用户名: 密码: 验证码:
基于并联支撑机构的车载雷达天线自动调平系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出采用四自由度并联机构(4-SPS(PS))及六自由度并联机构(Stewart平台)作为动、静基座车载雷达天线自动调平系统的支撑机构,并对动、静基座自动调平平台并联支撑机构运动学、动力学进行分析。在此基础上,对静基座大负荷及动基座机动实时调平两种不同应用场合,分别采用带观测器的滑模变结构控制及基于随机预测模型的变结构广义预测控制进行了自动调平平台控制系统设计及自动调平特性闭环控制仿真对比研究。具体内容如下:
     ◆基于分析传统调平平台调平特性前提下,提出采用四自由度并联机构(4-SPS(PS)型)及六自由度并联机构(Stewart平台)作为动、静基座车载雷达天线自动调平系统的支撑结构,并对机构的位姿、运动学、动力学特性等方面进行分析与研究,基于SimMechanics建立并联支撑机构实验仿真模型。采用线性状态反馈解耦方法实现静基座车载雷达天线自动调平平台Stewart型并联支撑机构多通道液压伺服系统解耦。分别对动、静基座并联支撑机构各支链驱动器受力、驱动器速度进行分析,为驱动器选型提供依据。分析了动、静基座车载雷达天线自动调平平台在开环控制条件下的调平性能。
     ◆根据车载雷达天线自动调平系统高精度、高频带及快速响应等性能指标,本文采用电液位置伺服系统作为动/静基座车载雷达天线自动调平平台并联支撑结构的驱动装置。在深入分析电液位置伺服系统机理的基础上,建立了阀控非对称缸液压位置伺服系统的数学模型。对静基座车载雷达天线自动调平平台液压伺服系统的开环频率响应特性进行分析;对动基座车载雷达天线自动调平平台液压伺服系统的瞬态响应能力、频率响应带宽进行分析,并采用速度/加速度反馈校正方法拓宽动基座车载雷达天线自动调平平台液压伺服系统的带宽。
     ◆在对静基座自动调平平台Stewart型并联支撑机构运动学反解及自动调平支撑机构单通道液压伺服系统特性研究与分析的基础上,提出采用滑模变结构控制方法对静基座车载雷达天线调平平台控制系统进行设计,并对控制系统的稳定性进行分析;为解决自动调平系统参数不确定性及抑制滑模变结构控制系统抖振现象,本文提出采用带观测器的滑模变结构控制方法对静基座车载雷达天线自动调平平台控制系统进行设计,从而有效地提高了自动调平平台调平性能,减小自动调平系统的稳态误差,有效抑制了滑模变结构控制系统的抖振现象。
     ◆控制系统的响应频率和运行环境的随机性是影响动基座车载雷达天线自动调平性能的两个主要因素,控制系统的响应频率主要由外围设备(液压伺服系统的响应频率、电气系统等)、车速及所采取的控制策略所决定。实际工作过程中,液压伺服系统响应具有一定的频带,盲目提高液压伺服系统的响应频率和提高电气系统的灵敏性是不可取的。本文针对动基座车载雷达天线自动调平系统,提出采用具有随机干扰信号的变结构广义预测控制策略,建立路面随机路谱并将其作为广义预测随机变量序列,引入辅助控制量使广义预测控制与变结构控制相结合,确定车速、控制系统响应频率及随机路谱三者之间的相互联系,实现动基座自动调平平台机动实时调平。
This paper presents a 4-DOF parallel manipulator (4-SPS(PS)) and 6-DOF Parallel manipulator (Stewart platform) as the support mechanism of motion and static base for automatic leveling system of vehicle-borne radar antenna, and the kinematics and dynamics of parallel manipulator are analyzed. On this basis, the two different application situations are considered which real-time leveled by the motion base and heavy-load by the static base, the automatic leveling Platform Control System Design and automatic leveling closed-loop control are simulated by the sliding mode variable structure control with observer and the generalized forecast control of variable structure based on the stochastic forecast model are simulated comparably. Details are as follows:
     Based on the analysis of the leveling characteristics of traditional leveling platform, the article uses the four-DOF parallel manipulator (4-SPS(PS)-type)and 6-DOF Parallel manipulator (Stewart platform) as the support mechanism of motion and static base for automatic leveling system of radar antenna, and the characteristics of posture, kinematics, dynamics and other aspects are analyzed and researched. Based on the SimMechanics, the parallel support mechanism is put to test. The multi-channel hydraulic servo system of Parallel support mechanism which of the static base for automatic leveling system of vehicle-borne radar antenna(Stewart platform)is decoupled by the linear feedback method of decoupling. The sub-chain driver force and the driver speed for parallel support mechanism of motion and static base are analyzed. It is for the lectotype of driver. Under the conditions of open loop, the leveling properties of the support mechanism of motion and static base for automatic leveling system of vehicle-borne radar antenna are analyzed.
     According to the high degree of accuracy, high frequency band and fast response of the automatic leveling system of vehicle-borne radar antenna, this article uses electro-hydraulic servo system as the driver set of the support mechanism of motion and static base for automatic leveling system of vehicle-borne radar antenna. Based on the in-depth analysis of electro-hydraulic servo system structure, this article established a mathematical model of non-symmetrical cylinder valve-controlled hydraulic servo system. The electro-hydraulic servo system open-loop frequency response characteristics of static base for automatic leveling system of vehicle-borne radar antenna is analyzed, and the temporal response characteristics and frequency response band width of electro-hydraulic servo system which of motion base for automatic leveling system of vehicle-borne radar antenna is analyzed. According to using the feedback correcting method of speed/acceleration, this article broadens electro-hydraulic servo system which of motion base for automatic leveling system of vehicle-borne radar antenna bandwidth.
     On the basis of the anti-problem of static base for automatic leveling system kinematics and the characteristic test of automatic leveling system single-hydraulic electro-hydraulic servo system, It Suggested that the static base for automatic leveling system of vehicle-borne radar antenna and control system stability are designed by the sliding mode variable structure control. In order to solve the parameter uncertainty of automatic leveling system and inhibit the buffeting phenomenon of sliding mode variable structure control, this paper proposes that the static base for automatic leveling system of vehicle-borne radar antenna is designed by the sliding mode variable structure control with observer. Thereby it can effectively improve the automatic leveling-platform performance, reduce the steady-state error of automatic leveling system, and inhibit the buffeting phenomenon of sliding mode variable structure control.
     The response frequency of Control System and the randomness of operating environment is two impact of the performance of motion base for automatic leveling system of vehicle-borne radar antenna. The control system of response frequency is determined mainly by the external equipment (frequency response of hydraulic servo system, electrical systems, etc.), speed and the control strategy. In actual work process, hydraulic servo system response shall have a certain frequency bands. Blindly improving the frequency response of hydraulic servo system and improving sensitivity of electric system is not advisable. By using generalized predictive variable mechanism control strategy of a random interference signal, establishes random road spectrum as a random variable sequence of generalized forecasting, introduces auxiliary control value to combine the generalized predictive control with variable structure control ,determines the relationship of speed, response frequency of control system and random road spectrum, achieves the motion base for automatic leveling system real-time leveling.
引文
[1]刘志学.高机动雷达的系统设计.雷达科学与技术,2004,2(2):65-68.
    [2]林有才.高机动性地面雷达的现状和未来发展趋势,电子科学技术评论,2004,6:35-38.
    [3]倪江生,翟羽健.雷达天线底车调平问题的研究.测控技术,1994,13(4):36-39.
    [4]倪江生,翟羽健.六点支撑静基座液压平台的调平方法.东南大学学报,1996,26(2):74-80.
    [5]盛英,仇原鹰.六电支撑液压式平台自动调平系统.液压与气动,1999(4):24-26.
    [6]盛英,仇原鹰.6腿支撑液压式平台自动调平算法.西安电子科技大学学报(自然科学版),2002,29(5):593-597.
    [7]李忠于.雷达自动调平支撑腿力学工况分析.火控雷达技术,2007,36(2):90-93.
    [8]姜文刚,尚婕,邓志良等.大型平台自动调平研究.电气传动,2005,35(12):29-32.
    [9]孙利生.一种大跨距四点支撑液压自动调平系统.液压与气动,2004,7:29-30.
    [10]王平,成晓庆.某雷达天线座车液压调平系统.电子工程,2004,3:11-17.
    [11]邓飙,董江曼.机动发射系统快速自动调平探讨.飞航导弹,2003,8:50-53.
    [12]Burtona W,Truscotta J,Wellstead P E.Analysis,modeling and Control of an advanced automatic self-levelling suspention system:active suspensions.IEE Proceedings Control Theory and Applications,1995 142(2):129-139.
    [13]Grove J L,Merz E J,Waiters C W.Control for aerial lift platform apparatus,Unite States Patent:4331215,1982.
    [14]Hong Sun,Chiu G T.Motion synchronization for dual-cylinder electrohydraulic lift systems.IEEE/ASME Transaction on Mechatronics,2002,7(2):171-181.
    [15]郭俊岑,周浚哲,唐健.基于单片机的坦克火控调试台自动调平系统研究.沈阳理工大学学报.2006,25(3):70-73.
    [16]应文博,李亮亮.坦克火控系统调试台自动调平系统的研究.科技资讯.2006,(20):1.
    [17]Gwinnett J.E.Amusement Devices[P].US Patent,no.1789680,January 20,1931.
    [18]Pollard W.L.G.Spray Painting Machine[P].US Patent,no.2213108,August 26,1940
    [19]Steward D.A Platform with Six Degrees of Freedom[A].Proceedings of Institute of Mechanical Engineering[C],1965,180(15),371-386.
    [20]Hunt K.H.Kinematic geometry of mechanisms[M].Oxford,Great Britain:Oxford University Press,1978.
    [21]Clavel R.DELTA,A fast robot with parallel geometry[A].Proceeding 18th Int Symp on Industrial Robot[C],Lausanne,26-28 April 1988,91-100.
    [22]Gosselin C.M,et al.Synthesis and design of reaction less three-degree-of-freedom parallel mechanisms[J].IEEE Transactions on Robotics and Automation,2004,20(2):191-200.
    [23]Kong X.W,Gosselin C.M.Type synthesis of 3T1R 4-DOF paraild manipulators based on screw theory[J].IEEE Transactions on Robotics and Automation,2004,20(2):181-191.
    [24]Tsai L.W,Walsh G.C and Stamper R.E.Kinematics of a novel three-DOF translational platform[C].Proceedings International Conference of Robotics and Automation,1996,3446-3451.
    [25]Tsai L.W.Kinematics of a three-DOF platform manipulator with three extensible limbs[J]. Recent Advances in Robot Kinematics,London,U.K:Kluwer,1996:401-410.
    [26]Tsai L.W,Joshi S.Kinematics and optimization of a spatial 3-UPU parallel manipulator.ASME Joumal of Mechanical and Design,Vo1.122,2000,439-446.
    [27]Tsai L.W,Joshi S.Kinematic analysis of 3-DOF position mechanisms for use in hybrid kinematic machines[J].ASME Journal of Mechanical and Design,2002,124(2):245-253.
    [28]Tsai L.W.Robot analysis:the Mechanics of serial and parallel manipulators.New York:Wiley,1999.
    [29]Gosselin C.M,Angeles J.the optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator.ASME Journal of Mechanical,Transmissions,Automation,Design.1989,111(2):202-207
    [30]Gosselin C.M,Angeles J.Singularity Analysis of Closed-Loop Kinematic Chains.IEEE Transactions on Robotics and Automation,1990,6(3):281-290.
    [31]Gosselin C.M,Angeles J.A Global Performance Index for the Kinematic Optimization of Robotic Manipulators.Transactions of the ASME,1991,113:220-226.
    [32]Hunt K.H.Mechanism Kinematics of In-Parallel-Actuated Robot-Arms.Journal of Mechanical,Transmissions and Automation in Design.1983,105:705-712.
    [33]Helve J.M.Star,a New Concept in Robotics.Proceedings of 3rd International Workshop on Advances in Robotics Kinematics,Ferrara,Italy,1992,176-183.
    [34]Herve J.M,Sparacino F.Mechanism Synthesis of Parallel Robots Generating Spatial Translation.IEEE International Conference on Robotics and Automation,Pisa,Italy,June 1992,808-813.
    [35]Herve J.M.Design of Parallel Manipulators Via the Displacement Group.Proceedings 9th World Congress on the Theory of Machines and Mechanisms,Milan,30-August-2-September 1995,2079-2082.
    [36]Herve J.M.The Lie Group of Rigid Displacements,a Fundamental Tool for Mechanism Design.Mechanism and Machine Theory,1999,34(5):719-730.
    [37]黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,1997.
    [38]黄真,赵铁石,李秦川.空间少自由度并联机器人机构的基础综合理论.第一届国际机械工程学术会议,上海,2000,No.0202015.
    [39]Huang Z,Li Q C.Type Synthesis of Symmetrical Lower-mobility Parallel Mechanisms Using Constraint-synthesis Method.International Journal of Robotics Research,2003,22(1):59-79.
    [40]Gao F,Li W.M,Zhao C,et al.New Kinematic Mechanism for 2-,3-,4-,and 5-DoF Parallel Manipulator Designs.Mechanism and Machine Theory,2002,37(11):1395-1411.
    [41]Gao F,Liu X J,Chen X.The Relationships Between the Shapes of the Workspace and the Link Lengths of 3-DOF Symmetrical Planar Parallel Manipulators,Mechanism and Machine Theory,2001,36(2):205-220.
    [42]Li Q C,Huang Z.Type Synthesis of 4-DOF Parallel Manipulators.2003 IEEE International Conference on Robotics & Automation,WM13,Taiwan,P.R.China.
    [43]Wang J,Gosselin C.M.Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms with Prismatic Actuators.Journal of Mechanical Design,2004,126:319-326.
    [44]Wang J,Gosselin C.M.Singularity Analysis and Design of Kinematically Redundant Parallel Mechanisms.Proceedings of DETC'02 ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference,Montreal,Canada,September 29-October 2,2002,DETC2002/MECH-34312.
    [45]Liu X J,Wang J S and Gao F.Performance Atlases of the Workspace for 3-DOF Parallel Manipulators.Robotic,2000,18(5):563-568.
    [46]Fang Y F,Tsai L W.Analytical Identification of Limb Mechanisms for Translational Parallel Manipulators.Journal of Robotic Systems,2004,21(5):209-218.
    [47]Fang Y F,Tsai L W.Mechanism Synthesis of a Class of 3-DOF Rotational Parallel Manipulators.IEEE Transactions and Automation,February 2004,20(1):117-121.
    [48]Fang Y F,Tsai L W.Inverse Velocity and Singularity Analysis of Low-DOF Several Manipulator.Journal of Robotics,2003,20(4):177-188
    [49]Wavering A J.Parallel kinematics machine research at NIST:past,present,and the future.In:Proceedings of First European-American Forum on PKM,Milan Italy,August 1998.www.ids.mel.nist.gov
    [50]汪劲松,黄田.并联机床—机床行业面临的机遇与挑战.中国机械工程,1999,10(10):1103-1107.
    [51]黄田,王洋.3-HSS并联机床总体布局及运动学设计理论浅析.第一届并联机器人机床设计理论与关键技术研讨会论文集,清华大学,1999,5.
    [52]赵明扬,余晓流,王启义等.一种并联机床运动平台位姿测量方法.中国机械工程,1999,10(10):1112-1113.
    [53]李兵.并联机床原型样机设计及性能分析.[哈尔滨工业大学工学博士学位论文],1999.
    [54]王知行,李建生.BJ-1型并联机床.制造技术与机床,1999,8:55.
    [55]蔡光起,原所先,胡明等.三自由度虚拟轴机床力学机动力学的若干研究.中国机械工程,1999,10(10):1108-1111.
    [56]Marconi.The Gadfly manipulator.Research Report 732,Marconi Research Center,1985.
    [57]Marconi.Development of the Tetrabot robotic manipulator.Research Report,Marconi Research Center,1986.
    [58]Sternheim F.Tridimensional computer simulation of a parallel robot:Results for the Delta 4machine.In:the 18th International Symp.On Industrial Robot,1988,333-340.
    [59]Arai T,Cleary K,Homma K.Development of parallel link manipulator for underground excavation task.ISART,1991,541-548.
    [60]http://www-sop.inria.fr/coprin/eqnipe/merlet/photo/mosaic.html
    [61]黄亚楼,卢桂章.微机器人和微操作的研究与发展.机器人,1992,14(4):52-59.
    [62]Ellis G W.Piezodectric micromanipulators.Science Instruments and Techniques,1962,138:84-91.
    [63]Washizu M.Manipulation of biological objects mechanical mechanisms.Proceedings of IEEE Micro Mechanical System,1992,196-201.
    [64]Stoughton R.Kinematic optimization of a Chopsticks-type micromanipulator.ASME Japan/USA Symp on Flexible Automation,1992,1:151-157.
    [65]Hudgens J C,Tesar D A.Fully-parallel six degree-of-freedom rnicromanipulator:Kinematic analysis and dynamic model.Proceedings of 20th Biennal ASME Mechanisms Conference on Trends and Development Machines and Robotics,1988,15(3):29-37.
    [66]Lee K M,Arijunan A.Three dof micro motion parallel actuated manipulator.IEEE International Conference on Robotics and Automation,1989,1698-1703.
    [67]Ranikawa R,Arai T.Two finger micro hand.IEEE International Conference on Robotics and Automation,1995,1674-1679.
    [68]杨宜民等.仿生型步进式直线驱动器的研究.机器人,1994,16(1):37-39.
    [69]孙立宁.组合积木式微机器人的研究与应用.仪器仪表学报,1998,19(5):465-470.
    [70]毕树生,王守杰,宗光华.串并联微动机构的运动学分析,机器人,1997,19(4):259-264.
    [71]徐卫平,张玉茹.六自由度微动机构的运动分析.机器人,1995,17(5):298-302.
    [72]杜铁军.机器人误差补偿器研究.[燕山大学工学硕士学位论文],1994.
    [73]Nguyen C C,et al.Analysis and experimentation of a Stewart platform-based force/torque sensor.International Journal of Robotics and Automation,1995,7(3):133-140.
    [74]Wang Hongrui,Gaofeng,Huang Zhen.Design of 6-axis force/torque sensor based on Stewart platform related to isotropy.Chinese Journal of Mechanical Engineering,1998,11(2):150-162.
    [75]Letov A M.Conditionally stable control systems(on a class of optimal control systems).Automation and Remote Control,1957,7:649-664.
    [76]Wunch W S.Reproduction of an arbitrary function of time by discontinuous control.Ph.D.dissertation,Stanford University,Stanford,CA,1953.
    [77]Emelyanov S V,Fedotova A I.Design of a static tracking systems with variable mechanism.Automation and Remote Control,1962,10:1223-1235.
    [78]Emelyanov S V,Taran V A.Use of inertial elements in the design of a class of variable mechanism control systems:part Ⅰ.Automation and Remote Control,1963,1:29-42.
    [79]Emelyanov S V,Taran V A.Use of inertial elements in the design of a class of variable mechanism control systems:part Ⅱ.Automation and Remote Control,1963,2:183-190.
    [80]Utkin V I.On compensation of the forced component in the motion of control systems with variable mechanism.Eng.Cybern,1965,4:167-171.
    [81]Emelyanov S V,Utkin V I.On stability of a class of variable mechanism systems.Eng.Cybern,1964,2:115-117.
    [82]Emelyanov S V,et al.Design principles for variable mechanism control systems.Proc.3rd IFAC Congr.1(3):40C.1-40C.6.1966
    [83]Emelyanov S V,Maric B P,Kostyleva N E.A universal uniform control system with variable mechanism.Inst.Contr.System,1973,12:8-16.
    [84]Slotine J E,Sastry S S.Tracking control of non-linear systems using sliding surfaces with application to robot manipulators.International Journal of Control,1983,38:465-492.
    [85]Ryna E P,Corless M.Ultimate boundness and asympototic stability of a class of uncertain systems via continuous and discontinuous feedback control.IMA J.Math.Control Information,1984,1:223-243.
    [86]罗宁苏,冯纯伯.消除变结构系统中高频颤振的一种方法.全国控制理论与应用年会,西安,1988,pp:132-139.
    [87]高为炳.变结构控制的理论与设计.科学出版社,1998.
    [88]Shtesse Y B,Buffington M.Continuous sliding mode control.Proceedings of the American Control Conference,1998:562-563.
    [89]Nassab T M.A new design procedure for variable mechanism control systems.Ph.D Dissertation,the University of Tennessee,USA,1995.
    [90]Itlds Y.Control systems of variable mechanism.New York:Wiley,1976.
    [91]Davari A,Zhang Z.Application of the three segments variable mechanism systems.American Control Conference,1991,pp:62-63.
    [92]Mantz R J,Battista H D,Puleston P.A new approach to reaching mode of VSS using trajectory planning.Automatica,2001,37:763-767.
    [93]Miran Kim,Dong Jun Kim,Kang-Bak Park.Sliding mode controller with piecewise linear sliding surface for second-order nonlinear systems.International Joint Conference of SICE-ICASE,2006,pp:816-820.
    [94]Chun-Yi Su,Stepanenko Y.Adaptive variable mechanism set-point control of underactuated robots.IEEE Transactions on Automatic Control,1999,44(11):2090-2093.
    [95]Chun-Yi Su,Stepanenko Y.Adaptive variable mechanism tracking control for constrained robots.IEEE Transactions on Aerospace and Electronic Systems,1994,30(2):493-503.
    [96]El-Kholy E E.High performance induction motor drive based on adaptive variable mechanism control.IECON 2004,30th Annual Conference of IEEE Industrial Electronics Society,2004,1:867-872.
    [97]Belhocine M.Trajectory trackin for robot using variable mechanism control.2000 Canadian Conference on Electrical and Computer Engineering,2000,2:1123-1127.
    [98]Chen Li,Tang Xiaoteng.Robust variable mechanism control for free-floating space robot system with dual-arms in joints space.Chinese Control Conference,2007,pp:294-298.
    [99]Chih-Lyang Hwang,Shau-Fu Chao.A fuzzy-model-based variable mechanism control for robot arms:theory and experiments.IEEE International Conference on Systems,Man and Cybernetics,2004,6:5252-5258.
    [100]张冬军,从爽等.旋转平行倒立摆的摆起及平衡控制的研究.Proceedings of 4th World Congress on Intelligent Control and Automation,2002,pp:2370-2374.
    [101]Jian-Suo Zhou,Zhi-Yuan Liu,Run Pei.A new nonlinear model predictive control scheme for discrete time system based on sliding mode control.Proceedings of American Control Conference,Arlington,VA,2001,3079-3084.
    [102]Chien-Hsin Chou.A variable mechanism controller based on the grey prediction technology.Proceedings of the American Control Conference.Arlington,VA,2001,1505-1506.
    [103]Poi LoonTang,Clarence W.de Silva.Compensation for transmission delays in an Ethernet-based control network using variable-horizon predictive control.IEEE Transactions on Control Systems Technology,2006,14(4):707-718.
    [104]Chung-Chun Kung,Chia-Chang Liao.Fuzzy-sliding mode controller design for tracking control of non-linear system.Proceedings of the American Control Conference,Baltimore,Maryland,1994,pp:180-185.
    [105]W.Yim.Modified nonlinear predictive control of elastic manipulators.Proceedings of the 1996 IEEE International Conference on Robotics and Automation,Minneapolis,Minnesota,1996,pp:2097-2102.
    [106]Qian Wang,Jianqiang Yi,Dongbin Zhao,et al.Time delay compensation for networked control systems based on SMC.2004 IEEE Intelligent Transportation Systems Conference,Washington,D.C,USA,2004,pp:831-835.
    [107]Jiansuo Zhou,Zhiyuan Liu,Run Pei.Sliding mode model predictive control with terminal constraints.Proceedings of the 3th World Congress on Intelligent Control and Automation,Hefei,P.R,China,2000,pp:2791-2795.
    [108]Lingfei Xiao,Hongye Su,Xiaoyu Zhang,et al.A new discrete variable mechanism control algorithm based on sliding mode prediction.2005 American Control Conference,Portland,OR,USA,2005,pp:4643-4648.
    [109]Xie Huan,Zhang Bao-hui,Yu Guang-liang,et al.A variable mechanism trajectory predictive algorithm based on transform for complex exponential times series.2005 IEEE/PES Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005,pp:1-5.
    [110]Wei Huo.A new predictive variable mechanism control approach.The Sixth World Congress on Intelligent Control and Automation,2006,1:2451-2455.
    [111]M.Honegger,A.Codourey,E.Burdet.Adaptive Control of the Hexaglide,a 6 dof Parallel Manipulator.Proceedings of the 1997 IEEE International Conference on Robotics and Automation,Albuquerque,New Mexico,April 1997,pp:543-548.
    [112]Burdet E,Honegger M,Codourey A.Controllers with Desired Dynamic Compensation and their Implementation on a 6-DOF Parallel Manipulator.Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems.Pp:39-45,2000.
    [113]Min K P,Min C L,Seok J G.The Design of Sliding Mode Controller with Perturbation Observer for a 6-DOF Parallel Manipulator.ISTE 2001,Pusan,Korea,pp:1502-1508,2001.
    [114]George K I,Brian W S.Model-free Intelligent Control of a 6-DOF Steward-Gough Based Parallel Manipulator.Proceedings of the 2002 IEEE International Conference on Control Applications,Glasgow,Scotland,UK,pp:495-500,2002.
    [115]张润逵,戚仁欣,张树雄等.雷达结构与工艺(上、下册).电子工业出版社,2007.
    [116]GJB74A-98军用地面雷达通用规范.北京:国防科工委军标出版发行部,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700