-265.
    [140]LI Z P, LIU B B, YU S D, et al. The Study of Structural Transition of ZnSNanorods under High Pressure[J]. The Journal of Physical Chemistry C,2011,115:357-361.
    [141]KOJITANI H, SHIRAKO Y, AKAOGI M. Post-perovskite phase transition inCaRuO3[J]. Phys. Earth Planet. Inter.,2007,165:127-134.
    [142]TATENO S, HIROSE K, SATA N, et al. Structural distortion of CaSnO3perovskite under pressure and the quenchable post-perovskite phase as a low-pressureanalogue to MgSiO3[J]. Phys. Earth Planet. Inter.,2010,181:54-59.
    [143]GUENNOU M, BOUVIER P, KRIKLER B, et al. High-pressure investigation ofCaTiO3up to60GPa using x-ray diffraction and Raman spectroscopy[J]. Phys. Rev.B: Condens. Matter Mater. Phys.,2010,82:134101.
    [144]MARTIN C D, CRICHTON W A, LIU H Z, et al. Phase transitions andcompressibility of NaMgF3(Neighborite) in perovskite-and post-perovskite-relatedstructures[J]. Geophys. Res. Lett.,2006,33: L11305
    [145]HIROSE K, KAWAMURA K, OHISHI Y, et al. Stability and equation of state ofMgGeO3post-perovskite phase[J]. Am. Mineral.,2005,90:262-265.
    [146]ALI R, YASHIMA M. Space group and crystal structure of the PerovskiteCaTiO3from296to1720K[J]. J. Solid State Chem.,2005,178:2867-2872.
    [147]WU X, DONG Y H, QIN S, et al. First-principles study of the pressure-inducedphase transition in CaTiO3[J]. Solid State Commun.,2005,136:416-420.
    [148]KOOPMANS H J A, G. M. H. Van De Velde, GELLINGS P J. Powder NeutronDiffraction Study of the Perovskites CaTiO3and CaZrO3[J]. Acta Crystallogr., Sect. C:Cryst. Struct. Commun.,1983,39:1323-1325.
    [149]ROSS L N, CHAPLIN D T. Compressibility of CaZrO3perovskite: Comparisonwith Ca-oxide perovskites[J]. Journal of Solid State Chemistry,2003,172:123-126.
    [150]PRODJOSANTOSO A K, ZHOU Q D, KENNEDY B J. Synchrotron X-raydiffraction study of the Ba1-xSrSnO3solid solution[J]. Journal of Solid StateChemistry,2013,200:241-245.
    [151]KENNEDY B J, HOWARD C J, CHAKOUMAKOS B C. High-temperaturephase transitions in SrZrO3[J]. Physical Review B,1999,59:4023-4027.
    [152]THOROGOOD G J, AVDEEV M, CARTER M L, et al. Structural phasetransitions and magnetic order in SrTcO3[J]. Dalton Trans.,2011,40:7228-7233.
    [153]JANOLIN P E, BOUVIER P, KREISEL J, et al. High-Pressure Effect on PbTiO3:An Investigation by Raman and X-Ray Scattering up to63GPa[J]. Physical ReviewLetters,2008,101:237601.
    [154]RAVY S, ITIé J P, POLIAN A, et al. High-Pressure Study of X-Ray DiffuseScattering in Ferroelectric Perovskites[J]. Physical Review Letters,2007,99:117601.
    [155]ANGEL R J, ZHAO J, ROSS N L. General Rules for Predicting PhaseTransitions in Perovskites due to Octahedral Tilting[J]. Physical Review Letters,2005,95:025503.
    [156]TOHEI T, KUWABARA A, YAMAMOTO T, et al. General Rule for DisplacivePhase Transitions in Perovskite Compounds Revisited by First PrinciplesCalculations[J]. Physical Review Letters,2005,94:035502.
    [157]MIURA M, MAIOROV B, KATO T, et al. Strongly enhanced flux pinning inone-step deposition of BaFe2(As0.66P0.33)2superconductor films with uniformlydispersed BaZrO3nanoparticles[J]. Nature Communications,2013,4:2499.
    [158]PERGOLESI D, FABBRIE, D′EPIFANIO A, et al. High proton conduction ingrain-boundary-free yttrium-doped barium zirconate films grown by pulsed laserdeposition[J]. Nature materials,2010,9:846-852.
    [159]CHEN X X, RIETH L, MILLER M S, et al. High temperature humidity sensorsbased on sputtered Y-doped BaZrO3thin films[J]. Sensors and Actuators B,2009,137:578-585.
    [160]DOBAL P S, DIXIT A, KATIYAR R S, et al. Low dielectric loss and enhancedtunability of Ba0.6Sr0.4TiO3based thin films via material compositional design andoptimized film processing methods[J]. J. Appl. Phys.,2001,89:8085-8091.
    [161]BENNETT J W, GRINBERG I, RAPPE A M. Effect of symmetry lowering onthe dielectric response of BaZrO3[J]. Physical Review B,2006,73:180102.
    [162]BILI A, GALE J D. Ground state structure of BaZrO3: A comparative first-principles study[J]. Physical Review B,2009,79:174107.
    [163]ZHU C, XIA K, QIAN G R, et al. Hydrostatic pressure induced structuralinstability and dielectric property of cubic BaZrO3[J]. Journal of Applied Physics,2009,105:044110.
    [164]AKBARZADEH A R, KORNEV I, MALIBERT C, et al. Combined theoreticaland experimental study of the low-temperature properties of BaZrO3[J]. PhysicalReview B,2005,72:205104.
    [165]LEBEDEV A I, SLUCHINSKAYA I A. Structural Instability in BaZrO3Crystals:Calculations and Experiment[J]. Phys. Solid State,2013,55:1941-1945.
    [166]TATENO S, HIROSE K, SATA N, et al. High-pressure behavior of MnGeO3andCdGeO3perovskites and the post-perovskite phase transition[J]. Phys. Chem. Miner.,2006,32:721-725.
    [167]BOULTIF A, LOUE R D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomymethod[J]. J. Appl. Crystallogr.,1991,24:987-993.
    [168]OHASHI Y. Polysynthetically-Twinned Structures of Enstatite andWollastonite[J]. Phys. Chem. Miner.,1984,10:217-229.
    [169]KUNG J, ANGEL R J, ROSS N L. Elasticity of CaSnO3perovskite[J]. Phys.Chem. Miner.,2001,28:35-43.
    [170]NIWA K, YAGI T, OHGUSHI K. Elasticity of CaIrO3with perovskite and post-perovskite structure[J]. Phys. Chem. Miner.,2011,38:21-31.
    [171]ROSS N L, ANGEL R J. Compression of CaTiO3and CaGeO3perovskites[J].Am. Mineral.,1999,84:277-281.
    [172]SHIM S H, DUFFY T S, SHEN G Y. The stability and P-V-T equation of state ofCaSiO3perovskite in the Earth's lower mantle[J]. J. Geophys. Res.: Space Phys.,2000,105:25955-25968.
    [173]ANDERSON D L, ANDERSON O L. The Bulk Modulus-Volume Relationshipfor Oxides[J]. J. Geophys. Res.,1970,75(17):3494-3500.
    [174]ANGEL R J, ZHAO J, ROSS N L. General Rules for Predicting PhaseTransitions in Perovskites due to Octahedral Tilting[J]. Physical Review Letters,2005,95:025503.
    [175]ROSS N L, HAZEN R M. High-Pressure Crystal Chemistry of MgSiO3Perovskite[J]. Phys. Chem. Miner.,1990,17:228-237.
    [176]FIQUET G, DEWAELE A, ANDRAULT D, et al. Thermoelastic properties andcrystal structure of MgSiO3perovskite at lower mantle pressure and temperatureconditions[J]. Geophys. Res. Lett.,2000,27(1):21-24.
    [177]VANPETEGHEM C B, ZHAO J, ANGEL R J, et al. Crystal structure andequation of state of MgSiO3perovskite[J]. Geophys. Res. Lett.,2006,33: L03306.
    [178]KUBO A, KIEFER B, SHIM S H, et al. Rietveld structure refinement ofMgGeO3post-perovskite phase to1Mbar[J]. Am. Mineral.,2008,93:965-976.
    [179]LIU H Z, CHEN J, HU J, et al. Octahedral tilting evolution and phase transitionin orthorhombic NaMgF3perovskite under pressure[J]. Geophys. Res. Lett.,2006,32:L04304.
    [180]MARTIN C D, CRICHTON W A, LIU H Z, et al. Rietveld structure refinementof perovskite and post-perovskite phases of NaMgF3(Neighborite) at highpressures[J]. Am. Mineral.,2006,91:1703-1706.
    [181]SUGAHARA M, YOSHIASA A, KOMATSU Y, et al. Reinvestigation of theMgSiO3perovskite structure at high pressure[J]. Am. Mineral.,2006,91:533-536.
    [182]ZHAO J, ROSS N L, ANGEL R J. Tilting and distortion of CaSnO3perovskiteto7GPa determined from single-crystal X-ray diffraction[J]. Phys. Chem. Miner.,2004,31:299-305.
    [183]GUENNOU M, BOUVIER P, GARBARINO G, et al. Pressure-induced phasetransition(s) in KMnF3and the importance of the excess volume for phase transitionsin perovskite structures[J]. J. Phys.: Condens. Matter,2011,23:485901.
    [184]ZHONG W, VANDERBILT D. Competing Structural Instabilities in CubicPerovskites[J]. Physical Review Letters,1995,74(13):2587-2590.
    [185]GLAZER A M. The Classification of Tilted Octahedra in Perovskites[J]. ActaCrystallogr. Sect. B,1972,28:3384-3392.
    [186]YAMASAKI Y, MIYASAKA S, KANEKO Y, et al. Magnetic Reversal of theFerroelectric Polarization in a Multiferroic Spinel Oxide[J]. Physical Review Letters,2006,96:207204.
    [187]ZERR A, MIEHE G, SERGHIOU G, et al. Synthesis of cubic silicon nitride[J].Nature,1999,400:340-342.
    [188]KIM B N, HIRAGA K, MORITA K, et al. A High-strain-rate SuperplasticCeramic[J]. Nature,2001,413:288-291.
    [189]LUO J Y, WANG Y G, XIONG H M, et al. Ordered Mesoporous SpinelLiMn2O4by a Soft-Chemical Process as a Cathode Material for Lithium-IonBatteries[J]. Chem. Mater.,2007,19:4791-4795.
    [190]ASBRINK S, WASKOWSKA A, GERWARD L, et al. High-pressure phasetransition and properties of spinel ZnMn2O4[J]. Physical Review B,1999,60,12651-12656.
    [191] SBRINK S, WA KOWSKA A, OLSEN J S, et al. High-pressure phase of thecubic spinel NiMn2O4[J]. Physical Review B,1998,57:4972-4974.
    [192]WANG Z W, SAXENA S K, ZHA C S. In situ x-ray diffraction and Ramanspectroscopy of pressure-induced phase transformation in spinel Zn2TiO4[J]. PhysicalReview B,2002,66:024103(1-6).
    [193]WANG Z W, DOWNS R T, PISCHEDDA V, et al. High-pressure x-raydiffraction and Raman spectroscopic studies of the tetragonal spinel CoFe2O4[J].Physical Review B,2003,68:094101.
    [194]XU W M, MACHAVARIANI G Y, ROZENBERG G K, et al. M ssbauer andresistivity studies of the magnetic and electronic properties of the high-pressure phaseof Fe3O4[J]. Physical Review B,2004,70:174106.
    [195]KOBAYASHI H, ISOGAI I, KAMIMURA T, et al. Structural properties ofmagnetite under high pressure studied by M ssbauer spectroscopy[J]. PhysicalReview B,2006,73:104110.
    [196]刘艳. Co3O4基负极材料的制备、表征及性能研究[D].南京:南京航空航天大学,2009.
    [197]XIE X W, LI Y, LIU Z Q, et al. Low-temperature oxidation of CO catalysed byCo3O4Nanorods[J]. Nature,2009,458:746-749.
    [198]LI C C, YIN X M, WANG T H, et al. Morphogenesis of Highly Uniform CoCO3Submicrometer Crystals and Their Conversion to Mesoporous Co3O4for Gas-Sensing Applications[J]. Chem. Mater.,2009,21:4984-4992.
    [199]WANG R M, LIU C M, ZHANG H Z, et al. Porous nanotubes of Co3O4:Synthesis, characterization, and magnetic Properties[J]. Appl. Phys. Lett.,2004,85:2080-2082.
    [200]IKEDO Y, SUGIYAMA J, NOZAKI H, et al. Spatial inhomogeneity of magneticmoments in the cobalt oxide spinel Co3O4[J]. Physical Review B,2007,75:054424.
    [201]LIU X, PREWITT T C. High-temperature X-ray diffraction study of Co3O4:Transition from normal to disordered spinel[J]. Phys. Chem. Minerals,1990,17:168-172.
    [202]BAI L G, PRAVICA M, ZHAO Y S, et al. Charge transfer in spinel Co3O4athigh Pressures[J]. J. Phys.: Condens. Matter,2012,24:435401.
    [203]HIRAI S, MAO W L. Novel pressure-induced phase transitions in Co3O4[J].Appl. Phys. Lett.,2013,102:041912.
    [204]HADJIEV G V, ILIEV N M, VERGILOV V I. The Raman spectra of Co3O4[J]. J.Phys. C: Solid State Phys.,1988,21:199-201.
    [205]WITTLINGER J, WERNER S, SCHULZ H. Pressure-induced order–disorderphase transition of spinel single crystals[J]. Acta Crystallogr. B,1998,54:714-721.
    [206]RECIO J M, FRANCO R, MARTíN PENDáS A, et al. Theoretical explanationof the uniform compressibility behavior observed in oxide spinels[J]. Physical ReviewB,2001,63:184101.
    [207]WEI S H, ZHANG S B. First-principles study of cation distribution in eighteenclosed-shell AIIBIII2O4and AIVBII2O4spinel oxides[J]. Phys. Rev. B2001,63:045112.
    [208]FREIMAN A Y, JODL J H. Solid oxygen [J]. Physics Reports,2004,401:1-228.
    [209]NICOL M, HIRSCH R K, HOLZAPFEL B W. Oxygen phase equilibria near298K[J]. Chem. Phys. Lett.,1979,68,49.
    [210]SCHIFERL D, CROMER D T, SCHWALBE L A, et al. Structure of 'Orange'18O2at9.6GPa and297K[J]. Acta Cryst. B,1983,39:153-157.
    [211]AKAHAMA Y, KAWAMURA H, HAUSERMANN D, et al. New High-PressureStructural Transition of Oxygen at96GPa Associated with Metallization in aMolecular Solid[J]. Physical Review Letters,1995,74(23):4690-4693.
    [212]WECK G, LOUBEYRE P, LETOULLEC R. Observation of StructuralTransformations in Metal Oxygen[J]. Physical Review Letters,2002,88(3):035504.
    [213]SHIMIZU K, SUHARA K, IKUMO M, et al. Superconductivity in oxygen[J].Nature,1998,393:767-769.
    [214]FUJIHISA H, AKAHAMA Y, KAWAMURA H, et al.O8Cluster Structure of theEpsilon Phase of Solid Oxygen[J]. Physical Review Letters,2006,97:085503.
    [215]MA Y M, OGANOV A R, GLASS C W. Structure of the metallic δ-phase ofoxygen and isosymmetric nature of the-δ phase transition: Ab initiosimulations[J].Physical Review B,2007,76:064101.
    [216]HAZEN R M. Zeolite molecular sieve4A: anomalous compressibility andvolume discontinuities at high pressure[J]. Science,1983,219:1065-1067.
    [217]LEE Y J, HRILJAC J A, VOGT T, et al. First structural investigation of asuper-hydrated Zeolite[J]. J. Am. Chem. Soc.,2001,123:12732-12733.
    [218]LEE Y J, VOGT T, HRILJAC J A, et al. Non-framework cation migration andirreversible pressure-induced hydration in a zeolite[J]. Nature,2002,420:485-489.
    [219]LIU D, LEI W W, LIU Z X, at el. Spectroscopic Study of the effects of pressuremedia on high-pressure phase transitions in natrolite[J]. J. Phys. Chem. C,2010,114:18819-18824.
    [220]LEE Y, LIU D, SEOUNG D, at el. Pressure-and heat-induced insertion of CO2into an auxetic small-pore zeolite[J]. J. Am. Chem. Soc.,2011,133:1674-1677.
    [221]吕航. AFI分子筛孔道限域氮等纳米体系的高压行为研究[D].长春:吉林大学原子与分子物理研究所,2012.
    [222]YEN J, NLCOL M. Phase Diagram of γ-Oxygen[J]. The Journal of PhysicsChemisty,1983,87(23):4616-4618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700