用户名: 密码: 验证码:
光聚合仿生生物粘合剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物粘合剂是能够应用于生物体组织的具有一定生物相容性和粘合力的医学材料。光聚合技术制备生物粘合剂是一个较新的研究方向,近年来在国际上才有少量报道。与传统应用的代表性生物粘合剂α-氰基丙烯酸酯类和血纤维蛋白胶相比,光聚合制备生物粘合剂具有凝胶速度快、对机体损伤小、单体和树脂来源广泛的优点,特别是对于不规则损伤部位的原位修复,具有可操作性强的优势。
     本研究受贻贝分泌的带有邻苯二酚结构的聚酚蛋白具有超强耐水性粘结能力的启发,选择邻苯二酚结构作为所制备单体的粘附官能团,分别制备了单官能度带有邻苯二酚结构的多巴胺甲基丙烯酰胺(简称DMA)、双官能度带有邻苯二酚结构的多巴胺甲基丙烯酸酯(简称EGAMA-DOPA),采用红外、核磁对产物的结构进行了表征;研究了体系的光聚合条件,如单体和引发剂浓度、光强、溶液组成等;采用光聚合动力学测试表征了这两个生物粘合剂体系的凝胶化时间;研究了凝胶的溶胀行为、粘结强度、爆破压以及体外生物相容性。此外,制备了可光交联的壳聚糖衍生物,并以它作为DMA光聚合生物粘合剂体系的交联剂,考查其影响;同时,将所制备的DMA单体用于电纺丝无纺布膜中,提高膜的粘附力,期望在伤口敷料或多层生物修复膜中得到应用。
     研究得到了如下结论:
     1、不同组成的DMA溶液紫外光聚合体系,在光强30mw/cm2,加入0.5%引发剂2959的条件下,均能在3-15min内完成凝胶化,对于明胶片材的粘接性能最高可达3.5MPa。爆破压测试显示其对于小鼠皮的密封爆破压最高可达178mmHg。体外细胞毒性试验表明,聚合后的DMA凝胶体系对于小鼠成纤维细胞L929的毒性较小,细胞在凝胶表面贴附、分化较好。
     2、与DMA溶液的紫外光聚合体系相比,双官能度单体(简称EGAMA-DOPA)为液态,可直接进行无溶剂的光聚合,而且可见光聚合速率明显提高;为改善性能,采用聚乙二醇双甲基丙烯酸酯(简称PEGDMA)与其共聚,该体系的大部分样品在15min内可以完成凝胶化,PEGDMA的引入不但提高了聚合速度,使凝胶化更完全,同时还阻止了单体的游离,提高了生物相容性,使材料韧性更好。
     3、DMA单体加入到PEO的电纺丝溶液中,通过纺丝后光固化方法,制备了一种具有生物粘附性能的PDMA/PEO纳米纤维无纺布膜,同时这种方法为多层电纺丝膜的层间复合提供了一种新思路。
Bioadhesive is well known as medical material with a certain biocompatibility and adhesion applied to biological tissue.
     Photopolymerization technology applied to the bioadhesive as a new research direction, few reports related to this research. When compared with other method, photopolymerization technology has a many advantages such as faster curing, less damage to organism, more widely range of sources of the monomers and resin than a-cyanoacrylate adhesives and the fibrin sealant. Especially for the irregular site of injury, this method is easier to operate.
     This research inspired by the mussel adhesion protein having the superior water-resistance bonding capacity. Choosing the dopamine (containing catechol groups) as the adhesive functional group, the monomer DMA with single light-sensitive functional group and EGAMA-DOPA with double light-sensitive functional groups was prepared. The structure of products was analyzed by using the FTIR and NMR; and the photopolymerization conditions of above monomer were researched, such as initiator and monomer concentration, light intensity, and solution composition etc. The gel time was characterized by series real time near infrared spectroscopy (SRTIR). And the swelling behavior of gel, bond strength, bursting pressure and in vitro biocompatibility were also studied. In addition, the modified light-sensitive chitosan was prepared and used for cross-linking DMA gels. At the same time, in order to improve the adhesion of the elecrospun membrane, we introduced the DMA into the nanofibrous membrane. The nanofibrous membranes would be further applicable for skin regeneration.
     The Details and conclusions are described as follows:
     1, The samples with different composition, each of them could complete gelation within 3-15min. The adhesive strength of the samples adhered to gelation sheets to simulate the living tissues could reached 3.5MPa. The highest burst pressure reached 178mmHg, when the samples adhered to fresh mouse skin. And good capability of the DMA gels supporting the mouse fibroblast (L929) attachment and proliferation are observed.
     2, Compared to the DMA, EGAMA-DOPA is a liquid. So it could be directly photocured by the visible light. In order to improve the performance of the gels, PEGDMA was introduced into the visible light curing system. As the results showed, most of the samples can be completed curing within 15min. In addition, we found the introduction of PEGDMA could not only accelerate the photopolymerzation and make the photopolymerization more completely, but also prevent the monomers dissociate, improve the biocompatibility and make the material toughness better.
     3, Dopamine methacrylamide/poly(ethylene oxide)(DMA/PEO) nanofibers were successfully prepared by electrospinning of aqueous DMA/PEO solution. Biocompatible nanofibrous membrane with good adhesion was produced by photocuring from the DMA/PEO nanofibers. This method provides a new idea for the preparation of the compound of multo-layer elecrospun membranes.
引文
[1]周坤,史忠.急诊意料中医用粘合剂的研究进展[J].现代生物医学进展,2007,7(9):1408-1410
    [2]夏毅然,徐永祥,刘文冰,等.医用粘合剂的研究及应用发展[J].化工新材料,2003,31(4):9-12
    [3]Martin K. McDermott, Tianhong Chen, Christina M. Williams, et al. Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin[J]. Biomacromolecules,2004,5:1270-1279
    [4]Donkerwolcke, Burny M, Muster F D, et al. Tissues and bond adhesive historical aspects[J]. Biomaterials,1998,19:1461-1466
    [5]陈子达,李玲,邹翰.医用胶粘剂的研究进展[J],化学与粘合,2001,1:21-25
    [6]Le Guehennec, Layrolle P, Daculsi G, et al. A review of bioceramics and fibrin sealant[J]. European Cells and Materials,2004,8:1-10
    [7]汪鹏飞.a-氰基丙烯酸酯胶粘剂的最新发展[J].化学与粘合,1989,2(4):247-251
    [8]刘炼,魏志勇,高军,王沛,齐民.生物可降解聚氨酯的合成及应用[J].中国组织工程研究与临床康复,2008,12(14):2735-2738
    [9]Cohn D, Salomon AH. Designing biodegradable multiblock PCL, PLA thermoplastic elastomers[J]. Biomaterials,2005,26(15):2297—2305
    [10]Zhao Q, Cheng GX, Li HM, et al. Synthesis and characterization of biodegradable poly(3 —hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers[J]. Polymer,2005, 46:10561-10567
    [11]Fabiana Quaglia. Bioinspired tissue engineering:The great promise of protein delivery technologies[J]. International Journal of Pharmaceutics,2008,364:281-297
    [12]Lendlein A, Langer R. Biodegradable elastic shape—memo~ polymers for potential biomedical applications.[J] Science,2002,296(5573):1673-1676
    [13]薛新顺,罗发兴.纤维素衍生物粘合剂的应用概况[J].粘结,2006,27(4):29-31
    [14]李艳华.羟丙基甲基纤维素(HPMC)在盐酸洛美沙星片生产中的应用[J].锦州医学院学报,2001,22(1):22-23
    [15]黄延宾,金在护.兼备生物粘合剂和生物可降解成分的材料[P].中国专利,03813775.5.2003.5.29
    [16]蒋大光,,王晓玲,孙玉斌,等.国内生物粘合剂的研究近况与前景[J].中国冶金工业医学杂志,1997,14(4):233-234
    [17]桑新亭,唐伟松,等.国产纤维蛋白粘合胶临床应用观察[J].中国新药杂志,2000,9(8):554-557
    [18]Timothy J Deming, Mussel byssus and biomolecular materials[J]. Current Opinion in Chemical Biology,1999,3:100-105
    [19]Vaccaro E, Waite J H. Yield and post-yield behavior of mussel byssal thread:a self-healing biomolecular material[J]. Biomacromolecules,2001,2(3):906-911
    [20]Shin h, Jo s, Mikos, et al, Biomimetic materials for tissue engineering[J]. Biomaterials, 2003,24(24):4353-4361
    [21]Kathryn J. Coyne, Xiao-Xia Qin. Extensible collagen in mussel byssus:A natural block copolymer[J]. Science,1997,277:1830-1832
    [22]Waite J H. Evidence for a repeating 3,4-2-dihydroxyphenylalanine and hydroxyproline containing decapeptide in the adhesive protein of the mussel mytilus edulis [J]. Journal of Biological Chemistry,1983,258 (5):29112-2915
    [23]Waite JH, Qin X. Polyphosphoprotein from the adhesive pads of mytilus edulis[J]. Biochemistry,2001,40 (9):28872-28893
    [24]Lin Q, Gourdon D, Sun C, et al. Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3[J]. Proceedings of the National Academy of Sciences of the United States of USA,2007,104(10):37822-3786
    [25]Miaoer Yu, Jungyeon Hwang, Timothy Deming, et al. Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins[J]. Journal of the American Chemical Society.1999,121:5825-5826
    [26]Monahan J, Wilker JJ. Crosslinking the protein precursor of marine mussel adhesives: bulk measurements and reagents for curing [J]. Langmuir,2004,20(9):3724-3729
    [27]Mary J. Sever, Jaime T. Weisser, Jennifer Monahan, et al. Metal-mediated cross-linking in the generation of a marine-mussel adhesive[J]. Angewandte Chemie International Edition 2004,43:447-450
    [28]Elena Loizou, Jaime T. Weisser, Avinash Dundigalla, et al. Structural effects of crosslinking a biopolymer hydrogel derived from marine mussel adhesive protein[J]. Macromolecular Bioscience,2006,6:711-718
    [29]Murat Guvendiren, Phillip B. Messersmith, Kenneth R. Shull, Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels[J]. Biomacromolecules,2008,9: 122-128
    [30]Tao He, Z.L. Shi, Ning Fang, et al. The effect of adhesive ligands on bacterial and fibroblast adhesions to surfaces[J]. Biomaterials 2009,30:317-326
    [31]Zhilong Shi, K. G. Neoh, E. T. Kang, et al. Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide[J]. Journal of Biomedical Materials Research Part A,2008,86A(4):865-872
    [32]Andrea R. Statz, Robert J. Meagher, Annelise E. Barron, et al. New peptidomimetic polymers for antifouling surfaces[J] Journal of the American Chemical Society,2005,127, 7972-7973
    [33]Taek Gyoung Kim, Hyukjin Lee, Yangsoo Jang, et al. Controlled release of paclitaxel from heparinized metal stent fabricated by layer-by-layer assembly of polylysine and hyaluronic acid-g-poly(lactic-co-glycolic acid) micelles encapsulating paclitaxel[J]. Biomacromolecules,2009,10:1532-1539
    [34]Tao He, Z.L. Shi, Ning Fang, et al. The effect of adhesive ligands on bacterial and fibroblast adhesions to surfaces[J]. Biomaterials,2009,30:317-326
    [35]Mieke C. van der Leeden. Are conformational changes, Induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins[J]. Langmuir,2005,21:11373-11379
    [36]Luis Burzio, Cross-linking in adhesive quinoproteins:Studies with model decapeptides[J]. Biochemistry,2000,39:11147-11153
    [37]Almar Postma, Yan Yan, Yajun Wang, et al, Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules[J]. Chemistry of Materials, 2009,21:3042-3044
    [38]Glenn Westwood, Trinity N. Horton, Jonathan J. Wilker, et al. Simplified polymer mimics of cross-linking adhesive proteins[J]. Macromolecules,2007,40:3960-3964
    [39]Murat Guvendiren, Phillip B. Messersmith, Kenneth R. Shull, et al. Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels[J] Biomacromolecules,2008, 9:122-128
    [40]Miaoer Yu, Timothy J. Deming. Synthetic polypeptide mimics of marine adhesives[J]. Macromolecules,1998,31:4739-4745
    [41]Bruce P. Lee, Jeffrey L. Dalsin, Phillip B. Messersmith, et al. Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels[J]. Biomacromolecules,2002, 3:1038-1047
    [42]John L. Murphy, Laura Vollenweider, Fangmin Xu, et al. Adhesive performance of biomimetic adhesive-coated biologic scaffolds[J]. Biomacromolecules,2010,-11:2976-2984
    [43]Kazunori Yamada, Tianhong Chen, Guneet Kumar, et al. Chitosan based water-resistant adhesive analogy to mussel glue[J]. Biomacromolecules,2000,1:252-258
    [44]魏杰,金养智.光固化涂料[M].北京:化学工业出版社,2005.13-15
    [45]Yoshinori Onuki, Masato Nishikawa, Mariko Morishita, et al. Development of photocrosslinked polyacrylic acid hydrogel as an adhesive for dermatological patches: Involvement of formulation factors in physical properties and pharmacological effects[J]. International Journal of Pharmaceutics,2008,349:47-52
    [46]Yohann Catel, Michel Degrange, Loic Le Pluart, et al. Synthesis photopolymerization, and adhesive properties of new bisphosphonic acid monomers for dental application[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2009,47:5258-5271
    [47]Katsuaki Ono, Yoshio Saito, Hirohumi Yura, et al. Photocrosslinkable chitosan as a biological adhesive[J]. Journal of Biomedical Materials Research,2000,49(2),289-295
    [48]Simone S. Stalling, Sunday O. Akintoye, Steven B. Nicoll, et al. Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction[J], Acta Biomaterialia 2009,5,1911-1918
    [49]Oliver D. Schneider, Alexander Stepuk, Dirk Mohn, et al. Light-curable polymer/calcium phosphate nanocomposite glue for bone defect treatment[J]. Acta Biomaterialia 2010, 6:2704-2710
    [50]Antonio Lauto, J. Hook, M. Doran, F. Camacho, et al. Chitosan adhesive for laser tissue repair:In vitro characterization[J]. Lasers in Surgery and Medicine,2005,36:193-201
    [51]Gozde Ozturk, Timothy E. Long. Michael addition for crosslinking of poly(caprolactone)s[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2009, 47(20):5437-5447
    [52]侯丹丹,郝彤,叶霖,等.通过麦克加成反应形成的三臂聚乙二醇丙烯酸酯可注射水凝胶的制备与表征[J].高分子学报,2008,4:388-393
    [53]Natalie Artzi, Tarek Shazly, Aaron B. Baker, et al, Aldehyde-Amine Chemistry Enables Modulated Biosealants with Tissue-Specific Adhesion, Advanced Material,2009,21, 33399-3403
    [54]Deitzel J M, Kleinmeyer J D, Hirvonen J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer,2001,42:8163-8170
    [55]Agarwal S, Wendorff J H, Greiner A, et al. Use of electrospinning technique for biomedical applications[J]. Polymer,2008,49:5603-5621
    [56]Macneil S. Designing synthetic scaffolds to take the place of human dermis for soft tissue reconstruction[J]. European Cells and Materials,2009,18(2):38-38
    [57]Son W K, Youk J H, Lee T S, et al. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers[J]. Polymer,2004,45: 2959-2966
    [58]Wang M, Yu J H, Kaplan D L, et al. Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning[J]. Macromolecules,2006,39: 1102-1107
    [59]Yang D Z, Jin Y, Zhou Y S, et al. In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds[J]. Macromolecular Bioscience,2008,8:239-246
    [60]Kubota, Naoji, Eguchi, Yukari. Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility[J]. Polymer Journal,1997,29: 123-127
    [61]Lu, Shao J, Xue F, et al. Preparation of water-soluble chitosan[J]. Journal of Applied Polymer Science,2004,91:3497-3503
    [62]石双群.宋新芳,多巴胺的自氧化作用[J],河北师范大学学报(自然科学版),1997,21(4):387-390
    [63]Kumar M, Muzzarelli R, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives[J]. Chemical Reviews,2004,104:6017-6084
    [64]Zhou Y S, Yang D Z, Cen X M, et al. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration[J]. Biomacromolecules,2008,9(1):349-354
    [65]Macneil S. Progress and opportunities for tissue-engineered skin[J]. Nature,2007,445: 875-880
    [66]Agarwal S, Wendorff J H, Greiner A, et al. Use of electrospinning technique for biomedical applications[J]. Polymer,2008,49:5603-5621
    [67]Macneil S. Designing synthetic scaffolds to take the place of human dermis for soft tissue reconstruction[J]. European Cells and Materials,2009,18(2):38-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700