用户名: 密码: 验证码:
青藏高原航磁双磁异常带与负磁异常区地质意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1998年中国国土资源航空物探遥感中心在青藏高原中西部地区完成了1∶100万航磁概查,并首次发现雅鲁藏布江双磁异常带、青藏高原中部北北东向负磁异常区等重要的航磁异常;2000年至2005年,又在西藏一江两河地区和西藏申扎一那曲地区开展了1∶20万固体矿产航空磁测勘查,这为进一步探讨特提斯洋的演化、雅鲁藏布江缝合带的形成以及青藏高原的隆升机制提供了新的资料、新线索、新的角度。
     青藏高原航磁双磁异常带(雅鲁藏布江双磁异常带)的南磁异常带与已发现的雅鲁藏布江缝合带的蛇绿岩带相吻合,并且两磁异常带具有较为相似的磁场特征,但磁异常北带位置地表出露的是冈底斯花岗岩,所以此磁异常北带的性质(是冈底斯花岗岩引起的?还是基性或超基性岩引起的?)是本论文研究的内容之一。
     青藏高原区域航磁异常总体走向为北西西—东西走向,航磁反映无论是磁异常分区或规模较大磁异常带均为近东西走向,磁异常的这种特征显然是客观地反映了高原各块体的构造走向。根据航磁不同高度上延结果,随着上延高度的增加,在测区最东部自柴达木向西南延伸的广大地区出现一条北北东向的负磁异常区,这一负磁异常区东西宽可达300~400km,南北长则纵贯整个高原,可达1200km以上。而在原航磁△T平面图(图1-1)上,这一北北东向的区域负磁异常背景上一些浅层局部磁异常又显示为北西西—东西走向,与高原的区域构造走向一致,在东昆仑中段、可可西里、羌塘东等地均有清晰反映,形成类似于“立交桥式”的磁异常结构。这是在其它地区很少见到的可能仅出现在青藏高原中部的一种独特的地球物理现象,本论文对这一现象的形成机理进行研究。
     岩矿石的磁性不仅是产生航磁异常的物性基础,也是进行航磁成果解释的重要依据。本论文在研究区内收集磁化率数据25655个,基本掌握了区内地层岩石和岩浆岩的磁性特征,为航磁资料的解释提供了重要依据;并从航遥中心航磁资料中,优选出青藏高原中西部地区航磁全部资料,塔里木盆地西部、塔里木盆地东部、西藏中部地区、川西藏东地区、青海中南及西南、柴达木盆地、罗布泊—阿拉善、西藏一江两河地区1∶20万的部分资料,保持青藏高原中西部航磁概查的测区西部、南部边界不变,北部边界扩展到北纬40°,东部边界扩展到东经96°,通过对这一范围的航磁数据进行位场转换处理,编制了系列航磁图件,结合其它地质及地球物理研究成果,采用磁性场源深度成像、物性参数正反演计算、小波变换滤波、磁异常正反演拟合计算等前沿技术方法,对青藏高原航磁双磁异常带及北北东向负磁异常区的异常性质及地质意义进行了研究,取得了以下成果:
     1、编制了高质量的航磁位场转换处理系列图件。通过对青藏高原航磁△T资料进行化极、向上延拓、垂向二次导数和不同高度层场差处理,编制了△T频率域化极上延1km、5km、10km、20km、30km、50km、70km,△T不同高度层场差1-5km、5—10km、10—20km、20-30km、30-50km,△T频率域化极上延垂向二次导数1km、5km、10km、20km、30km、50km、70km等系列等值线平面图。
     可以看出青藏高原航磁异常分布与该区域构造方向基本一致,均呈近东西向。在高原边缘以及各地体边界磁异常强度较大,多呈近东西向的条带状、线性磁异常,其大多是由出露地表且有较大延深的基性岩、超基性岩以及蛇绿岩套引起的,具有磁异常形状狭窄尖锐等特征,表明其与断裂有密切关系,反映了各个地体之间的结合状况。各个地体内部磁异常相对平静。加深了青藏高原原航磁特征的认识,为地质构造和矿藏资源的研究提供了更为丰富的磁场信息和航磁系列图。
     2、采用磁源参数成像法和可视化重磁异常正反演软件,研究雅鲁藏布江缝合带的空间分布特征。
     青藏高原航磁双磁异常带(即雅鲁藏布江双磁异常带),总体呈北西西走向,由南北两条磁异常带组成,沿雅鲁藏布江缝合带呈线性展布,是雅鲁藏布江缝合带磁性特征反映。
     (1)开发并使用磁源参数成像软件对西藏一江两河地区的航磁数据进行局部波数成像;局部波数图像明显地显示出雅鲁藏布江双磁异常带是由隐伏岩体引起的。为进一步研究雅鲁藏布江缝合带的双磁异常带的性质提供了证据。
     从局部波数图像上可知:与雅鲁藏布江航磁双磁异常南带相对应的磁源体(蛇绿岩带)局部波数极值在0.2~0.5之间,埋深约0km~3km。航磁双磁异常带北带无论是东段异常,还是中段异常,其相对应的磁源体,波数极大值均在0.25左右,因此东段与中段磁性体埋藏深度相差不大,约3km。在局部波数图上,雅鲁藏布江北部大面积出露地表的花岗岩,表现为一些团块状,局部波数值在0.8~0.9左右,与地貌有较好的对应关系,这说明花岗岩体虽能引起较强的局部异常,但花岗岩体磁性不均匀,很难产生像雅鲁藏布江航磁双磁异常带这样规模宏大的线性异常带。
     由局部波数图还可看出,位于航磁双磁异常带北带的北部地表出露的具有磁性的花岗岩,距南部边界有12km的距离。另西藏一江两河地区东段1:20万航磁测量结果,反映出花岗岩受北东向和北西向两组断裂控制的,并不是沿着雅鲁藏布江缝合带侵位的。
     总之,无论是雅鲁藏布江航磁双磁异常带的北带还是南带,局部波数反映出雅鲁藏布江缝合带的磁性体大部分是隐伏的,极少出露地表,航磁双磁异常北带东、中、西各段的磁性体埋深相近,只是中段磁性体比东段更宽;并且两段可能在仁布被一北西向断裂错断,东段向南位移了一段距离。
     (2)使用可视化重磁异常正反演软件和已知的重力、地震资料作为约束条件,依据岩石的磁性参数,对雅鲁藏布江缝合带的双磁异常带进行正反演拟合计算,给出了雅鲁藏布江缝合带上磁性体的空间分布特征;说明了雅鲁藏布江双磁异常北带磁性体具有相似的南倾产状,在空间分布上具有连续性。
     (3)结合重力、地震资料以及其它地质资料对雅鲁藏布江缝合带的双磁异常带的性质进行了研究
     a雅鲁藏布江缝合带的双磁异常带北带在航磁异常图上呈连续的线性展布,地面实测磁场、磁化率等综合剖面说明它与地表出露的花岗岩没有对应关系;
     b雅鲁藏布江缝合带位于缓变化区域布格异常梯度带上,这说明了雅鲁藏布江缝合带与相对升高的重力布格异常相对应;
     c地震波速揭示在雅鲁藏布江缝合带处上地壳的波速在6.0km/s~6.2km/s,按密度与速度的关系式计算出缝合带处岩体的密度在2.70~2.77g/cm~3之间,高于上地壳平均密度2.67 g/cm~3;
     综上所述,雅鲁藏布江缝合带上的岩体应具有强磁性、高密度特性,在航磁异常北带上多处有蛇绿岩出露,如罗布莎等,从而推断雅鲁藏布江航磁异常北带是蛇绿岩型隐伏的基性和超基性岩引起的。
     3、利用航磁系列图件,研究青藏高原中部北北东向负磁异常区的性质及地质意义
     (1)青藏高原负磁异常区,呈北北东向,东西宽可达300~400km,南北长则纵贯整个高原,可达1200km以上,包含着更为丰富的地壳深部信息。
     (2)青藏高原负磁异常的成因具有一定深度的区域性质特征,它受区域构造格局演化的控制;受地层岩性与厚度变化的影响;深部构造及其岩浆活动,影响了地壳中岩石磁性及磁场的变化,热液作用、高温低速体的上升,在一定程度上起着退磁作用。
     (3)青藏高原负磁异常区出现预示在西藏南部地表观察到的南北向断裂已向北延伸,也就是说青藏高原腹地的深部和岩石圈存在近南北向的构造。这种近南北向的断裂是在青藏高原总体东西构造基础上形成的,是整个青藏高原南部边缘前弧断裂的配套断裂。
In 1998, China Aero Geophysical Survey & Remote Sensing Center for Land and Resources has completed the aeromagnetic survey of Midwest zone of Qinghai-Tibet Plateau (1:1000000) and found the double- magnetism anomaly zone in Q-T Plateau and the negative magnetism anomaly zone with the direction of NNE in the middle of Q-T Plateau, etc for the first time. Form 1998 to 2005, we also complete the aeromagnetic survey of solid mineral (1:200000) in Yijianglianghe area and Shenzha-Naqu area of Tibet. This data offered the new information and new key and new point for discussing the evolvement of Thetis Ocean and the formation of the suture zone of Brahmaputra and the uplift mechanism of Q-T Plateau.
     The south of the double- magnetism anomaly zone in Q-T Plateau (Brahmaputra double- magnetism anomaly zone) matches the ophiolite zone of Brahmaputra suture zone which has been discovered. Both the north and the south magnetism anomaly zones have the similar magnetic characters. But the outcrop of the north magnetism anomaly zone is Gangdise granite. So the research on the character of the north magnetism anomaly zone (is it caused by Gangdise granite, basic rocks, or ultrabasic rock?) is one part of this paper.
     The main trend of the magnetism anomaly zone in the area of Q-T Plateau is NWW-EW. The aeromagnetic survey shows that either the magnetism anomaly division or the major magnetism anomaly zone is mostly E-W trend. Obviously, the character of the magnetism anomaly shows the structural trend of the blocks under the Q-T Plateau. According to the upward continuation, as the height increases, there is a negative magnetism anomaly zone with NNE direction in the very east part of the surveyed area (from the Qaidam to the wide southwestern area).The negative magnetic anomaly zone is as wide as 300-400km from east to west and more than 1200km from north to south which is across the whole Plateau. However, on the aeromagnetic map ofΔT (figure 1-1), some shallow part of the negative magnetic anomaly zone shows the NWW-EW direction on the background of magnetic anomaly with NNE direction. This direction matches the structural trend of Q-T Plateau and it is showed clearly in the middle of eastern Kunlun, Kekexili, eastern Qiangtang and so on. All of these form the magnetism anomaly structure similar with "overpass". This is a kind of typical geophysical phenomenon which maybe only appears in the middle of Q-T Plateau and is rare in other areas. We'll discuss the cause of the phenomenon in this paper.
     The magnetism of the rocks is not only the physical basis of the aeromagnetic anomaly, but also important foundation for interpretation of aeromagnetic data. In this paper, we collect 25655 samples of susceptibility in the researched area and we almost get the magnetic characters of the rocks and the igneous rock of the layer in the area which provide the important basis for aeromagnetic interpretation. From the aeromagnetic data provided by Aero Geophysical Survey & Remote Sensing Center, we choose all the data of the middle west areas of Q-T Plateau, and the data of the middle west area of Tarim Basin, the middle area of Tibet, the west of Sichuan and east of Tibet, the middle south and southwest of Qinghai, Qaidam Basin, Lop Nur- Alxa, Yijianglianghe area of Tibet (1:200000). We keep the west and south boundary of the aeromagnetic survey for the middle west areas of Q-T Plateau unchanged, and extend the north boundary to 40°north latitude and the east boundary to 96°east longitude. By converting and processing the potential field of this area, we establish a series of aeromagnetic maps. With other geology and geophysics outcomes, such as vertical imagery of aeromagnetic source, forward modeling and inversion of physical parameters, wavelet transform filtering and adaptation calculation of magnetism anomaly, etc, we researched the characters and geologic interpretation of the double- magnetism anomaly zone in Q-T Plateau and the negative magnetism anomaly zone with the direction of NNE, getting the following results.
     1. We established a series of aeromagnetic maps with potential field converted and processed. After reduction-to-the-pole, upward continuation, and the processing of vertical second derivative and difference in field for different heights, we established a series of contour plans includingΔT reduced-to-the-pole and upward continued in frequency domain for 1km、5km、10km、20km、30km、50km、70km, andΔT with difference in field for different heights 1-5km、5—10km、10—20km、20-30km、 30—50km, andΔT with vertical second derivative reduced-to-the-pole and upward continued in frequency domain for 1km、5km、10km、20km、30km、50km、70km, etc.
     It appears that the magnetism anomaly distribution in Q-T Plateau matches the structural trend of this area (EW direction). The edge of the Plateau and the boundary of terrains are the high-field magnetic anomaly zones, which are almost linearity and like a belt with EW direction. Most of them are caused by the basic rock, ultrabasic rock and ophiolite which are outcrop and extensible. So the shape of the magnetism anomaly is confined and keen-edged, which means that anomaly is related closely to the fault of this area and it reflects the formation picture of the terrains. The internal anomaly of those terrains is relatively calm. We deepen the cognition of the aeromagnetic characteristic in Q-T Plateau, and provide more abundant magnetic information and aeromagnetic map for the study of geological structure and mineral resources.
     2. Introducing vertical imagery of aeromagnetic source method and software of visual forward modeling and inversion, we study the characters of the distribution of Brahmaputra suture zone.
     The double- magnetism anomaly zone in Qinghai-Tibet Plateau (the Brahmaputra zone) generally directs to NWW, and is made up of two anomaly zone in north and south. It appears linear distribution along with the Brahmaputra suture zone, which reflects the magnetic characters of Brahmaputra suture zone.
     (1) We developed and used the imagery software of aeromagnetic source parameters into local wave-number imagery for the aeromagnetic data of Yijianglianghe area of Tibet. Local wave-number image shows that the Brahmaputra double-magnetism anomaly zone is caused by buried rock, which provides more evidence to further research of this zone.
     From the local wave-number image we can see the local wave-number extreme of aeromagnetic source which is corresponded to the south of Brahmaputra double- magnetism anomaly zone is 0.2-0.5 and its buried depth is 0km-3km. However, the wave-number extreme of aeromagnetic sources which are corresponded to east and middle of the north of this double- magnetism anomaly zone are about 0.25. So their buried depths of east and middle are similar and are all bout 3km. in the local wave-number image, the blanket outcrop granite of north of Brahmaputra appears lumpy, and its local wave-number extreme is about 0.8-0.9, which is corresponded to the physiognomy. This shows the granite mass can cause the local anomaly, but hardly cause the extensive linear anomaly zone like Brahmaputra double- magnetism anomaly zone because of its nonuniform magnetism.
     From the local wave-number image we can also see the magnetic outcrop granite lying on the north of double- magnetism anomaly north zone is as far as 12km to the south boundary. The aeromagnetic survey (1:200000) of Yijianglianghe area of Tibet shows the granite is controlled by the faults with NE direction and NW direction but not along the Brahmaputra suture zone emplacement.
     Above all, whether on the north or south of Brahmaputra double- magnetism anomaly zone, the local wave-number shows the most of magnetic body of Brahmaputra suture zone is buried, barely outcropping. The depths of magnetic bodies of east, middle and west of double- magnetism anomaly north zone are the similar, but it's wider for the middle than the east, and they're maybe broken by the fault with NW direction at Renbu and the east moves some distance to south.
     (2) We use the visual software of forward modeling and inversion into completing forward modeling and inversion adaption of the double- magnetism anomaly zone in Brahmaputra suture zone and establish the 3D magnetic distribution of this suture zone, with gravity and seismic data as condtraints and considering magnetic characteristics of rock. It shows that the northern double- magnetism anomaly zone has similar character of approach -to-south attitude as the south, which appears continuity.
     (3) Combining gravity, seismic and other geologic data, we study the characters of the double- magnetism anomaly zone in Brahmaputra suture zone.
     a) The north of the double- magnetism anomaly zone in Brahmaputra suture zone shows continuous linear distribution on magnetism anomaly map, magnetic field and magnetic capacity of ground truth indicate that this distribution has noting to do with outcrop granite;
     b) Brahmaputra suture zone locates on Bouguer anomaly gradient area where variance is slow, that means the suture zone is correspondent to the relatively ascended gravimetric Bouguer anomaly.
     c) Seismic velocity reveals that the velocity of the shell on the suture zone is 6.0km/s-6.2km/s. According to the relation of velocity and density, the rock density of this zone is 2.70g/cm~3-2.77g/cm~3' which is higher the average of the shell (2.67g/cm~3).
     In conclusion, the rock in Brahmaputra suture zone is characterized by high magnetism and density. A few of ophiolite outcrop in the north of aeromagnetic anomaly zone, such as Luobusha. We can infer that the northern aeromagnetic anomaly zone in Brahmaputra is caused by buried basic and uitrabasic ophiolite.
     3. Adopting the series of aeromagnetic maps, we research the character and geologic meaning of the NNE negative magnetic anomaly in the middle of Qinghai-Tibet Plateau.
     (1) Negative magnetic anomaly zone in Qinghai-Tibet Plateau heads to NNE, and it ranges 300-400km from east to west, and 1200km across the whole Plateau from south to north. This carries a lot of information of deep earth.
     (2) The cause of Negative magnetic anomaly in Qinghai-Tibet Plateau is local in some depth, and it depends on local structural evolution, and is affected by the variance of thickness and formation lithology. The deep seated structure and magmatic activity influence magnetic characteristics of rock. Hydrothermal activity and the uplift of high-temperature and low-velocity substance work as demagnetizer in some degree.
     (3) Negative magnetism anomaly in Q-T Plateau indicates that the south-to-north fracture belt found in southern Xizang has extended to north, which means the same structure exists in deep lithosphere of Q-T Plateau hinterland. This fracture develops on the basis of the whole east-to-west structure of the Plateau, and it is the assorted fracture of the frontal arc fracture in south of the Plateau.
引文
[1]中国国土资源航空物探遥感中心.中国及其毗邻海域航空磁力△图[M].北京:地质出版社,2004.
    [2]熊盛青,周伏洪,姚正煦,等.青藏高原中西部航磁概查[M].北京:地质出版社,2002.
    [3]姚正煦,周伏洪,薛典军,等.雅鲁藏布江航磁异常带性质及其意义[J].物探与化探,2001,25(4):241-252.
    [4]周伏洪,姚正煦,薛典军,等.航磁概查对青藏高原一些地质问题的新认识[J].物探与化探,2001,25(2):81-89.
    [5]地矿部区域重力调查方法技术中心.中国及其毗邻海域布格重力异常图[M].北京:地质出版社,1999.
    [6]青海地质矿产局.青海地质地[M].北京:地质出版社,1988.
    [7]西藏地质矿产局.西藏地质志:西藏自治区地质构造图[M].北京:地质出版社,1988.
    [8]李廷栋.欧亚地质图[M].北京:地质出版社,2002.
    [9]肖序常,李廷栋,李光岑,等.青藏高原的构造演化[J].中国地质科学院院报,1990,20:123-125.
    [10]袁学诚.论中国西部岩石圈三维结构及其对寻找油气资源的启示[J].中国地质,2005,32(1):1-12.
    [11]谭富文,王剑,李永铁,等.羌塘盆地侏罗纪末一早白垩世沉积特征与地层问题[J].中国地质,2004,31(4):400-405.
    [12]葛肖红,刘永江,任收麦.青藏高原隆升动力学与阿尔金断裂[J].中国地质,2002,29(4).
    [l3]Xu Jiren,Zhao Zhixin,Kazuo Oike.Tectonic Characteristics of Seismogenic Stress Field in East Asia[A].In:Fujinawa Y,Yoshoda A(eds).Seismotectonics in Convergent Plate Boundary[C].Tokyo:Terra Scientific Publishing Company,2002,481-497.
    [14]Xu J R,Zhao Z X,Ishikawa K,et al.Properties of the stress fielding and around west China derived form earthquake mechanism solutions[J].Bulletin of the Disaster Prevention Research Institute Kyoto University.1988,38:49-78.
    [15]徐纪人,赵志新,石川有三.青藏高原中部的东西向扩张构造运动,Sn 缺失区[J].岩石矿物学杂志,2005,24(5):418-424.
    [16]Wittlinger G,Masson F,Poupinet G.et al.Seismic tomography of northern Tibet anel Kunlun:evidence for crustal blocks and mantle velocity contrasts[J].Earth Planet Sci.Lett,1996,139,263-279.
    [17]Galve h,Him A,Jiang M,et al.Modes of raising northeastern Tibet probed by explosion seismology[J].Earth Planet Sci.Lett.2002,203:35-43.
    [18]Mei Jiang,Hui Qian,Heping Su.Teleseimic anisotropy and its features in the upper mantle beneath the Tibet Plateau and neighboring areas[J].Global Tectonics and Metallogeny,2OO3.1.8,Nos.1-4.
    [19]姜枚,Him A,薛光琦,等.青藏高原地震剪切波各向异性特征及解释[J].现代地质,1999.13(增刊):56-59.
    [20]姜枚,许志琴,刘妍,等.青藏高原及其部分邻区地震各向异性如上地幔特征[J].地球学报,2001,22(2):111-116.
    [21]Him A,Jiang M,Sapin M,et al.Seismic anisotropy as an indicalor of mantle flow beneath the Himalayas and Tibet[J].Nature,1995,375.571-574.
    [22]Vergne J,Wittlinger G,Qiang Hai,et al,Saismic evidence for stepwise thickening of the crust across the NE Libecan plateau[J].Earth and Planetary Science Letter,2002,2003:25-33.
    [23]李廷栋,青藏高原隆升的过程和机制[J].地球学报,1995,34(1):1-8.
    [24]肖序常,李廷栋,陈炳蔚,等,青藏高原岩石圈结构、隆升机制及其对大陆变形的影响[J].地学研究,1993,27:115-116.
    [25]姜枚,许志琴,钱荣毅,等.从德令哈地震分析青藏高原北缘东段的深部构造活动[J].中国地质,2006,33(2):268-274.
    [26]徐纪人,赵志新.青藏高原及其周围地区区域应力场与构造运动特征[J].中国地质,2006,33(2):275-285.
    [27]王成善,刘志飞,李祥辉等.西藏日喀则弧前盆地与雅鲁藏布江缝合带[M].北京:地质出版社,1999.
    [28]安振昌等.亚洲MAGSAT卫星磁异常图[J].地球物理学报,1996,39(4):461-469.
    [29]黄汲清,陈炳蔚.中国及邻区特提斯海的演化[M].北京:地质出版社,1987.
    [30]高延林,肖序常,等.青藏高原及邻区构造单元划分及其地质构造特征,喜马拉雅岩石圈构造演化总论,地质专报.构造地质,地质力学.第7号[M].北京:地质出版社,1988.
    [31]边千韬,沙金庚,郑祥身,西金乌兰晚二叠世-早三叠世石英砂岩及其大地构造意义[J].地质科学,1993,28(4):327-335.
    [32]余钦范,楼海,孙运生,等.亚东-格尔木地学断面区域磁异常数据处理与地体划分[J].中国地质科学学院院报,1990,21:175-182.
    [33]余钦范,楼海,孙运生,等.亚东格尔木地学断面的磁结构[J].中国地质科学院院报,1990,21:183-189.
    [34]滕吉文,张中杰,杨顶辉,等.青藏高原地体划分的地球物理标志研究[J].地球物理学报,1996,39(5):629-641.
    [35]滕吉文,张中杰,王光杰,等.喜马拉雅碰撞造山带的深层动力过程与陆-陆碰撞新模型[J].地球物理学报,1999,42(4):481-491.
    [36]滕吉文,张中杰,胡家富,等.青藏高原整体隆升与地壳短缩增厚的物理-力学机制研究(上)[J].高校地质学报,1996,2(2):121-132.
    [37]滕吉文,张中杰,胡家富,等.青藏高原整体隆升与地壳短缩增厚的物理-力学机制研究(下)[J].高校地质学报,1996,2(3):307-323.
    [38]许志琴,杨经绥,姜枚等.青藏高原北部的碰撞造山及深部动力学[J].地球学报,2001,22(1):5-9.
    [39]许志琴,姜枚,杨经绥,等.青藏高原北部隆升的深部构造物理作用[J].地质学报,1996,70(3):1995-206.
    [40]许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139-149.
    [41]赵文津,冯昭贤.青藏高原大陆动力学研究[J].地球学报,1996,17(2):119-127.
    [42]赵文沣,K.D.Nelson,徐中信,等.雅鲁藏布江缝合带的双陆内俯冲构造与部分熔融层特征[J].地球物理学,1997,40(3):325-334.
    [43]潘裕生.青藏高原的形成与隆升[J].地学前缘,1999,6(3):153-161.
    [44]吴功建,高税,余钦范,等.青藏高原”亚东-格尔木地学断面”综合地球物理调查与研究[J].地球物理学报,1991,34(5):552-560.
    [45]杨少峰.急始磁暴期间的地磁脉动[J].地球物理学报,1992,35(2):133-140.
    [46]石耀霖,朱元清,沈显杰.青藏高原构造热演化的主要控制因素[J].地球物理学报,1992,35(6):710-719.
    [47]叶正仁,腾春凯,张新武.地幔对流与岩石层板块的相互耦合及影响-(Ⅰ)球腔中的自由热对流[J].地球物理学报,1995,38(2):174-180.
    [48]叶正仁,朱日祥.地幔对流与岩石层板块的相互耦合及影响-(Ⅱ)地幔混合对流理论及其应用[J].地球物理学报,1996,39(1):47-56.
    [49]沈长春,高玉芬,资民筠.地磁静日Y分量季节变化的物理讨论[J].地球物理学报,1995,38(3):305-309.
    [50]刘长凤,王妙月,陈静,等.磁性层析成像-塔里木盆地(部分)地壳磁性结构反演[J].地球物理学报,1996,39(1):89-96.
    [51]陆洋,许厚泽.青藏地区大地水准面形态及其与构造动力的关系[J].地球物学报,1996.39(2):203-209.
    [52]臧绍先,宁杰远.西太平洋俯冲带的研究及其动力学意义[J].地球物理学报,1996,39(2):188-200.
    [53]王谦身,杨新社.分层重力图像方法及其应用[J].地球物理学报,1997,40(5):649-658
    [54]方剑,许厚泽.青藏高原及其邻区岩石层三维密度结构[J].地球物理学报,1997,40(5):660-674.
    [55]方盛明,冯锐,谢志诚,等.亚洲中部地区岩石圈均衡补偿深度和弹性板模型反演结果分析[J].地球物理学报,1999,42(增刊):115-121.
    [56]杨强文,吴晓平.重力异常和 DEM 的小波变换与多尺度相关分析[J].地球物理学报,1999,42(增刊):152-159.
    [57]丁志峰,何正勤,孙为国,等.青藏高原东部及其边缘地区的地壳上地幔三维速度结构[J].地球物理学报,1999,42(2):197-203.
    [58]史大年,姜枚,马开义,等.阿尔金断裂带地壳和上地幔结构的P波层析成像[J].地球物理学报,1999,42(3):341-349.
    [59]杨辉,王家林,王小牧,等.重力异常视深度滤波及应用[J].地球物理学报,1999,42(3):416-420.
    [50]傅容珊,李力刚,黄建华,等.青藏高原隆升过程的三个阶段模式[J].地球物理学报,1999,42(5):609-614.
    [61]傅容珊,徐耀民,黄建华,等.青藏高原挤压隆长升过程的数值模拟[J].地球物理学报,2000,43(3):346-353.
    [62]安振昌.青藏高原地磁场模型的研究[J].地球物理学报,2000,43(3):339-344.
    [63]陈炳蔚,王彦斌.青藏高原造山带的某些特征[J].地球学报,1994,3-4:45-52.
    [64]刘朝基.川西藏东板块构造体系及特提期地质演化[J].地球学报,1995,2:121-133.
    [65]黄立言,卢德源,赵文津,等.藏南帕里至达吉地带的上地壳结构特征[J].地球学报,1996,17(2):165-175.
    [66]岳永君,蒋忠惕,武长得,等.藏南深反射测线附近地表地质观察研究成果[J].地球学报,1996,17(2):177-183.
    [67]郭景如,蒋多元,唐文榜,等.青藏高原第一条超深反射地震剖面的数据采集及处理方法[J].地球学报,1996,17(2):202-212.
    [68]吕庆田,姜枚,高锐,等.青藏高原莫霍面形态的重力模拟以及其对探讨高原隆升机制的意义[J].地球学报,1997,18(1):78-84.
    [69]李有社,崔军文,高静,等.青藏高原北缘断裂擦痕的构造分析[J].地球学报,1997,18(2):129-132.
    [70]尹光侯,侯世云.西藏察隅地区构造变形分析及特征[J].地球学报,1999,20(2):129-136.
    [71]吴孔友,王建平,陈清华,等.西藏措勤盆地它日错地区下二叠统昂杰组的发现及其地质意义[J].地球学报,2000,21(1):71-76.
    [72]李光明,雍永源.藏北那曲盆地中-上侏罗统拉贡塘组浊流沉积特征及微量元素地 球化学[J].地球学报,2000,21(4):373-378.
    [73]吴才来,杨经绥,李海兵,等.青藏高原北缘火山岩中辉石岩包体研究[J].地球学报,2001,22(1):61-66.
    [74]夏邦栋,张开均,孔庆友,等.青藏高原内部三条磨拉石带的确定及其构造意义[J].地学前缘,1999,6(3):173-180.
    [75]蔡学林,曹家敏,刘援朝,等.青藏高原多向碰撞-契入隆升地球动力学模式[J].地学前缘,1999,6(3):181-187.
    [76]邓万明.青藏高原新生代岩浆活动与岩石圈演化[J].学术论文年刊,1994,288-296.
    [77]旺罗,万晓樵,李杰,等.西藏日喀则地区恰布林组地层及构造背景分析[J].现代地质,1999,13(3):281-285.
    [78]张明华,蔺启忠.藏北不同地体与南北向壳内构造地球物理解释[J].现代地质,1999,13(增刊):61-64.
    [79]吴根耀,王晓鹏,聂泽同,等.藏东南碧土带瓦浦组火山岩形成的大地构造环境[J].现代地质,2000,14(1):21-27.
    [80]茅绍智,边立曾.藏北羌塘中侏罗世沟鞭藻[J].现代地质,2000,14(2):115-120.
    [81]王根厚,梁定益,刘文灿,等.藏南海西期以来伸展运动及伸展作用[J].现代地质,2000,14(2):133-138.
    [82]季建清,钟大赉,丁林,等.雅鲁藏布大峡谷地质成因[J].地学前缘,1999,6(4):23 1-233.
    [83]蔚远江.藏北羌塘查郎拉地区中生代盆地沉积构造背景探讨[J].地学前缘,2000,7(4):568-577.
    [84]王有学,钱辉.青海东部地壳速度结构特征研究[J].地学前缘,2000,7(4):5681-577.
    [85]傅容珊,黄建华,李力刚,等.青藏高原隆升三阶段模型的数值模拟[J].地学前缘,2000,7(4):588-594.
    [86]叶和飞,罗建宁,李永铁,等.特提斯构造域与油气勘探[J].沉积与特提斯地质,2000,20(1):4-27.
    [87]彭勇民,汪名杰,陈明.西藏东部昌都-类乌齐三叠纪克拉通盆地层序地层及其对比[J].沉积与特提斯地质,2000,20(2):62-67.
    [88]李光明,冯孝良,黄志英,等.西藏冈底斯构造带中段多岛弧-盆系及其演化[J].沉积与特提斯地质,2000,20(4):38-46.
    [89]李光芩,肖序常,李延栋,等.青藏高原岩石圈特征格尔木-聂拉木岩石圈断面特征[J].中国地质科学院院报,1990,20:99-103.
    [90]刘训,傅德荣,姚培毅.西藏南部三叠纪沉积-构造演化[J].中国地质科学院院 报,1990,21:9-18.
    [91]傅德荣,刘训,姚培毅.西藏南部晚侏罗世-白垩系沉积与构造背景探讨[J].中国地质科学院院报,1990,21:21-34.
    [92]姚培毅,刘训,傅德荣.西藏南部古错侏罗-白垩系界线剖面的新观察[J].中国地质科学院院报,1990,21:41-50.
    [93]崔军文,武长得,朱红,等.喜马拉雅碰撞带陆壳增厚和隆升机制[J].中国地质科学院院报,1990,21:55-62.
    [94]邓宗策,崔军文,冯晓枫,等青藏高原构造动力及变形机制的弹性有限元分析[J].中国地质科学院院报,1990,21:65-73.
    [95]朱红,崔军文,武长得,等.东昆仑大滩混合岩带的基本特征及其成因初探[J].中国地质科学院院报,1990,21:77-84.
    [96]武长得,朱红,邓宗策,等.雅鲁藏布江断裂带的构造特征[J].中国地质科学院院报,1990,21:87-93.
    [97]黄怀曾,王松产,张忆平.青藏高原碰撞、固结的过程及隆升机理[J].中国地质科学院院报,1990,21:95-104.
    [98]唐哲民,韩同林,等.青藏高原地体的初步划分及构造特征简述[J].中国地质科学院院报,1990,21:121-126.
    [99]董学斌,王忠民,谭承泽,等.亚东-格尔木地学断面古地磁新数据与青藏高原地体演化模式的初步研究[J].中国地质科学院院报,1990,21:139-147.
    [100]高税,孟令顺,李莉.青藏高原亚东-格尔木条带布格重力异常数字图象处理与地壳现代构造[J].中国地质科学院院报,1990,21:163-168.
    [101]刘训,傅德荣,姚增毅.西藏南部中生代的沉积-构造演化[J].中国地质科学院院报,1990,22:65-76.
    [102]焦淑沛.青藏高原大地构造性质归属地洼区的论证和分析[J].中国地质科学院院报,1993,29:15-25.
    [103]崔军文,邓晋福,唐哲民,等.青藏高原北缘变形动力学研究的一些新认识[J].中国地质科学院院报,1994,29:145-146.
    [104]刘志飞,王成善,伊海生,等.藏北可可西里盆地老第三纪沉积物源区分析及其高原隆升意义[J].地球科学,2001,26(1):1-5.
    [105]李勇,吴瑞忠,朱利东,等.西藏金沙江断裂带西段晚古生代牙形石的发现及其地质意义[J].地球科学,2000,25:586-616.
    [106]王绍兰,王冠民,陈清华.西藏措勤盆地下二叠统昂杰组沉积相分析[J].岩相古地理,1999,19(6):44-48.
    [107]李本亮,张永军,夏邦栋,等.青藏高原比如地体与措勤地体相对古构造位置判别[J].大地构造与成矿学,2000,24(1):38-43.
    [108]李本亮,张喜慧,孙岩,等.断裂分维值对矿产资源预测的指示意义[J].高校地质学报,1999,5(1):17-21.
    [109]高锐.青藏高原岩石圈结构与地球动力学的 30 个为什么[J].地质论评,1997,43(5):460-464.
    [110]吕庆田,马开义,姜枚,等.青藏高原南部下的横波各向异性[J].地震学报,1996,18(2):215-223.
    [111]吕庆田,马开义,姜枚,等.三维走时反演与青藏高原南部深部构造[J].地震学报,1996,18(4):451-459.
    [112]Shu-Kun Hsu,Dorothee Coppens,and Chuen-Tien Shyu,Depth to magnetic source using the generalized analytic signal[J].GEOPHYSICS,1998,63(6):1947-1957.
    [113]Maurizio Fedi and Antonio Rapolla.3-D inversion of gravty and magnetic data with depth resolution[J].GEOPHYSICS,1993,64(2):452-460.
    [114]Stefan Maus.Yariogram analysis of magnetic and gravity data[J].GEOPHYSICS,1999,64(3):776-784.
    [115]T.A.Ridsdill-Smith and M.C.Dentith.The wavelet transform in aeromagnetic processing[J].GEOPHYSICS,1999,64(4):1003-1013.
    [116]Jan Reidar SKilbrei and Ola Kihle.Display of residual profiles versus gridded image data in aeromagnetic study of sedimentary basins:A case history[J].GEOPHYSICS,1999,64(6):1740-1747.
    [117]张宝政.板块构造学[M].吉林:科学技术出版社,1993.
    [118]罗孝宽,郭绍雍.应用地球物理教程-重力磁法[M].北京:地质出版社,1991.
    [119]关治,陆金甫.数值分析基础[M].高等教育出版社,1998.
    [120]陈天与,徐中信.物探数据处理的数学方法(上、下册)[M].北京:地质出版社,1991.
    [121]邓自立.最优滤波理论及其应有-现代时间序列分析方法[M].哈尔滨工业大学出版社,2000.
    [122]李九亮,蔡尚中,等.重力资料解释推断(勘探地球物理译文集)[M].北京:地质出版社,1990.
    [123]朱英.斜磁化切线法和特征点图解法(地质专报)[M].北京:地质出版社,1995.
    [124]王小凤,李中坚,陈柏林,等.郯庐断裂带[M].北京:地质出版社,2000.
    [125]汤过安,赵牡丹.地理信息系统[M].科学出版社,2000.
    [126]郭友钊,罗壮伟,孟小红,余钦范.石油天然气的磁性勘查[M].北京:地质出版社,1999.
    [127]严基,吴邦灿,陈达,张福林译.环境磁学[M].北京:地质出版社,1995.
    [128]石琳珂,孙铭心,王广国,赵盛华.地球物理遗传反演方法[M].地震出版社,2000.
    [129]刘德良,沈修志,陈江峰,叶尚夫.地球与类地行星构造地质学[M].中国科学技术大 学出版社,1997.
    [130]程裕淇.中国区域地质概论[M].北京:地质出版社,1994.
    [131]李四光(原著).中国地质学[M].北京:地质出版社,1999.
    [132]蔡家雄(湖南省地质矿产局).磁异常三角形解释系(地质专报)[M].北京:地质出版社,1989.
    [133]肖序常,李廷栋,李光岑,等.喜马拉雅岩石圈构造演化总论(地质专报)[M].北京:地质出版社,1988.
    [134]林宝玉,王乃文,王思恩,等.喜马拉雅岩石圈构造演化-西藏地层(地质专报)[M].北京:地质出版社,1989.
    [135]袁学诚,周姚秀,李立.喜马拉雅岩石圈构造演化-西藏古地磁与大地电磁研究(地质专报)[M].北京:地质出版社,1990.
    [136]杨华,梁月明,王岚,李孝嫒.青藏高原东部航磁特征及其与构造成矿带的关系(地质专报)[M].北京:地质出版社,1991.
    [137]董学斌,杨惠心,程立人,王忠民.青藏高原地体构造的古地磁研究(地质专报)[M].北京:地质出版社,1998.
    [138]潘裕生,孔祥儒.青藏高原岩石圈构造演化和动力学[M].广州:广东科技出版,1998.
    [139]肖序常,李廷栋.青藏高原的构造演化与隆生机制[M].广州:广东科技出版社,2000.
    [140]孙鸿烈,郑度.青藏高原形成演化与发展[M].广州:广东科技出版社,1998.
    [141]赵政璋,李永铁,叶和飞,张昱文.青藏高原地层[M].北京:科学出版社,2001.
    [142]赵政璋,李永铁,叶和飞,张昱文.青藏高原羌塘盆地石油地质[M].北京:科学出版社,2001.
    [143]赵政璋,李永铁,叶和飞,张昱文.青藏高原中生界沉积相及油气储盖层特征[M].北京:科学出版社,2001.
    [144]赵政璋,李永铁,叶和飞,张昱文.青藏高原羌塘盆地石油地质[M].北京:科学出版社,2001.
    [145]赵政璋,李永铁,叶和飞,张昱文.青藏高原海相烃源层的油气生成[M].北京:科学出版社,2000.
    [146]王成善,夏代祥,等.雅鲁藏布江缝合带-喜马拉雅山地质[M].北京:科学出版社,1999.
    [147]赵文津及 INDEPTH 项目组.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究[M].北京:科学出版社,2001.
    [148]邓万明.青藏高原北部新生代板内火山岩[M].北京:地质出版社,1998.
    [149]郑绵平,向军,等.青藏高原盐湖EM].北京:科学出版社,2001.
    [150]地质矿产部青藏高原地质文集编委.青藏高原地质文集-构造地质、地质力学(1)[M].北京:地质出版社,1982.
    [151]Derek J.Woodward,Inversion of aeromagnetic data using digital terrain models,GEOPHYSICS,1993,58(5):645-652.
    [152]Julius S.Ostrowski,Mark Pilk Pilkington,and dennis J.Teskey,Werner deconvlution for variable altitude aeromagnetic data,GEOPHYSICS,1993,58(10):1481-1490.
    [153]Jeffrey B.Thurston and Richard S.Smith,Automatic conversion of magnetic data to depth,dip,and susceptibility contrast using the SPI(TM)method,GEOPHYSICS,1997,62(3):807-813.
    [154]Valeria C.F.Barbosa,Joao B.C.Silva,and walter E.Medeiros,Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth,GEOPHYSICS,1999,64(5):1429-1437.
    [155]Antonio G.Camacho,Fuensanta G.Montesionos,and Ricardo Vieira,Gravity inversion by means of growing bodies,GEOPHYSICS,2000,65(1):95-101.
    [156]Changyou Zhang,Martin F.Mushayandebvu,Alan B.Reid,Euler deconvolution of gravity tensor gradient data,GEOGHYSICS,2000,65(2):512-520.
    [157]Bijendra Singh and D.Guptasarma,New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra,GEOPHYSICS,2000,66(2):521-526.
    [158]Bradley R.Hacker,Edwin Gnos,et al.Hot and Dry Deep Crustal Xenoliths from Tibet.Science,2000,287:2463-2466.
    [159]Da Zhou,Stephan A.Graham.Extrusion of the Altyn Tagh wedge:A Kinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China.Geology,1996,24(5):427-430.
    [160]Hirn,A.,Nercessian,A.et al.Lhasa block and bordering Sutures-A continuation of a 500km Moho traverse through Tibet.Nature,1984,307(5946):25-27.
    [161]Jaupart,C.,Francheteau,J.et al.On the thermal structure of the sourthern Tibetan crust.Geophys.J.R.Astr.Soc.,1985,81:131-155.
    [162]Mattauer,M.Subduction de lithosph e re continentale,d é collement croute-manteau et chevauchements d' échelle crustale darts la chaine de collision himalayenne,C.R.Acad.Sci.,Paris,1983,296:481-486.
    [163]Molnar,P.and Tapponnier,P.Active tectonics of Tibet.J.Geophys.Res.1978.83(1311):5361-5374.
    [164]Murphy et al..Did the Indo-Asian collision alone create the Tibetan plateau?Geology,1997,25:719-722.
    [165]Robert,W.King and 9 others.Geodetic measurement of crustal motion in southwest China.Geology,1997,25(2):179-182.
    [166]Zhang,K.J.,Zhang,Y.J.,Xia,B.D..Comment on Did the Indo-Asian collision alone create the Tibetan plateau.Geology,1998,26:958-959.
    [167]熊盛青、唐文周、姚正煦,航空物探遥感论文集[M].北京:地质出版社,1997.
    [168]安玉林,谭保华.局部重磁场源全方位成像[M].北京:地质出版社,1997
    [169]姜春发,王宗起,李锦铁.中央造山带开合构造[M].北京:地质出版社,2000.
    [170]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986.
    [171]李东旭,周济元.地质力学导论[M].北京:地质出版社,1986.
    [172]王仁民,游振东,富公勤.变质岩石[M].北京:地质出版社,1989.
    [173]何心一,徐桂荣.古生物学教程[M].北京:地质出版社,1993.
    [174]崔军文,唐哲民,邓晋福,等.阿尔金断裂系[M].北京:地质出版社,1999.
    [175]王来生,鞠时光,郭铁雄,等.大比例尺地形图机助绘图算法及程序[M].测绘出版社,1993.
    [176]长春地质学院磁法教研室,磁法勘探[M].北京:地质出版社,1979.
    [177]田在艺,张庆春.中国含油气盆地岩相古地理与油气[M].北京:地质出版社,1997.
    [178]马文璞.区域构造解析-方法理论和中国板块构造[M].北京:地质出版社,1990.
    [179]中国地质科学院.喜马拉雅岩石圈构造演化-西藏地球物理文集[M].北京:地质出版社,1990.
    [180]俞鸿年,芦华复.构造地质学原理[M].北京:地质出版社,1986.
    [181]姚培慧.中国铬矿志[M].冶金工业出版社,1996.
    [182]许靖华,孙枢,等.中国大地构造相图(1:4000000)[M].科学出版社,1998.
    [183]李叔达.动力地质学原理[M].北京:地质出版社,1983.
    [184]邱家骧.岩浆岩岩石学[M].北京:地质出版社,1985.
    [185]乐昌硕.岩石学[M].北京:地质出版社,1984.
    [186]杨森楠,杨巍然.中国区域大地构造学[M].北京:地质出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700