用户名: 密码: 验证码:
解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从解磷微生物的分离、筛选入手,从来自全国的多个土壤样品及种子表皮分离出了两百多株解磷微生物,经过初筛、复筛,最后得到了效果较好的解磷微生物菌株,其中包括细菌、酵母和霉菌,中国各地解磷微生物资源作了初步调查。通过菌落、菌体形态观察,繁殖方式判断以及生理生化试验检测,初步将解磷微生物P17菌株、P10菌株、Y3菌株与F4菌株分别鉴定为巨大芽孢杆菌(Bacillus megaterium)、短杆菌属(Brevibacterium)、红酵母属(Rhodotorula)和专霉属(Penicillium)。
     不同解磷微生物溶磷效果不同。从试验结果来看,Ca_3(PO_4)_2、FePO_4、AlPO_4等难溶性磷酸盐容易被酵母、霉菌溶解,而磷矿粉容易被芽孢杆菌溶解,各种解磷微生物对不同化学结构含磷物质的亲和溶解能力不同。本研究所选的四株解磷微生物具有一定代表性,分别属于产芽孢杆菌、短杆菌、酵母和霉菌。研究表明,霉菌并不是对所有形态难溶磷的溶解能力都高于细菌,细菌、酵母、等在溶磷方面也发挥着重要作用。Ghani A(1994)和Kucey(1983)报道真菌溶磷能力高于细菌,这种说法存在一定片面性。从本研究来看,各种微生物对不同难溶磷酸盐有不同溶解效果。真菌生长、繁殖需要的碳源、能源较高,生长周期长,但在溶解难溶磷酸盐时发挥着生物量大、代谢产物多的优势;细菌P17菌株溶解磷矿粉的能力强,且代时短。因此生物磷肥应该考虑由细菌和真菌混合菌群组成。若把在溶解难溶性磷酸盐和磷矿粉方面能相得益彰的不同种类解磷微生物混合菌群作为生物磷肥,将会为农业做出更大贡献。
     解磷微生物溶磷效果研究表明P17菌株接种不同来源磷矿粉为唯一磷源的发酵液中均使发酵液有效磷含量增加。可见P17菌株等解磷微生物能够有效地溶解、转化磷矿粉中的难溶磷,用微生物学途径来提高磷矿粉直接施用效果是可行的。云南海口磷矿、贵州开阳磷矿、湖北宜昌磷矿等为沉积磷块岩,而黄金卡黄磷矿、湖北黄麦岭磷矿则为变质型磷块岩,由于磷矿地质形成条件不同,磷矿粉的有效磷含量有很大差异。经P17菌株接种培养后,黄麦岭和黄金卡黄磷矿粉溶磷增幅最大,说明变质岩型磷块岩中的磷易于被解磷微生物菌株转化、溶解。通过摇瓶试验、扫描电镜观察为解磷微生物对不同来源磷矿粉的生物风化提供了证据,选出了巨大芽孢杆菌P17菌株:最适合作用的磷矿粉类型。从摇瓶试验结果可以看出,P17菌株对来源于黄麦岭、黄金卡黄的变质岩型磷矿粉有较好的溶解能力。经过P17菌株长达70d的溶解,磷矿粉的难溶磷逐渐被P17菌株溶解下来。黄麦岭、黄金卡黄磷矿粉经过P17菌株长达70d的溶解,累计有效磷含量分别由第一次接种时发酵液中的291.46mg L~(-1)、316.6mz L~(-1)增加到最终的869.71mg L_(-1)、837.04 mg L~(-1),磷矿粉的难溶磷逐渐被P17菌株溶解下来。第十次培养后,黄麦岭磷矿粉全磷的81.02%被溶解下来,接活菌滤液中累积有效磷是对照的5.93倍,接灭活菌是对照的2.54倍。而对于黄金卡黄磷矿粉,P17菌株溶解了全磷总量的78.97%,接活菌滤液中累积有效磷是对照的5.4倍,接灭活菌是对照的2.32倍。接灭活菌由于带进了代谢产物如难挥发性
    
    南京农业大学博士学位论文:解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究
    酸等作用于磷矿粉,使滤液有效磷含量增加。磷矿粉中难溶磷以无机磷为主。
    属于变质磷块岩的黄麦岭磷矿粉和黄金卡黄磷矿粉适于巨大芽抱杆菌P17菌株
    生长及有效代谢产物的产生,从而易受侵蚀。经过P17菌株的长期作用,大部
    分转化为有效磷。为进一步证实上述结果,将磷矿粉进行了扫描电镜观察。继
    续接种培养时,接菌、接灭活菌、加空白培养基各处理间没有显著差异,说明
    磷矿粉中仍有少部分磷不能被巨大芽袍杆菌P17菌株溶解下来,表明解磷微生
    物只能在一定限度内溶解磷矿粉,不可能把磷矿粉中磷全部溶解下来。
     过磷酸钙是由磷矿粉与硫酸反应制成的水溶性磷肥。其主要成分为磷酸一
    钙[Ca(HZPo;):.H20]和难溶性硫酸钙。施入过磷酸钙后,土壤pH有细微下
    降。随着时间延长,pH下降趋势增大。过磷酸钙会与土壤中游离金属离子如
    c扩‘、Fes+、A13十等结合形成难溶性磷酸盐沉积下来,试图通过在土壤中接种微
    生物来改善被过磷酸钙固定化土壤的磷素营养。研究结果表明,接菌处理与未
    接菌处理的pH值有较小差异,与有效磷含量的增加无正相关。说明使难溶态
    磷转化成有效磷的过程中,pH降低不是唯一因素。加水对照的土样pH无明显
    变化。除加水对照外,土样的各种处理如接菌、接灭活菌、加空白培养基等有
    效磷含量是逐渐升高的。加过磷酸钙的各接菌处理土样中,10叼前,未灭菌土
    样有效磷高于灭菌土壤,而10叼后前者低于后者,说明施加过磷酸钙处理前期
    土著微生物有效菌群占主导地位,10叼后P17菌株起主要作用,所有结果均表
    明解磷微生物对黄棕壤中难溶态磷的转化有重要作用。接菌、接灭活菌、加培
    养基处理的磷酸酶活性均高于加水对照;接菌处理的磷酸酶活性高于接灭活菌
    与加培养基处理;接灭活菌与加培养基间无明显差异。取样前期灭菌土壤中磷
    酸酶活性不高,随着时间延长,解磷微生物数目增多,磷酸酶活性增加。磷酸
    酶为诱导酶,不仅?
Severing and filtration of P-solubilizing microorganisms were studied in this article. More than two hundred P-solubilizing microbes were filtered again and compared with P-solubilizing microbes safe-deposited in our microbiological laboratory. P-solubilizing microbes with preferable P-solubilizing effects were found, consisting of bacteria, yeasts, and fungi. P-solubilizing microbes sources survey was conducted at the same time. Through colony and thalli configuration observation and physiological, biochemical experiment, P-solubilizing microbes strain P17, P10, Y3, F4 were identified as Bacillus megaterium, Brevibacterium, Rhodotorula and Penicillium, respectively.P-solubilizing effects and methods of different microbes were different Research results showed that such difficultly soluble phosphates as Ca3(PO4)2, FePO4, A1PO4 were dissolved by yeasts and fungi easily. Phosphate rock powder was solubilized better by bacillus. Different kinds of microbes could dissolve different chemical configuration of phosphates or other substances containing phosphorus. Microbes chosen in this study were representative of all P-solubilizing microbes, belonged to bacteria including bacillus, yeasts, and mildew respectively. Results showed that mildew could dissolve best not all the difficultly soluble phosphates. Bacillus and yeasts also played much important role in P-solubilizing. Some conferences reported that P-solubilizing ability of fungi was always higher than bacteria (Ghani A, 1994). This thesis is unilateral, to some extent. Results showed that different kinds of microbes have different P-solubilizing ability on phosphates. Carbon, nitrogen sources needed by fungi were more than bacteria, and generation time is longer; but biological gross and metabolistic products of fungi are more than bacteria, which do good to solubilization of phosphorus. P-solubilizing ability of phosphate rock powder is stronger and their generation time shorter. All results above showed biological phosphorus fertilizer need consist of mixture of bacteria and fungi. So bacteria and fungi can bring out the best in each other in P-solubilizing. More contribution would be done to agriculture.P-solubilizing effects study results showed that strain P17 could facilitate solution of phosphate rock powder from different sources. So strain P17 could solubilize and transform difficultly soluble phosphorus. Results suggested that microbiological methods to improve P-solubilizing effects of phosphate rock powder are probable. Phosphate rock powder from haikou in Yunnan province, Kaiyang in
    
    Guizhou province, yichang in Hubei province are sediment phosphate rock, while phosphate rock from huangmailing, huangjinkahuang are metamorphose phosphate rock. Available P content is different because of geology formation conditions. After inoculation by strain P17, available P content of hangmailing and huangjinkahuang phosphate rock powder were increased largely. Through shaking bottle experiment and SEM observation, biological efflorescence evidences of solubilization from huangmailing and huangjinkahang phosphate rock were brought. Accumulative available P were increased from 291.46 mg L-1, 316.6 mg L-1 to 869.71mg L-1 and 837.04 mg L-1 after 70d inoculation. Poorly soluble phosphate were solubilized by P17 gradually. 81.02% of whole P content of huangmailing phosphate rock powder was released as available P. Accumulating available P of inoculation treatment was 5.93 times of control. While strain P17 could solubilize 78.97% whole P of huangjinkahuang phosphate rock powder. Accumulating available P content after inoculation in filtrate was 5.4 times of ck. Sterilized bacteria inoculation could bring such metabolism product as nonvolatile organic acids into fermentation liquid, which could have effects on phosphate rock powder. Inorganic P is basis in difficultly soluble phosphate rock powder. Huangmailing and huangjinkahuang phosphate rock powder are metamorphose phosphate rock, which are adapted to growth and metabolism production of strain P17. Difficultly soluble P o
引文
1. Abdallah A., Magboul A, Paul L. H. Mcsweeney.Purification and properties of an acid phosphatase from Lactobacillus curvatus DPC2024. International Dairy Journal, 1999, 9: 849-885
    2. Acosta V. Martinez, M. A., Tabatabai. Enzyme activities in a limed agricultural soil. Biol Fertil Soils, 2000, 31: 85-91
    3. Alee D. J., Bagyaraj. Effect of soil inoculation with vesicular-arbuscular mycorrhizal fungi and either phosphate rock dissolving bacteria or thiobacillion dry matter production and uptake of phosphorous by tomato plants. 1986, 29: 525-5
    4. Alexder I. J., Hardy K.Surface phosphatase activity of sitka sprace mycorrhizas from a serpentine site. Soil Biol.Biochem,1981,13: 301-305
    5. Anderson G. Assessing organic phosphorous in soil: the role of phosphorous in agriculture. Am.Soci.agro, 1980:411-431
    6. Andrew P, Maccabe, et al.Identification,cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulator}' gene responsive to ambient pH.Mol Gen Genet, 1996, 250: 367-374
    7. Asea P. E. A, Kucey R. M, Stewart J. W. B. Inorganic phosphate solubilization by two Penicillicum species in solution culture and soil. Soil. Biol. Biochem. 1988, 20: 459-464
    8. Babu-Khan S., Yeo TC. Martin W. L. Duron MR. Rogers RD. & Goldstein AH. Cloning of a mineral phosphate-solubilizing gene from Psendomonas cepacia. Appl. Environ. Microbiol. 1995.61:2905-2910
    9. Banik S, Dey B. K. Available phosphorous content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant and soil, 1982, 69: 353-364
    10. Banik S. & Kdey B. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing microorganisms. Plant and Soil, 1982, 69: 353-364
    11. Bar-Yosef B.Roots exertions and their environmental effects.Influence on availability of phosphorus. In: Plant Roots, the Hidden Half (Yoav Waisel, et al. eds.). Marcel Dekker, Inc. New York, Hongkong, 1991: 529-557
    12. Beever R. E., Burns D. J. W. Phosphorus uptake, storage and utilization by fungi. Adv Bot Res, 1980; 8: 127-219
    13. Bhatt A. R.i, Alvi A., Satish Walia G. R.Chaudhry. pH-Dependent modulation of alkaline phosphatase activity in Serratia marcescens. Current Microbiology, 2002, 45: 245-249
    14. Bolan N. S., Elliott J., Gregg P. E. H., et al. Enhanced dissolution of phosphate rocks in the rhizosphere.Biol Fertil Soils, 1997, 24: 169-174
    15. Bolan N. S., et al. Preparation, forms and properties of controlled-release phosphate fertilizers. Fertilizer Research, 1993,35: 13-24
    16. Bose. Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots, rhizosphere, and non-rhizosphere soil.Canadian Journal of Microbiology, 1959, 5: 79-85
    17. Byeong C. Jeong, Philip S. Poole, et al. Purification and characterization of acid-type phosphatases from a heavy-metal-accumulating Citrobacter sp. Arch Microbiol, 1998, 169:166-173
    
    18. Cabala-Rosand P, Wild A. Direct use of low grade phosphate rock from Brazil as fertilizer II. Effects of mycorrhiza inoculation and nitrogen source. Plant soil, 1982; 65: 363-373
    19. Caroline C. Mba. Rock phosphate solubilizing Streptosporangiwn isolates from casts of tropical earthworm.Resouces, Conservation and Recycling, 1996, 17: 211-217
    20. Cerezine D C, Nahas E.Banzatto D A. Soluble phosphate accumulation by Aspergillus niger from fluorapatite. Appl. Microbiol. Biotechnol. 1988, 29: 501-505
    21. Cheryl L, Wojciechowski, et al. Glutamic acid residues as metal ligands in the active site2 of Eschehchia coli alkaline phosphatase. Biochimica et Biophysica Acta. 2003, 6888: 1-6
    22. Chien S. H., et al. Effect of temperature on phosphate sorption and desorption in two acid soils. Soil Science. 1982,33 (3) : 160-166
    23. Choi aJ. H., Jeong K. Let al. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Eschehchia coli using the Bacillus sp. endoxylanase signal sequence. Appl Microbiol Biotechnol, 2000, 53: 40-645
    24. Congress Guide and Abstracts. 12th World Fertilizer Congress, 2001:24
    25. Dalai R. C. Soil organic phosphorus. Adv. Agron. 1977, 29: 83-119
    26. David E. Graham, Marion Graupner, et al. Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase: A member of a new class of Mg2+-dependent acid phosphatases. Eur. J. Biochem, 2001, 268: 5176-5188
    27. David L. T, Peter, R. D. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil, 1994, 166: 247-257
    28. Dekkers T. B. M., van der Werff P. A. Mutualistic functioning indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization. Mycorrhiza, 2001, 10: 195-201
    29. Di Simine C. D., Sayer J. A., et al .Solubilization of zinc phosphate by a strain of Pseudomonas fluorescent isolated from a forest soil. Biol Fertil Soils, 1998, 28: 87-94
    30. Dinkelaker B., Romheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (LupinusalbusL) Plant, Cell and Environment, 1989, 12:285-292
    31. Donald W. Moss.Alkaline phosphatase isoenzyes. Clin.Chem,1982, 28 (10): 2007-2016
    32. Dorn G. Genetic analysis of phosphatase in Aspergillus nidulans. Genetic Research, 1965, 6: 13-26
    33. Duff R. B., et al. Solubilization of minerals and related materials by 2-ketogluconic acid-producing bacteria.Soil sci., 1963,95: 105-114
    34. Earl K. D., Syers J. K., Mclaughlin J. R. Origin of the effects of citrate, tartrate, and acetateonphosphates sorption by soils and synthetic gels. Soil Sci. Am.J., 1997, 43: 674-678
    35. Effie Kosmidou, Patricia Lunness,John H. Doonan.A type 2A protein phosphatase gene from Aspergillus nidulans is involved in hyphal morphogenesis. Curr Genet, 2001, 39: 25-34
    36. Eivazi F., Tabatabai M. A. Phosphatases in soils. Soil. Biol.Biochem., 1977, 9: 167-172
    37. Engracia Madejon, Pilar Burgos, Rafael Lopez, et al. Soil enzymatic response to addition of heavy metals with organic residues. Biol. Fertil. Soils, 2001, 34: 144-150
    38. FAO, Annual Fertilizer Review. 1978: 24
    39. Florkin M., Stotz E. H. Comprehensive biochemistry. Amsterdam:Elsevier, 1964, 13: 126-134
    40. Fox T. Comerford N, Mcfee W. Phosphorus and aluminum release from aspodichorizonmediated by organic acids. Soil.Sci.Soc.Am.J., 1990, 54: 1763-1767
    
    41. Fraga et al.Transfer of the gene encoding the NapA acid phosphatase of M.mrganii to a B.cepacia strain. Acta Biotechnologica, 2001, 21(4): 359-369
    42. Gale G. Bozzo, Kashchandra G. et al. Purification and characterization of two secreted purple acidphosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Eur. J. Biochem, 2002, 269: 6278-6286
    43. Gardner W. K., Parbery D. G, Barber D. A.. Proteoiid root morphology and function in lupinusalbusl. Plant and Soil, 1981, 60: 143-147
    44. Gerke J. Solubilization of Fe (III) from humic-Fe complexes , humic / Fe-oxide mixtures and from poorly ordered Fe-oxide by organic acids-consequences for P adsorption. Z. Pflanzenernahr, Bodenk., 1993, 156: 253-257
    45. Gerretsen F. C. The influence of microorganisms on the phosphate intake by the plant. Plant and soil, 1948, 1:51-81
    46. Ghani S Rajan A. Lee. Enhancement of phosphate rock solubility through biological processes. Soil Biol.Biochem,1994, 26: 127-136
    47. Goldstein A. H. Plant and Physiol. 1988, 87: 711-715
    48. Goldstein AH, Liu ST. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Bio/Technology, 1987,5: 72-74
    49. Gyaneshwar P., Parekh L. J., Archana G, et al.Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asbuhae. FEM Microbiology Letters, 171, 1999, 223-229
    50. Haikeantelmann, Christian scharf Michael Hecker. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis.Journal of Bcteriology, 2000, 182(16): 4478-4490
    51. Hakan Wallander. Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi; Plant and Soil, 2000, 218: 249-256
    52. HalderA.K,. et al. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appl Microbiol. 1990, 36: 81-92
    53. Han J. S., Park Y. S., Lee, el al. PhoB-dependent transcriptional activation of the iciA gene during starvation for phosphate in Escherichia coli.Mol Gen Genet, 1999, 262: 448-452
    54. Harold C. Neu Leon A. Heppel.The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts.The Journal of Biochemistry Chemistry, 1965, 240(9): 3685-3692
    55. Haninur Rashid M., Narayanan, Rao., Arthur Kornberg. Inorganic polyphosphate is required for motility of bacterial pathogens. Journal of Bacteriology. 2000, 182(1): 225-227
    56. Hayes L., Richardson A. E. & Simpson R. J. Components of organic phosphorus in soil extracts that are hydrolysed phytase and acid phosphates. Biol Fertil. Soils, 2000, 32: 279-286
    57. Hilda Rodriguez, Gian M, Rossolini, et al. Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity.Current Microbiology, 2000, 40: 362-366
    58. Hilda Rodriguez, Reynaldo Fraga. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999, 17: 319-339
    59. Hilda Rodriguez.Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Current Microbiology, 2000, 40: 362-366
    60. Hiroshi Kobayashi,Hiromi Satio,Tomohito Kakegawa. Bacteril strategies to inhabit acidic environments. J. Gen. Appl. Microbiol, 2000, 46: 235-243
    
    61. Hysek, Sarapatka. Relationship between phosphatase active bacteria and phosphatase activities in forest soils.Biology Fertility and Soils, 1998, 26: 112-115
    62. Illmer F.. Schinner. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil. Biol .Biochem., 1995,. 27(3): 257-263
    63. Illmer P, Barbato A, Schineer F.Solubilization of hardly soluble A1PO4 with P-solubilizing microorganisms. Soil Biol.Biochem., 1995, 27: 265-270
    64. Illmer P, Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem, 1992; 24: 389-395
    65. Illmer P., Schinner F. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil. Biol. Biochem., 1995, 27(3): 257-263
    66. Indiati R, Izza C. Changes induced by some organic anions on phosphorus sorption isothems and released Fe and Al.Annalidell Istituto Sperimentaleperla Nutrizionedelle Piante. 1981, 11: 7-20
    67. Johannes, Hombergh, Andrew, et al. Regulation of acid phosphatases in an Aspergillus niger pacC disruption strain.Mol Gen Genet, 1996, 251: 542-550
    68. Juma N. G, Tabatabai, M.A., Distribution of phosphomonoesterases in soils. Soil Sci., 1988, 126:101-108
    69. Katznelson H, Peterson E A & Rouatt J W.Phosphate-dissolving microorganisms on seed and in the root zone of plants. Can.J. Bot. 1962,40: 1181-1186
    70. Kim K. Y, Jordan D. & Mcdonald. Entembacter agglomerans,phosphate solubilizing bacteria, and microbial activity in soilxffect of carbon sources. Soil Biol Biochem, 1998, 30: 995-1003
    71. Kim K. Y., McDomald G. A.& Jordan D. Solubilization of hydroxyapatite by Entembacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils, 1997,24,347-352
    72. Kim K.Y., Jordan D., McDonald G.A. Effect of phosphate-solubilizing bacteria and vesicular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils,1998, 26: 79-87
    73. Knut Schneider, Maria-Belen Turrion, Pauline, et al. Phosphatase activity, microbial phosphorus, and fine root growth in forest soils in the Sierra de Gata, western central Spain.Biol Fertil Soils, 2001, 34: 151-155
    74. Kojima T... Hayatsu M, Saito M.. Intraradical hyphae phosphatase of the arbuscular mycorrhizal fungus, Gigaspora margarita. Biol Fertil Soils, 1998, 26: 331-335
    75. Kpomble kou, Tabatabai. Effect of organic acids on release of phosphorus from phosphate rocks.Soil Science, 1994, 158 (6): 442-453
    76. Krishnaraj P.U., Goldstein A.H..Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEM Microbiology Letters, 10218, 2001. 1-5
    77. Kristine Leopold, Susanne Jacobsen & Ole Nybroe.A phosphate starvation inducible outermembrane protein of Pseuclomonas fluorescens Agl as an immunological phosphate-starvation marker. Microbiology, 1997, 143: 1019-1027
    78. Kroehler et al. The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal.Canadian Journal of Bottany, 1988, 66: 750-756
    79. Krupa J. Baszkiewicz, et al. Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials, 2002, 23: 329 -3340
    
    80. Kucey R .M. N., Janzenand H., M & Legett E.. Microbially mediated increase in plant available phosphorus. Adv. Agron, 1989,42: 199-228.
    81. Kucey R. M. N. Increased phosphorous uptake by wheat and field beans inoculated with a phosphorous solubilizing Penicillium bilaji strain and vesicular arbuscrlar myconbizal fungi. Applied Environmental Microbiology. 1989, 53: 2699-2703
    82. Kucey RMN, Janzen HH and Leggett ME. Inorganic phosphate solubilizing microorganisms: Microbially mediated increases in plant-available phosphorus. Academic Press Inc., 1989, 202-220
    83. Kucey. Janzenand H. H, Legett M. E .Microbial lymediated increases in plant-available phosphorus. Adv.Agron, 1989,42: 199-228
    84. Kumar Neeru Narula. Solubilization of inorganic phosphates and growth emergence of wheat as effected by Azotobacter chroococcum mutants. Biol Fertil. Soils, 1999, 28: 301-305
    85. Kwong Ng Kee K. F. & Huang P. M.. Influence of citric acid on the hydrolytic reactions of aluminum. Soil. Sci. Soc. Am.J., 1977, 41: 692-697
    86. Lee D. J. Bagyaraj. Effect of soil inoculation with vesicular-arbuscular mycorrhizal fungi and either phosphate rock dissolving bacteria or thiobacillion dry matter production and uptake of phosphorous by tomato plants. 1986, 29: 525-531
    87. Lee, el al. Effect of soil inoculation with vesicular-arbuscular mycorrhizal fungi and either phosphate rock dissolving bacteria orthiobacilli on dry matter production and uptake of phosphorous by tomato plants.Newzealand Journal of Agricultural Research, 1986, 29: 525-531
    88. Lewis D. G, Quirk J. P. Phosphate diffusion in soils and uptake by plants. Plant and Soil, 1967, 26: 119-128
    89. Leyval C, Barthelin J. Interactions between Laccaria laccata,Agrobacterium radiobacter and beach roots influence on P, K, Mg and Fe mobilization from mineral and plant growth. Plant and Soil, 1989, 17:103-110
    90. Li X L, George E, Marschner H.Extention of the phosphorous depletion zone in a VA-mycorrhizal white clover in a calcareous soil. Plant and Soil. 1991, 136: 41-48
    91. Li X. L el al. Phosphorous depletion in the rhizophere of mycorrhizal white clover extends more than Hem from the root surface, Plant and Soil, 1991, 136:49-57
    92. Liang Shi, Wayne W, Carmichael. ppl-cyano2, a protein serine/threonine phosphatase 1 gene from the cyanobacterium Microcystis aeruginos UTEX 2063. Arch Microbiol, 1997, 168: 528-531
    93. llmer F.Schinner. Solubilization of inorganic phosphates by microorganisms isolated from forest soils.Soil Biol.Biochem., 1992, 24: 389-395
    94. Lopez-Hernandez D, Siegert G and Rodriquez JV. Competitive adsorption of phosphate with malate and oxalate by tropical soils. Soil Sci Soc, Am. J., 1986, 50: 1460-1462
    95. Louw H. A.. Webley D. M. The bacteriology of the root region of the oat plant grown under-controlled pot culture conditions. J. Appl .Bact. 1959, 22: 216-226
    96. Louw H. A., Webley D.M. A study of soil bacteria dissolving certain mineral phosphate fertilizers and related compands. J. Appl. Bact. 1959, 22 (2): 227-333
    97. Louw, H. A. Webley D. M.. A plate method for estimating the numbers of phosphate-dissolving and acid-producing bacteria in soil. Nature, 1958, 182: 1317-1318
    98. M.Zamudio,A. GonzaA lez J.A. Medina. Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Letters in Applied Microbiology. 2001, 32, 181-184
    
    99. Mackay A. P., et al. Plant availability of phosphorous in superphosphate and a phosphate rock as influenced by earthrooms. Soil. Biol. Biochem, 1982,14: 281-287
    100. Marcia Toro, Rosario azcon & Jose-miguel Barea.Improvement of Arbuscular mycorrhiza development by inoculation of soil with phosphale-solubilizing rhizobacteria to improve rock phosphate bioavailability and nutrient cycling.Applied and Environmental Microbiology, 1997, 63(11): 4408-4412
    101. Marcia, Rosario Azcon. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling.Applied and Environmental Microbiology, 1997, 63 (II): 4408-4412
    102. Marica Toro, Improvement of Arbuscular Mycorrhiza Development by inoculation of soil with phosphate solubilizing Rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling, Applied and Environmental Microbiology, 1997, 61(11): 4408-4412
    103.MelarenA.D,PetersonGH;九康译,土壤生物化学.北京:农业出版社,1984,84-99:1-4
    104. Melvin P, Silverman et al. Fungal attack on rock.solubilization and altered infrared spectra.Science, 1970, 169: 985-987
    105. Michiko M, Nakano,Yi Zhu.Improvement of ResE phosphatase activity in down-regulation of -ResD-controlled genes in Bacillus subtilhis during aerobic growth.Journal of Bacteriology, 2001,183 (6) :1938-1944
    106. Min Jiang, Roberto Grau, Marta Perego. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subti/is. Journal of Bcteriology, 2000, 182 (2): 303-310
    107. Molla M. A. Z., Chovvdhury A. A. Microbial mineralization of organic phosphate in soil. Plant and soil, 1984, 78: 393-399
    108. Molla, Chowdhury.A. Microbial mineralization of organic phosphate in soil. Plant and soil, 1984, 78: 393-399
    109. Nagarajah. S, Ponsner, A. M. & Quick J. P. Nature, 1970,228: 83-85
    110. Nahas E, Banzatto D. A. Assis. Fluorapatite solubilization by Aspergillus niger in vinasse medium. Soil. Biol .Biochem. 1990, 22: 1097-1104
    111. Norio. Kurosawa, Kouichi Fukuda, et al. Partial purification and characterization of thermo acidophilic archaeon sulfolobus aciclocaldarius.Current Microbiology, 2000, 40: 57-60
    112. Oberson A., Fardeau J.C., Besson J.M.et al.Soil phorsphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol. Fertil. Soils, 1993, 16: 111-117
    113. Pant H. K., Warman P. R.. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol.Fertil.Soils.2000,306-311
    114. Paul N. B., Sundara Rao W. B.. Phosthate-dissolving bacteria in the rhizosphere of some cultivated hegumes. Plant and Soil, 1971, 35: 127-132
    115. Paul.N. B., Sundara Rao. Phosphate dissolving bacteria in the rhizosphere of some cultivated hegumes. Plant and Soil, 1971,35: 127-132
    116. Peix, A. A. Rivas-Boyero,P.F.Mateos,et al.Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobiwn mediterraneum under growth chamber conditions. Soil Biology & Biochemistry, 2001, 33: 103-110
    117. Raghu K., Macrae 1. C. Occurrence of phosphate-dissolving microorganisms in the rhizosphere of rice plants and in submerged soils. J. Appl. Bad:. 1966, 29 (3): 582-586
    118. Rani Gupta, Rekha Singal, Aparna Shankar, Ramesh Chander Kuhad, Rajendera Kumar Saxena. A modified plate assay for screening phosphate solubilizing microbiologanisms. J. Gen. Appl. Microbiol. 1994,40: 255-260
    
    119. Reyes, L. Bernier, H. Antoun.Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum.Mioxobial Ecology. 2002, 44: 39-48
    120. Riccio M. L., Rossolini G. M., Lombardi G, et al. Expression cloning of different bacterial phosphatase encoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalcin diphosphate and methyl green.Journal of Applied Microbiology, 1997, 82: 177-185
    121. Riccio ML, Rossolini GM, Lombardi G, Chiesurin A, Satta G. Expression cloning of different bacterial phosphatase-encoding genes by histochemical screening of genomic libraries onto an indicator medium containing phenolphthalein diphosphate and methyl green. J. Appl. Bacteriol. 1997,82:177-185
    122. Robert K. Antibus, Debra Bower & John Dighton.Root surface phosphatase activities and uptake of 32P-labelled inositol phosphate in field-collected gray birth and red maple roots. Mycorrhiza, 1997,7:39-46
    123. Roland W. S. Weber, Dennis Pitt.Purification.characterization and exit routes of two acid phosphatases secreted by Botrytis cinerea. Mycol. Res, 1997, 101(12): 1431-1439
    124. Rossolini GM., Shippa S. Riccio ML. Berlutti F. Macaskie LE. Thaller MC. Bacterial nonspecific acid phosphalasc: physiology, evolution, and use as tools in microbial biotechnology. Cell Mol. Life. Sci., 1998, 54: 833-850
    125. Sackett W. G, Patten A.G., Brown.C. W. The solvent action of soil bacteria upon the insoluble phosphates of raw bone meal and natural raw rock phosphate.Central Bacteria, 1908,20: 688-703
    126. Sahu S. N., Jana B. B. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecological Engineering, 2000, 15: 27-39
    127. Sally M. Hoffer, Nathalie van uden, Jan Tommassen.Expressed of the pho regulon interferes with induction of uhpTgene in Escherichia coliK-12. Arch Microbiol, 2001,176:370-376
    128. Samina Mehnaz, M. Sajjad Mirza, et al. Isolation of 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice.Can J Microbiol, 2001, 47: 110-117
    129. Sander F. E., Tinder. P. B. Mechanism of absorption of phosphate from soil by endogene mycorrhizs. Nature, 1971, 233: 278-279
    130. Satoshi Harashima, Yoshinobu Kaneko. Application of the PHO5-gene-fusion technology to molecular genetics and biotechnology in yeast.Journal of Bioscience and Bioengineering, 2001, 91(4): 325-338
    131. Seshadri et al. Solubilization of inorganic P by AzospiriHum halopraeferans. Current Science, 2000, 79(5): 565-567
    132. Shekhar Nautiyal C, Shipra Bhadauia, Pradeep, et al. Stress induced phosphate solubilization in bacteria isolated from alkaline soils.FEMS Microbiology Letters, 2000, 182: 291-296
    133. Shekhar, Nautiyal. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters. 1999, 170: 265-270
    134. Shih-tung Liu, Lan-ying Lee, Chin-ying Tai, et al. Cloning of an Erwinia herbicola gene necessary' for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101:nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinine. Journal of Bacteriology, 1992, 174(18): 5814-5819
    
    135. Shiping Deng, James G, Elkins et al.Cloning and characteristics of a second acid phosphatase from Sinorhizobium meliloti strain 104A14. Arch Microbiol, 2001, 176: 255-263
    136. Shiping Deng, Michael L, et al.Cloning and characterization of a Rhizobium meliloti nonspecific acid phosphatase. Arch Microbiol. 1998, 170: 18-26
    137. Soo-ki Kim, Sigenobu Kimura, Hideo Shinagawa, el al. Dual transcriptional regulation of the Eschehchia coli phosphate strvation inducible psiE gene of the phosphate regulon by phoB and the cyclic AMP (cAMP) -cAMP receptor protein complex. Journal of Bcteriology, 2000, 182(1): 5596-5599
    138. Sperber J. I. Solution of mineral phosphates by soil bacteria.Nature. 1957,180: 994-995
    139. Sperber J. I. The incidence of apatite-solubilizing organisms in the rhizosphere and soil.Aust.J. Agric.Rcs, 1958,9:778-781
    140. Stevenson F. J, John Willey, Sons. Cycles of soil carbon, nitrogen, phosphorous, sulfur and microorganisms. 1985,231-284
    141. Stevenson F. J. Cycles of soil carbon,nitrogen,phosphorus,sulfer and micronutrients. John Willey Sons, 1985,231-284
    142. Sudhansu S. Pal.Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant and soil, 1998, 198: 169-177
    143. Sundara Rao , MK.Sinha. Phosphate dissolving microorgamisms in the rhizosphere and soil. India J. Agric. Sci,1963, 33(4): 272-278.
    144. Sundara, V. Natarajan, K. Hari. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields.Field Crops Research, 2002, 77: 43-49
    145. Surange S., Wollum A.G., et al. Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can.J. Microbiol., 1997, 43: 891-894
    146. Tabatabai. M. A. Soil Enzymes.In: Methods of soil analysis. Part 2,Chemical and microbiological properties. Agronomy monograph No 9, 2nd Eddition, Wsconsin, USA. ASA-SSSA. Madison, 1982, 903-947
    147. Tadano T. Soil. Sci. Plant. Nutr. 1991, 37(1): 129- 140
    148. Tang Ming, Chen Hui. Effects of arbuscular mycorrhizal fungi alkaline phosphatase activities on hippophae rhamnoides drought-resistance under water stress conditions. Trees, 1999, 14: 113-115
    149. Taraldar J, C. Marschner H.Phosphatase activity in the rhizosphere and hyposphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorous. Soil Biol. Biochem.1994, 26: 387-395
    150. Tate.K.R. 土壤中磷素的生物转化作用.土壤学进展,1987,15(2):43-47
    151.Thamir S., Al-Niemi, Michael.I, et al. Regulation of the phosphate stress response in Rhizobium meliloti by PhoB.Applied and Environmental Microbiology, 1997, 63(12):4978-4981
    152. Thiagarajan T R. Ahmad M H.Phosphatase activity and cytokinin content in cowpeas inoculated with a vesicular-arbuscular mycorrhizal fungus. Biol. Fertil. Soils. 1994,17: 51-56
    153.Tibbett M., Sanders F. E. & Gransam K.. Some potential inaccuracies of the p-nitrophenyl phosphomonoesterase assay in the study of the phosphorus nutrition of soil borne fungi. Biol Fertil Soils, 2000, 31: 92-96
    
    154. Tisdale S. L, Nelson W. L. Soil fertility and fertilizers. Macmillan, New York, N.Y., 1975: 224-225
    155. Toy A. D, Smith T.D. and Pilbrow JR. Al-27 nuclear magnetic resonance in aqueous solutions of its chelates with hydroxycarboxylic acids. Aust. J. Chem.,1973, 26: 1889-1892
    156. Uptake of P from apatite by Pinus syhestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil, 2000, 218: 249-256
    157. Uren N. C, Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L.Nicotyiana tobacum L.and Nicotiana rustion L. Plant Soil, 1991, 132: 187-196
    158. Van der Molen DT, Breeuwsma A.Agricultural nutrient losses to surface water in the Netherlands: impact, strategies, and perspectives. J Environ Qual, 1998, 27; 4-11
    159. Varsha Narsian, Patel H. H.. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology Biochemistry. 2000, 32: 559-565
    160. Vassilev N, Baca M. T. Rock phosphate solubilization by Aspergilus niger grown on sugerbeet wast medium. Appl.MicrobioI. Biochem. 1995, 27: 265-270
    161. Vassilev N, Vassilcva M. Production of organic acids by immobilized filamentous fungi. Mycol Res, 1992,96:563-570
    162. Vassilev N., Baca M. L.Vassileva M. Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium. Appl Microbiol Biotechnol, 1995, 44: 546-549
    163. Vazquez P., Holguin G, Puente M. E., et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils, 2000, 30: 460-468
    164. W. Donld Macrae, Frank P. Buxton, et al. A phosphate-repressible acid phosphatase gene from Aspergillus niger. its cloning,sequencing and transcriptional analysis. Gene, 1988, 71: 339-348
    165. Wanner B .L. Overlapping and separate controls on the phosphate regulon in Escherichia.coli K12. J. Mol. Biol. 1983, 166: 283-308
    166. Wen-Tso Liu, Katrina D.Linning, et al. Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiology, 2000, 146: 1099-1107
    167. Wu Feibo. Effects of inoculation with nitrogen fixing organisms on N, P and K uptake, some enzyme activities and lint yield in seals and cotton.Acta Phytophysiologica Sinica, 2000, 26 (4): 273-279
    168. Yadav, R. S. Tarafdar. J. Confluence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biol Fertil Soils, 2001, 34: 140-143
    169. Yuxian Xia, John M,Clarkson, A. Keith & Charanley.Acid phosphatases of Metarhizium anisopliae during infection of the tobacco hornworm Manduca sexta. Arch Microbiol, 2001, 176:427-434
    170. Zhang Y. S., Werner, W. Scherer, H. W. Sun, X. Effect of organic manure on phosphorus fractions in two paddy soils. Biol. Fertil, Soils, 1994, 17: 64-68
    171. Zhenli He & Jun Zhu, Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biolchem. 1998, 30 (7): 917-923
    172.安志装,介晓磊,李有田,刘世亮,魏义长,自由路.合成磷源在石灰性潮土中的形态转化及氮肥形态对其的影响.土壤学报,2003,40(2):252-259
    173.巴尼特J.A.(英),佩恩R.W二亚罗(荷)编,胡瑞卿译.酵母菌的特征与鉴定手册.青岛: 青岛海洋大学出版社,1991:45,364
    17
    
    174.白晓阳.季朝能,姜涛,盛小禹,毛裕民.无机磷酸盐对耐热碱性磷酸酶耐热性的影响.中国生物化学与分子生物学学报,2001,17(4):506-509
    175.边武英,何振立,黄昌勇.高效解磷菌对矿物专性吸附磷的转化及生物有效性的影响.浙江大学学报(农业与生命科学版),2000,26(4):461-464
    176.卜玉山等.土壤生物有效磷测定方法的发展及其在美国的研究动态.山西农业大学学报.2001,21(2):183-186
    177.布坎南R.E.,吉布斯N.E.等编,伯杰细菌鉴定手册(第八版).北京:科学出版社,1984:865-866
    178.布申斯基.从农业使用观点论磷块岩的矿物学分类.地质译丛,1955,5:1-5
    179.蔡磊,李文鹏,张克勤.高效解磷菌株的分离、筛选及其对小麦苗期生长的促进作用研究.土壤通报,33,(1):44-46
    180.蔡元定译,菌根在改善植物磷营养上的作用,土壤学进展,1990,2:46-49
    181.蔡耘.基质辅助激光解吸附飞行时间质谱(MALDI-TOF-MS)在生物工程产品质量控制中的应用.生物王程进展,1996,16(4):23-25
    182.曹靖,张福锁.低磷条件下不同基因型小麦幼苗对磷的吸收和利用效率及水分的影响.植物生态学报,2000,24(6)731-735
    183.曹军,赵惠丽,陈英新.异辛酸合成液的气相色谱分析.辽宁化工,2002,31(3):129-135
    184.陈国潮.土壤固定态P的微生物转化和利用研究.土壤通报,2001,32(2):80-83
    185.陈华癸,李阜棣,陈文新.土壤微生物学.上海:上海科学技术出版社,1981:27-33;225-229
    186.陈培榕,王彦,贾翘彦等.董酒中各种有机酸的定性定量分析.酿酒,1997,(6):53-55
    187.陈清西,颜思旭.文昌鱼碱性磷酸酶的必需基团研究.厦门大学学报(自然科学版).1986,25(5):568-572
    188.陈清西,庄总来,陈祥仁等.锯缘青蟹碱性磷酸酶分离纯化及部分理化性质研究.海洋与湖沼,1998,29(4):362-368
    189.陈瑞泰.中国烟草栽培学.上海:上海科技出版社.1987:134-135
    190.陈尚谨等.在石灰性土壤上磷肥演变的研究和施磷的建议.中国农业科学,1987,20(2):56-62
    191.陈素丽.力政军,颜思旭.用快速蛋白液相层析法纯化文昌鱼酸性磷酸酶.厦门大学学报(自然科学版).1994,33(5):681-685
    192.陈廷伟.微生物对不溶性无机磷化合物的分解能力及其接种效果.微生物,1995,2(5):210-215
    193.陈希中.食品中防腐剂山梨酸和苯甲酸的气相色谱内标法测定.食品与发酵王业,1997,23(3):39-41
    194.成瑞喜,刘景福.黄棕壤、棕红壤中磷的转化对油菜产量的有效性.土壤通报,1994,25(2):84-86
    195.程传敏,曹翠玉.干湿交替过程中石灰性土壤磷及吸附和解吸的变化.土壤肥料,1994,1:12-16
    196.迟家平,薛秉文,徐大庆等.RP-HPLC法测定蜂胶益胃胶囊中咖啡酸异阿魏酸和3,4-二甲氧基桂皮酸的含量,人民军医药学专刊,1997,13(4):243-245
    197.储祥云,黄昌勇,何振立.磷肥和石灰对酸性土壤上一年生黑麦草生长的影响.浙江农业大学学报,1999,25(1):19-22
    198.崔正忠,韩芳,单德鑫.土壤磷素活化剂对黑土无机磷形态转化及其量变规律的影响.农业系统科学与综合研究,2001,17(1):60-62
    
    199.戴树桂,庄源益,陈勇生等.两种假单胞菌中二氯酚降解酶及其定域研究.环境科学学报,1996,16(2):173-178
    200.戴勇,张晓霞,李炎强,蔡旭.无花果精油香味成分的分析及在卷烟中的应用.烟草科技/烟草化学,2003,8:23-26
    201.单保庆等.太湖地区农田土壤磷素动态及其环境影响分析.农村生态环境,2000,16(4):24-27
    202.邓爱华,胡蓉蓉,罗和安,陈小明.气相色谱直接进样法分析环己烷氧化废液中的有机酸.分析试验室,2002,21(2):18-20
    203.邓丛蕊.界面衍生化气相色谱法测定葡萄酒中总有机酸.色谱,1997,15(6):505-507
    204.邓锦霞,曾祖训.白酒中有机酸的简易快速气相色谱分析法.酿酒科技,1997.3:70-73
    205.东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001:43-64.
    206.段平楣等译.磷矿粉的直接施用.土壤学进展,1984,2:29-36
    207.樊美珍,李增智,唐晓庆.白僵菌菌种退化及其控制.安徽农业大学学报,1996,23(3):239-245
    208.樊明寿,徐冰,王艳.缺磷条件下玉米根系酸性磷酸酶活性的变化.中国农业科技导报,2001,3(3):33-35
    209.范洪宽.低分子量紫色酸性磷酸酶多克隆抗体的制备及应用.高等学校化学学报.2001,22(3):403-406
    210.方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001:35-65
    211.付明华等.上海土壤磷的吸附特性及缓冲能力研究.土壤学报,1986,23(2):113-123
    212.傅红梅.碱性磷酸酶及其糖链结构的研究.国外医学临床生物化学与检验学分册,2000,21(2):72-74
    213.高超等.农田土壤中的磷向水体释放的风险评价.环境科学学报,2001,21(3):344-348
    214.高庆义.链霉菌发酵麦草产木聚糖酶的试验研究.工业微生物,2001,31(3):
    215.高士争,李自新,朱海梅.鸡蛋黄碱性磷酸酶的性质.青海畜牧杂志,1995,25(1):22-23
    216.高淑欣,范慧.两种偶联剂对胎盘型碱性磷酸酶层析行为的比较.河北医学院学报,1995,16(1):4-6
    217.高贤彪,卢丽萍.新型肥料施用技术.济南:山东科学技术出版社,1997
    218.郜春花,王岗,董云中等.解磷菌剂盆栽及大田施用效果.山西农业科学,2003,31(3):40-43
    219.戈登R.E.,海恩斯W.C.,帕格C.H N.;<泽>蔡妙英,刘聿太,战立克.芽孢杆菌属.北京:农业出版社,1983
    220.耿芳宋,王秀丽,张金玉,武淑芳,修波.人类胎盘碱性磷酸酶的分离纯化.青岛医学院学报,1998,34(2):84-86
    221.顾淑萍,刘正,宋培智.厌氧菌代谢酸产物的气相色谱分析.上海口腔医学,2000,9(3):153-155
    222.何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响.土壤学报,1990,27(4):377-383
    223.何振立,朱祖祥.Phosphate desorption from some important clay minerals and typical groups of soil in China:Hysteresis of adsorption and desorption.浙江农业大学学报,1988,(4):256-263
    224.洪顺山,朱祖祥.从磷酸盐位探讨土壤中磷的固定机制及其有效度问题.土壤学报,1979,16(2):94-107
    225.胡国栋,程劲松,朱叶.白酒中游离有机酸的定量测定.色谱,1994,12(4):265-267
    226.胡国栋,程劲松,朱叶.气相色谱法直接测定白酒中的游离有机酸.酿酒科技,1994,2: 11-15
    22
    
    227.胡红青,廖丽霞,叶祥盛等.红壤磷素水平与油菜生长及根际土壤磷素组成变化.华中农业大学学报,2001,20(4):354-357
    228.黄传荣.甘世凡,张怀东.国内外生物复肥的研究现状和进展.化肥工业,2000,27(1):32-33
    229.黄晓兰,陈云华.发酵液中酸性物质的气相色谱测定法.食品与发酵工业,2001,27(7):12-14
    230.黄智刚.不同施磷量对油菜根系形态和磷吸收的影响.广西农学报,2000,3:27-29
    231.吉红念.磷酸酶表面活性剂中微量无机磷的实时测定.无锡轻工大学学报,2001,20(5):
    232.蒋柏藩,鲁如坤,李庆逵.我国磷矿石的农业特性和施用条件.化肥工业,1983,2:26
    233.蒋柏藩等.磷灰石的结晶性质与磷矿粉肥效相关性的研究.土壤学报,1988,25(4):387-390
    234.金相灿等.中国湖泊环境.北京:海洋出版社.1995,267-322
    235.金耀青等.用磷肥指标法确定棕黄土农田磷肥施用量.辽宁农业科学,1987,6:16-19
    236.寇长林,王秋杰,任丽轩等.小麦和花生利用磷形态差异的研究.土壤通报,1999,30(4):181-184
    237.黎荫厚等.磷矿资源战略分析.1986
    238.黎源倩,张立实,刘国钧等.大鼠粪样中C1~C6脂肪酸的分析.华西医大学报,1994,25(4): 456-459中用气相色谱方法,用四甲基氢氧化铵调节pH至10,样品处理参考.
    239.李阜梂,喻子牛,何绍江.农业微生物学实验技术.北京:中国农业出版社.1996,90-91;130-131
    240.李阜棣.土壤微生物学.北京:中国农业出版社,1996:223
    241.李楠,刘淑霞,宋建国等.玉米施用锌、磷及有机肥的肥效研究.贵州农业科学,2001,29(3):14-18
    242.李清漪,曾和期.大瓶螺碱性磷酸酶的分离纯化及部分性质研究.生物化学杂志,1995,11(3):363-365
    243.李庆逵,蒋柏藩,鲁如坤.中国磷矿的农业利用.南京:江苏科学技术出版社,1992
    244.李庆逵等.甘家山试验场对于磷灰石肥效试验第三次报告.土壤学报,1956,4:43-50
    245.李庆逵等.海州磷灰石肥效试验的初步报告.土壤学报,1952,2:37-42
    246.李庆逵等.磷灰石肥效试验的第二次报告.土壤学报,1953,2:167-177
    247.李庆逵等.中国磷矿的农业应用.南京:江苏科学技术出版社,1992:12,79,106-107,117
    248.李寿田,周健民,王火焰等.太湖水稻土中磷的固定和释放特性的研究.安徽农业大学.2003,30(2):123-127
    249.李淑仪,蓝佩玲,廖新荣等.玄武岩砖红壤磷肥活化效果及其机理研究.土壤与环境,2001,10(4):311-315
    250.李遂焰,李清漪.赤子爱胜蚓碱性磷酸酶的分离纯化.西南交通大学学报,2002,37(5):597-600
    251.李孝良,于群英,陈世勇.土壤无机磷形态生物有效性研究.安徽农业技术师范学院学报,2001,15(2):17-19
    252.梁锦锋,解磷细菌(Bacillus megaterium var.phosphaticum)生长条件及解磷机理的研究硕士论文,2001:1-5
    253.梁绍芬,姜瑞波.解磷微生物肥料的作用和应用.土壤肥料,1994,2:46-48
    254.廖继配,林先贵,曹志洪,骆永明,吴龙华.丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响.应用与环境生物学报,2002,8(4):408-413
    
    255.廖延雄,傅莜冲.芽孢杆菌属二分检索.江西科学,1998,16(2):118-125
    256.林加涵,魏文铃,彭宣宪主编,现代生物学实验(下).北京:高等教育出版社:34-38
    257.林乐,我国磷复肥工业发展思路。化肥王业,1999,26(5):3
    258.林启美,饶正华,孙焱鑫等.硅酸盐细菌的筛选及其对番茄营养的影响.中国农业科学,2002,35(1):59-62
    259.林启美,王华,赵小蓉,赵紫娟.一些细菌和真菌的解磷能力及其机理初探.微生物学通报,2001.28(2):26-30
    260.林启美,吴玉光,刘焕荣.熏蒸法测定土壤微生物量碳的改进.生物学杂志,1999,18(2):63-66
    261.林启美,赵海英,赵小蓉.溶磷微生物对不同磷矿粉的溶解能力.中国农业科学,2002,35(10):1232-1235
    262.林启美,赵小蓉,孙焱鑫,姚军.四种不同生态系统的土壤解磷细菌数量及种群分布.土壤与环境,2000,9(1):34-37
    263.林启美,赵小蓉,孙焱鑫,张有山,王幼珊.纤维素分解菌与无机磷细菌的相互作用.生态学杂志,2001,20(3):69-70
    264.林启美,赵小蓉等.一些真菌和细菌的解磷能力及其机理初探.土壤肥料,2000(4):26-30
    265.林咸永,章永松,苏玲等.磷钾营养对渍水条件下大麦若干生理生化性状的影响.植物营养与肥料学报,2000,6(2):159-165
    266.林忠辉,陈同斌.磷肥杂质对土壤生态环境的影响.生态农业研究,2000,8(2):47-50
    267.刘百站,蔡继宝,朱立军等.国内外部分白肋烟烟叶中非挥发性有机酸、高级脂肪酸、生物碱及pH值的对比分析.中国烟草学报,2002,(8):1-5
    268.刘百站,胡便霞,徐亮等.卷烟中非挥发性有机酸及某些高级脂肪酸的分析.烟草科技,2000,(1):25-27
    269.刘国栋,李继云,李振声.植物高效利用磷营养的化学机理.植物营养与肥料学报,1995,3-4:72-78
    270.刘洪树.卿笑天.柑桔中乳酸的气相色谱分析.华西药学杂志,1997,12(2):127-128
    271.刘建中.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,1994,2:16-23
    272.刘炯光,袁辉.采用大口径毛细管柱对白酒中有机酸的气相色谱分析.酿酒科技,2003,2:74-76
    273.刘俊,李俊,姜昕等.巨大芽孢杆菌luxAB标记菌株的根际定殖研究.微生物学通报,2001,28(6):1-4
    274.刘可星,王德汉,廖宗文.造纸黑液及木素对磷矿粉活化的研究初报.广东造纸,1998,3:14-15
    275.刘丽丽.PK菌肥的菌种筛选及其应用研究.南开大学学报(自然科学版),1994,27(3):82-86
    276.刘丽丽.津农菌肥对水果糖度和着色度的影响.天津农业科学,1995,3:17-18
    277.刘丽丽等.9320-SD系列菌的溶磷研究.南开大学学报(自然科学),1998,31(3):75-79
    278.刘世亮,介晓磊,李有田等.不同磷源对作物根际效应影响的研究.土壤,2003.35(4):325-329
    279.刘世亮,翟东明,介晓磊等.不同磷源对小麦根际生物活性及其根际效应的影响.河南农业科学.2002,11:26-30
    280.刘卫军.丁健.蛋白磷酸酶2A的结构、功能和活性调节.生物化学与生物物理学报,2003,35(2):105-112
    281.刘向光.高效液相色谱法测定己二酸的纯度.辽阳石油化工高等专科学校学报,1999,15 (1):30-32
    28
    
    282.刘映秋,杜林方.壅菜类囊体膜磷酸酯酶的分离纯化和部分性质.应用与环境生物学报,2003,9(3):239-242
    283.刘永军,邓小晨,王忠彦,胡永松.不同有机酸碳源对混合菌株产酸的影响.酿酒科技,1998,(6):19-20
    284.刘永军,邓小晨.多菌株发酵白酒糟产酸实验.酿酒科技,1999,2:20-21
    285.刘永军,贾敬芬,张爱宁,邓小晨.固定化多菌种及其产酸研究.食品科学,2002,23(12):42-45
    286.鲁如坤.土壤磷素(二).土壤学进展,1980,2:47-49
    287.鲁如坤.土壤磷素(一).土壤学进展,1980,1:43-47
    288.鲁如坤.推荐磷肥法和复合肥配方.土壤,1992,24(4):176-180
    289.陆文静,何振立,许建平等.石灰性土壤难溶性磷的微生物转化和利用.植物营养与肥料学报,1999,5(4):377-383
    290.陆文龙,曹一平,张福锁.低分子量有机酸对不同磷酸盐的活化作用。华北农学报,2001,16 (1): 99-104
    291.陆文龙.王敬国.曹一平.张福锁.低分子量有机酸对土壤磷释放动力学的影响.土壤学报,1998,35(4):493-500
    292.陆欣主编,土壤肥料学.北京:中国农业大学出版社.24-27
    293.吕家珑,张一平等.土壤磷素运移研究.土壤学报,1999,36(1):75-82
    294.罗明等.不同施肥措施对棉田土壤磷细菌及磷转化强度的影响.土壤与环境,2001,10(4): 316-318
    295.罗绍春,董秋红,张祥喜等.耐低磷油菜品种的初步筛选.江西农业学报,1999,11(4):69-72
    296.罗维,刘永婷,石敏,许聪.准确测定己酸菌液中己酸含量的方法.酿酒科技,2003,119,(5):81-82
    297.马亭,梅博文,柳常青,徐中一.毛细管气相色谱法测定油田水中短链脂肪酸.色谱,1995,13 (1):59-60
    298.马秀芬,解志东,王绯琳等.壮观链霉菌的衰退和复壮,内蒙古大学学报(自然科学版)1997,28(2):248-252
    299.莫淑勋.土壤中有机酸的产生、转化及对土壤肥力的某些影响.土壤学进展,1986(4):1-10
    300.南京农业大学主编.土壤农化分析(第二版).北京:农业出版社,1996,69,71—74,311-312
    301.庞金华,程平宏,余廷园.两种微生物制剂对猪粪堆肥的效果.农业环境保护,1998,17(2):71-73
    302.裴海昆.不同施肥量对天然草地土壤酶活性的影响,青海畜牧兽医杂志,2001,31(2):15
    303.佩奇A.L,米勒R.H.等著;闵九康,郝心仁,严慧峻,谢承陶等译.土壤分析法.北京:中国农业科技出版社.1991:592-599
    304.秦芳玲,王敬国,李晓林,冯固.VA菌根真菌和解磷细菌对红三叶草生长和氮磷营养的影响.草业学报,2000,9(1):9-14
    305.卿人韦等.藻类对矿石磷转化利用的研究.四川大学学报(自然科学版),1998,35(6):957-959
    306.邱忠祥.提高磷肥利用率的研究 1.有机肥料对磷肥在棕色土壤中转化的影响.沈阳农学院 学报,1980,(1):29-33
    30
    
    307.曲东,尉庆丰,周建军.有机酸对石灰性土壤磷素的活化效应.西北农业大学学报,1996,24(1):101-103
    308.饶正华,林启美.解钾菌与解磷菌及固氮菌的相互作用.生态学杂志,2002,21(2):71-73
    309.萨姆布鲁克J.,拉塞尔D.W.[美]著,黄培堂等译.分子克隆实验指南(第三版)(下册).北京:科学出版社,1713-1719
    310.山东农学院农药厂编著.磷细菌肥.北京:农业出版社,1978
    311.尚春庆,邓春晖,张平等.新生儿血液中的多种氨基酸及尿液中的苯丙酮酸和对羟基苯乙酸的GC/MS分析.复旦学报(自然科学版),2002,41(4):413-418
    312.沈阿林等,李学垣,吴受容。土壤中低分子量有机酸在物质循环中的作用。植物营养与肥料学报,1997,3(4):363-371
    313.沈爱宝,杨梅.章竹.碱性磷酸酶及其免疫标记物活性的荧光法测定.南通医学院学报.1996,16(2):162-164
    314.沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性.土壤学报,1992,29(1):80-85
    315.沈善敏.论我国磷肥的生产与应用.土壤通报,1985,3:97-103;4:145-161
    316.盛下放,何琳燕,陈珏.土壤芽孢杆菌NBT菌株理化诱变筛选及其对作物生长的影响.中国农业科学.2003,36(4):415-419
    317.史吉平等.长期施用氮磷钾化肥和有机肥对土壤氮磷钾养分的影响.土壤肥料.1998(1):7-10
    318.曙光,季朝能,姜涛等.对硝基酚磷酸酶pNNPase的基因克隆和序列分析.复旦大学学报(自然科学版),2002,41(6):710-712
    319.宋勇春,冯固,李晓林.不同磷源对红三叶草根际和菌根际磷酸酶活性的影响.应用生态学报,2003,14(5):781-784
    320.宋勇春,冯固,李晓林.菌根真菌磷酸酶活性对红三叶草生境中土壤有机磷亏缺的影响.生态学报,2001,21(7):1130-1135
    321.苏友波.林春.王三根.AM菌根磷酸酶对玉米菌根际土壤磷的影响及其细胞化学定位.西南农业大学学报,2003,25(2):115-119
    322.苏友波,林春,张福锁,李晓林.不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响.土壤,2003,35(4):334-338
    323.苏友波,王贺,张俊玲等.丛枝菌根对三叶草根际磷酸酶活性的影响.植物营养与肥料学报,1998,4(3):264-270
    324.孙传经.气相色谱分离原理与技术,北京:化学工业出版社,1979,314
    325.孙海国,张福锁.缺磷条件下的小麦根系酸性磷酸酶活性研究.应用生态学报,2002,13(3):379-381
    326.孙焱鑫,林启美,赵小蓉.原生动物与解磷微生物协同解磷作用.生态学杂志,2003,22(3):84-86
    327.唐建华,Stevens VL.人胎盘碱性磷酸酶的纯化及其抗血清的制备.生命科学研究,1998,2(2):98-102
    328.唐勇,陆玲,杨启银,虞光华.解磷微生物及其应用的研究进展.天津农业科学,2001,(7):1-5
    329.童学军,李惠珍,曾焕泰等.低磷胁迫下溶液培养大豆生长和磷素营养特性及其与土培下磷效率特性的关系.植物营养与肥料学报.2001,7(3):298-304
    330.童学军.严小龙,李惠珍等.大豆磷效率与形态生理性状的关系.2000,16(1):84-88
    
    331.王铎,丁伟山,贺长历等.继发龋牙本质中有机酸含量的气相色谱法研究.口腔医学,2003,23(3):132-133
    332.王富民等.解磷固氮菌剂的研制及其对小麦的增产效应.生物技术,1994,4:15-18
    333.王光华,赵英,周德瑞等.解磷菌的研究现状与展望.生态环境,2003,12(1):96-101
    334.王林权,周春菊,王俊儒.鸡粪中的有机酸及其对土壤速效养分的影响.土壤学报,2002,39(2):268-275.
    335.王庆仁,李继云,李振声.磷高效小麦基因型对不同磷肥效应的研究.环境科学,1999,20(5):6-10
    336.王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望.植物营养与肥料学报,1998,4(2):107-116
    337.王庆仁,李继云等.高效利用土壤磷素的植物营养学.生态学报,1999,3:417-421
    338.王天志,李永梅,王志霄.金银花中三种有机酸的反相高效液相色谱法定量分析.药物分析杂志,2000,20(5):293-296
    339.王文博,吕潇,陈子雷等.校正曲线法测定食品中山梨酸的含量.食品科学,2001,22(9):64-66
    340.王晓萍.茶根分泌有机酸的分析研究简报.茶叶科学,1994,14(1):17-22
    341.王校常等.根系分泌物对几种难溶磷活化作用的研究.西南农业大学学报,2001,23(5):401-403
    342.王训遒,蒋登高,周彩荣.高效液相色谱法测定丁二酸、戊二酸和己二酸.化学工业与工程技术,2002,23(6):36-38
    343.王幼珊,刘相梅,张美庆等.盆栽基质及营养液对AM真菌接种剂繁殖的影响.华北农学报,2001,16(4):81-86
    344.王中仁.植物等位酶分析,科学出版社.1988:2,5
    345.韦建福,张世,王光等.利用转座子Tn5诱变冰核细菌获得无冰核活性菌株.云南农业大学学报,2002,17(1):1-3
    346.魏辉,沈中泉.解磷微生物的分离测定与盆栽试验.微生物学研究与应用,1995,(1):26-29
    347.魏静,周恩湘,姜淳等.石灰性土壤上利用天然沸石活化磷矿粉的初步探讨.河北农业大学学报,1999,22(3):25-27
    348.魏炜,张洪渊,石安静.背角无齿蚌酸性磷酸酶的分离、纯化及部分性质研究.四川大学学报(自然科学版),1999,36(3):569-572
    349.文庆成,任凤琴.碱性磷酸酶同工酶的实验研究.中华医学检验杂志,1980,3(1):19-24
    350.翁焕新.红壤中结合态磷在酸化条件下的变化及其相互关系.环境科学学报.2001,21(5):582-586
    351.沃尔克.土壤微生物学.北京:科学出版社,1981,75-87
    352.吴健生,陈金莲,敖世洲.酵母PHO81在酸性磷酸酯酶基因表达调控中的作用.生物化学与生物物理学报,1995,27(3):241-246
    353.吴平,印莉萍,张立平等.植物营养分子生理学(生命科学专论).北京:科学出版社,2001:103-106
    354.吴平霄等.改性磷肥的红外光谱谱学特征初报.华南农业大学学报,2000,21(2):91-92
    355.吴平霄等.改性磷肥的结构特征及其增效机理研究.植物营养与肥料学报,2000,6(3):287-292
    356.伍晓林,郝文辉,侯艳君,马东升等.大庆油田微生物采油代谢成分对比分析的研究.黑龙 江大学自然科学学报,2003,30(2):100-105
    35
    
    357.夏邦栋.普通地质学.北京:地质出版社,1984:17
    358.夏琪.姜卫红.细菌磷代谢的分子调控..微生物学通报,1998,5:281-283
    359.谢莉萍,林静瑜,肖锐,张荣庆.合浦珠母贝碱性磷酸酶的分离纯化与性质研究.海洋科学,2000,24(10):37-40
    360.谢明杰等.我国微生物肥料的研究进展及发展趋势.微生物学杂志,2000,20(4):42-45
    361.谢梅英编著.食品微生物学.北京:中国轻工业出版社,2000:155-159
    362.熊毅等.中国土壤.北京:科学出版社,1987:483-500
    363.徐卉芳,张先恩,张治平等.大肠杆菌碱性磷酸酶的体外定向进化研究.生物化学与生物物理进展,2003,30(1):89-94
    364.徐立红,张甬元,陈国胜,徐盈,原田健一.鱼肝中蛋白磷酸酶的分离纯化.水生生物学报,1995,19(4):379-381
    365.薛勇江.气相色谱法测定三甲基乙酸合成液中三甲基乙酸的含量.沈阳化王,2000,29(1):54-55
    366.严昶升主编.土壤肥力研究方法.北京:农业出版社,1988
    367.严淑湘等,中国食用菌,13(4):24
    368.晏维金,章申.磷在土壤中的解吸动力学.中国环境科学,2000,20(2):97-101
    369.杨小明,陈钧.从银杏叶中制备聚戊烯乙酸酯.中草药,2001,32(5):392-394
    370.姚晓惠,刘秀花,梁峰.土壤中磷细菌的筛选和鉴定.河南农业科学,2002,7:28-31
    371.姚永发等.方天翰主编.磷酸 磷铵 重钙技术与设计手册.北京:化学工业出版社,1997:182
    372.尹端玲.我国旱地土壤的溶磷微生物.土壤与环境,1999,20(5):243-246
    373.尹金来,沈其荣,周春霖等.猪粪和磷肥对石灰性土壤无机磷组分及有效性的影响.中国农业科学,2001,34(3):296-300
    374.尹金来,沈其荣,周春霖等.猪粪和磷肥对石灰性土壤有机磷组分及有效性的影响.土壤学报,2001,38(3):295-300
    375.尹金来等.磷肥在石灰性土壤中的形态转化及其有效性.土壤通报,1989,20(1):14-16
    376.尹瑞龄.许月蓉,顾希贤.解磷接种物对垃圾堆肥中难溶性磷酸盐的转化及在农业上的应用.应用与环境生物学报,1995,1(4):371-378
    377.于群英,李孝良,汪春华。低分子量有机酸对土壤磷素的活化效应。安徽农业技术师范学院学报,2001,15(2):13-16
    378.于群英,李孝良,王玉时等.用磷指标法确定油菜磷肥施用量研究.土壤通报,2000,31(2):88-91
    379.于群英.土壤磷酸酶活性及其影响因素研究.安徽技术师范学院学报,2001,15(4):5-8
    380.余叔文,汤章城主编.植物生理与分子生物学.北京:科学出版社.1998:336-343
    381.宇敏,许世学,和寿英,李国宝.干酪中的游离脂肪酸分离分析.云南师范大学学报,1998,18(2):72-74
    382.袁勤生,现代酶学.上海:华东理工大学出版社.2001:160
    383.臧小平,张承林,孙光明等.酸性硫酸盐土壤上施用磷矿粉对水稻养分有效性的影响.植物营养与肥料学报,2003,9(2):203-207
    384.曾广勤,刘荣昌,张爱民等.磷细菌剂在小麦上应用研究.河北省科学院学报,1997,3:25-33
    385.詹晓北.一株粪产碱杆菌产热凝胶的发酵条件.无锡轻工大学学报,2001,20(4):347-350
    386.张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用.土壤学报,1998,35(1):104-111
    
    387.张恩和.供磷水平对间套作物根系酸性磷酸酶活性的影响.西北植物学报,2001,21(1):53-58
    388.张福锁,李晓林.石灰性土壤磷的生物活化途径.土壤与植物营养研究新动态(第一卷)北京:北京农业大学出版社,1992:94-101
    389.张桂兰.麦田土壤供磷能力和经济施用磷肥的研究.国际平衡磷肥学术讨论会论文集.北京:农业出版社,1989,83-88
    390.张宏桂,刘金平,陈光荣等.长白人参中脂肪酸成分的研究.白求恩医科大学学报,1994,20(4):365
    391.张惠展.途径工程-第三代基因工程.北京:中国轻王业出版社,2002:31-38,84-86
    392.张纪忠编著.微生物分类学.上海:复旦大学出版社,1984:317-354
    393.张立群,何文.薄层荧光色谱内标法测定湖北山楂中熊果酸的含量.药物分析杂志,1995,15(1):30-33
    394.张强等.磷肥在石灰性土壤中的固定及其肥效演变.山西农业科学,1994,22(2):48-50
    395.张漱名,于淑芳.在石灰性土壤中无机磷形态和有效性的研究.土壤肥料,1992,6(3):1-4
    396.张亚丽,沈其荣,曹翠玉.有机肥料对土壤有机磷组分及生物有效性的影响.南京农业大学学报,1998,21(3):59-63
    397.章永松等.有机肥活化土壤中磷的微生物学机理.浙江农业大学学报,1994,20(3):243-248
    398.赵小蓉,林启美,李保国.溶磷菌对四种难溶性磷酸盐溶解能力的初步研究.微生物学报,2002,42(2):236-241
    399.赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系..微生物学杂志,2003,23(3):5-7
    400.赵小蓉,林启美,孙焱鑫,姚军,张有山.细菌解磷能力测定方法的研究.微生物学通报,2001,28(1):1-4
    401.赵小蓉,林启美,孙焱鑫,张有山,张美庆.玉米根际和非根际解磷细菌的分布特点.生态学杂志,2001,20(6):62-64
    402.赵小蓉,林启美,赵紫鹃,李保国.一株曲霉Aspergillus 2TCiF2溶解磷矿粉的动态.中国农业大学学报,2003,8(3):43-46
    403.赵小蓉,林启美.微生物解磷的研究进展.土壤肥料,2001(3):7-11
    404.甄清香.邵煜庭.施磷肥对土壤磷素形态转化和有效性的影响.甘肃农业大学学报,1994,30(4):392-395
    405.郑传进,黄林,龚明.巨大芽孢杆菌解磷能力的研究.江西农业大学学报(自然科学版).2002.24(2):190-192
    406.郑国刚,方滢芝.高效液相色谱法测定赖氨匹林颗粒剂含量及其降解产物水杨酸的控制.中国医院药学杂志,2000,20(10):609-610
    407.中国科学院地质研究所.影响磷灰石有效磷含量的因素及磷灰石的分类.土壤学报,1966,14(1):22-30
    408.中国科学院南京土壤研究所微生物室.土壤微生物研究法,1985.北京:科学出版社
    409.中国科学院土壤研究所磷矿粉工作组.磷矿粉的施用技术问题.土壤学报,1966,14(1):88
    410.中国科学院微生物研究所.农用微生物生产技术.北京:科学出版社,1974,43—54
    411.中国农科院土肥所主编.中国肥料.上海科学出版社,1994:55
    412.周春霖,尹金来,洪立洲等.猪粪和磷肥对黄潮土速效磷、有机磷组分及其有效性的影响.江苏农业学报,2001,17(1):39-43
    
    413.周广业.阎龙翔.长期施用不同肥料对土壤磷素形态转化的影响.土壤学报,1993,30(4):443-446
    414.周士胜,臧益民.蛋白磷酸酶在离子通道调控中的作用.生理科学进展,1997,28(3):277-279
    415.周淑媛,胡晔,柳根元,徐新.丁酸及2-溴丁酸的气相色谱分析.化工标准化与质量监督,1999,(7):19-20
    416.周中毅.华北磷块岩的矿物化学.地质科学,1960,1:25
    417.朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述.生态环境,2003,12(1):102-105
    418.朱天辉,杨佐忠.枯草芽孢杆菌菌种退化及其控制.西南林学院学报,20(1):31-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700