用户名: 密码: 验证码:
某设备挖掘机构机械液压系统的分析及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着中国铁路发展的不断提速,对铁路养护机械化的技术发展要求也越来越高。清筛机是昆明中铁自主研发的用来挖掘和清筛铁路边坡道碴的一种新型清筛机械。在研发的过程中,应用虚拟样机技术代替物理样机进行试验,对缩短产品开发周期,降低研发成本,提高设计质量,改善产品性能等具有重要的意义。
     本论文在对国内外清筛机研究现状、种类和工作参数、虚拟样机、仿真技术的发展进行分析后,以清筛机挖掘链导槽结构为研究对象,对其是否有‘死点’问题、机械结构的动态性能以及机械液压耦合系统的动态性能问题进行了仿真分析,并在此基础上提出了新的控制方法。
     首先在UG里面对该机构进行三维模型的建立和整体的装配;其次将模型导入ADAMS进行虚拟样机的建立,对其机械结构进行动力学分析得出,该机构无‘死点’现象,工作平稳,受力方面无明显突变,符合工作要求;再次,在对该机构的液压系统进行分析后,利用AMESim软件建立了该机构的液压系统模型,并通过两个软件的接口文件,进行机械和液压系统的对接,进行联合仿真。通过对仿真结果的分析和对比,验证了联合仿真模型建立的准确性和联合仿真方法的可行性;最后,在上述研究的基础上,通过模糊控制与清筛机挖掘机构的分析,建立了一种清筛机挖掘链条导槽的数学模型,提出了一种重力补偿模糊PD控制器的控制方法。仿真结果表明重力补偿模糊PD控制器改善了系统的动态性能,具有较好的实用性,优越性,抗干扰和鲁棒性。
     本论文应用先进的三维建模技术、虚拟样机技术和联合仿真技术对边坡清筛机挖掘机构进行了分析和优化,取得了预期的研究成果。同时清筛机挖掘机构和类似机构以及产品的设计和开发提供一种有效的新方法;重力补偿模糊PD控制器方法对清筛机挖掘链条导槽具有一定的指导作用和工程应用价值。
With the rapid development of the Chinese railway and its increase of carriage amount by railway, mechanical technology in field of Railway maintenance is developed faster and faster. Designing and researching technical methods now are too low in efficiency and too high in cost to fit the economy development and marketing competition. Instead of physical prototype experiment, Virtual Prototype Technology is of great meaning in shorting product developing cycle, lowering researching cost, improving design quality and product performance.
     In this paper, current situations of Screen scarifier for both civil and aboard, classify and working parameters of Screen scarifier and develop of virtual technology are analyzed firstly. A right digging structure of a ballast shouder cleaning machine is taken as researching object, analysis and discussion are done about if 'dead point' issue occurs, performance of its mechanical structure and mechanical hydraulic coupled system, based on which, an appropriate precept is selected after comparing other four precepts.
     Three-dimensional models of the structure are modeled and assembled in UG software firstly; secondly, models are imported into ADAMS software to finish virtual prototype. The working requirements are met from the structure's smooth work, no obvious break in loading condition and no 'dead point' occurrence, which is reflected by the performance out of the dynamic analysis of mechanical structure. Thirdly, the hydraulic system is analyzed. Co-simulation between mechanical system and hydraulic system is done by software interface after hydraulic system model is simulated by AMEsim software then. Results of co-simulation and dynamic analysis from ADAMS are compared, which make accuracy of co-simulation modeling and co-simulation method believable. Evaluation of hydraulic system is also done. At last, combined the research with practical situation, four mechanical structures are proposed. Comparisons are done with the original precept, an optimized precept is brought out.
     The fuzzy control and Screen scarifier excavation institutional analysis, the propose a Screen scarifier digging chain guides of mathematical model, we design a gravity compensation fuzzy PD controller that combines the advantages of gravity compensation PD control with those of fuzzy control and then introduce the fuzzy PD controller into Screen scarifier digging chain guide groove. The simulation results show that, compared with the traditional PD controller, the gravity compensation fuzzy PD controller can improve the dynamic performance of the digging chain guide groove, effectiveness and produce a better robustness.
     In this paper, advanced three-dimensional modeling, virtual prototype technology and co-simulation technology are introduced to analyze and optimize the digging structure of ballast shouder Screen scarifier. A study conducted for the slope Screen scarifier mining institutions and similar institutions as well as product design and development to provide a new effective way; Screen scarifier digging chain guide groove, with some guidance and engineering application value.
引文
[1]寇长青,宋慧京.全断面枕底清筛机.北京:中国铁道出版社,1998
    [2]天津铁路工程学校线路机械组.养路机械化机械知识.北京:人民铁道出版社,1978
    [3]薛明.BQS-2型边坡清筛机.上海铁道科技,1995(2):38
    [4]李行速.铁道道床边坡清筛机挖掘筛机构的设计.辽宁工学院学报,1998,18(2):94-95
    [5]BS-550边坡清筛机使用说明书.昆明中铁大型养路机械集团有限公司,2011
    [6]孙庆华,刘秀珍,黄先祥.多领域建模仿真的软件接口研究.系统仿真学报,2006,18(2):203-206
    [7]龙马工作室.新编UGNX5中文版入门到精通.北京:人民邮电出版社,2006
    [8]李增刚ADAMS入门详解与实例.北京:国防工业出版社,2008
    [9]石博强,申炎华,宁晓斌等ADAMS基础与工程范例教程.北京:中国铁道出版社,2007
    [10]郑建荣ADAMS-虚拟样机技术入门与提高.北京:机械工业出版社,2001
    [11]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005
    [12]Using ADAMS/View Version9.0 Mechanical Dynamics Inc,1997
    [13]ADAMS Theory Seminar. Mechanical Dynamics Inc,1994
    [14]刘延柱.多缸体系统动力学.北京:高等教育出版社,1989
    [15]W.Schiehlen Multibody System Handbook Beriin Spinger Verlag,1990
    [16]机械设计编委会.机械设计手册第四卷.北京:机械工业出版社,2004
    [17]付永领,齐海涛LMS Imagine. Lab AMESim系统建模和仿真实例教程.北京:北京航空航天大学出版社,2011
    [18]付永领,祈晓野LMS Imagine. Lab AMESim系统建模和仿真参考手册.北京:北京航空航天大学出版社,2011
    [19]Zadeh LA.Fuzzy sets. Information and Control.1965,8:338-353
    [20]Zadeh LA. Outline of a new approach to the analysis of complex systems and decision proeesses. IEEE Trans. On SMC,1973,3(1):28-44
    [21]Mamdani EH, etc. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Studies.1975,7(1):1-3
    [22]Mamdani EH. Applications of fuzzy algorithms for simple dynamic plant. Proc. IEEE,1974,121:1585-1588
    [23]章卫国,杨向忠.模糊控制理论与应用.西安:西北工业大学出版社,1999
    [24]刘曙光,魏俊民,望志超.模糊控制技术.北京:中国纺织出版社,2001.6
    [25]诸静等.模糊控制原理与应用.北京:机械工业出版社,2001
    [26]吴介一.提高模糊控制精度的研究.控制理论及应用,1996,13(2):264-267
    [27]王祥国.模糊自适应控制在微机SCR全数字化直接相控制中的应用.控制理论与应用,1993,10(1):60-66
    [28]张化光.复杂系统的模糊辨识与模糊自适应控制.沈阳:东北大学出版社,1993
    [29]T. M. Tong. Some Properties of Fuzzy Feedback Systems. IEEE Transactions on Systems, Man, and Cybernetics,1980,10(6):327-330
    [30]T. Takagi, M. Sugeno. Fuzzy Identification of Systems and Its Application to Modeling and Contr01. IEEE Transactions on Systems, Man, and Cybernetics, 1985,15(1):116-132
    [31]徐征明,杨振野.基于模糊模型设计自校正调节器的研究.自动化学报,1987,13(3):207-211
    [32]C. W. Xu, Y. Z.1u. Fuzzy Modelldentification and Self-Learning for Dynamic Systems. IEEE Transactions on Systems, Man, and Cybernetics,1987,17(4): 683-689
    [33]徐承伟,吕勇哉.动态系统模糊模型的辨识及自学习.自动化学报,1988,14(2):135-140
    [34]B. S. Zhang, J. M. Edmunds, Self. Organising Fuzzy Logic Controller. IEE Pro-D Control Theory and Applications,1992,139(5):46
    [35]C. James Li, J. C. Tzon. A new learning fuzzy controller based on the P-integrator concept. Fuzzy Sets and Systems,1992,48(3):279-303
    [36]彭小奇等,多变量模糊控制模型辨识方法及其在矿热电炉决策支持系统中的应用.控制理论与应用,1994,11(5):582-587.
    [37]H Ying, W Siler, J J Buckley. Fuzzy control theory:A Nonlinear case. Automatica,1990,26(3):513-520.
    [38]H Ying. The simplest fuzzy controllers using different inference methods are different nonlinear proportional controllers with variable gains. Automatica, 1993(29):1579-1589
    [39]H Ying. A fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlineat proportional-intrgral controller. Automatica,1993(29):499-505.
    [40]C L Chen, S N Wang, C C Hsiehet al. Theoretical analysis of crisp-type fuzzy logic controllers using vari-otst-norm sum-gravity inference methods. IEEE Trans on Fuzzy Systems,1998,6(1):122-136.
    [41]H Ying. Practical design of nonlinear fuzzy controllers with stability analysis for regulating processes with un-known mathematical models. Automatica, 1994,30(7):1185-1195.
    [42]膝树杰,张乃尧.分层模糊控制器的解析表达式及自适应控制方法.清华大学报(自然科学版).2002,42(9):1248-1252.
    [43]膝树杰,张乃尧,催震华.核动力装置蒸汽发生器水位的分层模糊自适应控制.控制与决策.2002(11):933-937.
    [44]范醒智,张乃尧.采用非线性规则和不均匀分布的输入输出录属函数时典型模糊控制器的结构分析.控制理论与应用.2002(2):48-51.
    [45]于娜,张乃尧.SISO高阶非线性系统的模糊滑摸控制方法.清华大学报(自然科学版).2005,45(10):1320-1323.
    [46]Sinha, Arpita. Analytical structures for fuzzy PID controllers Mohan, B.M. (Department of Electrical Engineering, Indian Instiute of Technology). IEEE Transactions on Fuzzy Systems,2008(16):52-60.
    [47]Ning Wang, Xianyao Meng. Analytical Structures and Stability Analysis of Theree-Dimensional Fuzzy Controllers.2008 IEEE International Conference on Fuzzy Systems.2008:64-70. [48] Xiang-Jie Liu, Xiaoxin Zhou. Structure Analysis of fuzzy controller with Gaussian Membership Function. The 14 th IFAC World Congress. Beijing China. 1999:367-371.
    [49]曾珂,张乃尧,徐文立.采用梯形录属函数的一类模糊控制器的结构分析.中国科学E辑.2000(4):320-331
    [50]Amin H A, Ying H. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains. Auromatica, 2004,40(9):1551-1559.
    [51]王宁,孟尧,输入采用广义梯形录属函数的两维最简模糊控制器结构分析.自动化学报,2008(4):466-470.
    [52]张香燕,张乃尧。Pi型录属函数的典型模糊控制器的解析结构.智能系统学报.2008(1):31-37
    [53]曾珂,张乃尧,徐文立.典型T-S模糊系统的通用逼近性.控制理论与应用.2001(4):294-298.
    [54]刘福才,陈超等.模糊系统万能逼近理论研究综述智能系统学报2007(2):26-32.
    [55]Wang L-X. Fuzzy Systems are Universal Approximators. Proc. Of IEEE International Conference on Fuzzy System, San Diego, CA,1992:1163-1170.
    [56]Wang Lixin. Fuzzy Systems are universal approximators. IEEE Conf Fuzzy Systems. San Diego, USA.1992:116-119.
    [57]Wang Lixin, Jerry M. Mendel fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. On Neural Networks,1992, 3(5):807-814.
    [58]Hao Ying. General fuzzy systems are universal approximators. Pro of the 32nd Conf on Decision and Control. San Antonio, USA.1993:1739-1742.
    [59]Hao Ying. Sufficient condition on general fuzzy systems as function approximatiors. Automatic,1994,30(3):521-525.
    [60]Zeng X-J, Singh M G. A Relationship between membership functions and approximation accuracy in fuzzy systems. IEEE Trans. On systems, Man and cybernetic,1996,26(l):176-180.
    [61]Zeng X-J, Singh M G. Approximation Accuracy Analysis of Fuzzy Systems as Function Approximators. IEEE Trans. On Fuzzy Systems,1996,4(1):44-63.
    [62]张恩勤,施颂椒.采用非线性规则和不均匀分布的输入输出录属函数时典型模糊控制器的结构分析.控制理论与应用.2002(2):48-51.
    [63]孙多青,霍伟.具有任意形状态录属函数的分层模糊系统逼近性能研究.控制理论与应用,2003,20(3):377-381.
    [64]Ding Y S, Ying H, Shao S H. Necessary conditions on minimal system configuration for General MISO Mamdani fuzzy systems as Universal Approximators. IEEE Trans. On systems,2000,30(6):857-863.
    [65]Wang P Z, Tan S H, Song F Met al. Constructive theory for fuzzy systems. Fuzzy Sets and systems,1997(88):195-203.
    [66]Zeng X J, Singh M G. Approximation accuracy analysis of fuzzy systems as function approximators. IEEE Trans. On fuzzy systems,1996,4(1):44-63.
    [67]曾珂,徐文立,张乃尧.特定Mamdani模糊系统的通用逼近性.控制与决策,2000,15(4):435-438.
    [68]Ding Y S, Ying H, Shao S H. Necessary conditions for general MISO fuzzy systems as universal approximators. Proc.1997 IEEE Int. Conf. Systems, Man and cybernetics, Orlando, Florida, USA, October 12-15,1997(4):3176-3181.
    [69]Ying H, Chen G R. Necessary conditions for some typical fuzzy systems as Universal approxiators. Automatica,1997(33):1333-1338.
    [70]Ying H, Ding Y S, Li S-Ker al. Comparison of Necessary conditions for typical Takagi-Sugeno and Mamdani fuzzy systems as Universal approximators.1998 IEEE Int. conf. Fuzzy systems, anchorate, Alaska, USA,1998:824-828.
    [71]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [72]窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社,1995.
    [73]丁永生,应浩.解析模糊控制理论:模糊控制系统的结构和稳定性分析.控制与决策.2000(3):129-136.
    [74]李士勇,模糊控制·神经控制和智能控制论[M].哈尔滨工业大学出版社,2006.
    [75]M. Braae, D.A. Rutherford. Theoretical and Linguistic Aspects of the fuzzy logic controller. Automatica,1979,15(5):553-577
    [76]M. Golob. Decomposed fuzzy proportional-integral-deriVatcontrollers. Applied Soft Computing,2001,1(3):201-214.
    [77]J. H. Kim, S. J. Oh. A如 zzy PID controller for nonlinear and uncertain systems. Soft Computing,2000,4(2):123-129.
    [78]雒健斌.薄膜润滑理论和实验研究[D].北京:清华大学,1994.
    [79]付忠学.大滑滚比下弹性流体动力润滑中的界面滑移效应[D].青岛理工大学,2007.
    [80]王学锋.异常弹流润滑油膜的实验研究[D].青岛理工大学,2006.
    [81]栗心明.自旋条件下弹性流体动力润滑的研究[D].青岛理工大学,2007.
    [82]三菱电机株式会社.三菱MR-J2S-A型伺服放大器用户手册[M].2000.
    [83]杨渝钦.控制电机[M].北京:机械工业出版社,1989.
    [84]欧超光,姜培刚,周希胜,et al. PCI.1240在光弹流实验台中的应用[J].工业控制计算机,2008,(2):24-28.
    [85]研华工控有限公司.PCI-1240用户手册[M].2001.
    [86]韩曾晋.自适应控制[M].北京:清华大学出版社,1995.
    [87]Kosko, B.模糊工程[M].西安:西安交通大学出版社,1999.
    [88]赵俊,陈建军.混沌粒子群优化的模糊神经PID控制器设计[J].西安电子科技大学学报,2008,35(1):54-59.
    [89]徐亚兰,陈建军,胡太彬,et al.基于逆动力学的柔性连杆机械臂的混合模糊控制[J].
    [90]B. M. Mohan, A. Sinha. Analytical stnlcture and stability analysis of a fuzzy PID controller. Applied Soft Computing,2008,8(1):749-758.
    [91]Chen G R. Conventional and fuzzy PID controllers:An overview. International Journal of Intelligent Control and Systems,1996,1(2):235-246.
    [92]胡包钢,Mann G K I,Gosine RG关于模糊PID控制器推理机维数的研究.自动化学报.1988,24(5):608-615
    [93]Misir D, Malki H. Design and analysis of a fuzzy proportional-integral-deivative controller. Fuzzy Sets and Systems,1996,79(3):297-314
    [94]Malki HA, Misir D, Feigenspan D, et al. Fuzzy PID contr01 of a flexible. joint robot arm with uncertainties from time-varying loads. IEEE Transactions on Control Systems Technology.1997,5(3):371-378
    [95]Li H X. A comparative design and tuning for conventional fuzzy contr01. IEEE Transactions on Systems, Man, and Cybernetics, Panr B:Cybernetics,1997, 27(5):884-889.
    [96]丁永生.模糊系统的解析分析和设计及其在激光热疗法中的应用(英文)[博 士论文].北京:中国纺织大学,1998
    [97]Sooraksa P, Chen G R. Fuzzy(PI+D)2 control for nexible robot ams. In. Proc of the 1996 IEEE Int Symp Intelligent Control, New York,1996,536-541
    [98]M. Golob. Decomposition of fzzzzy controller based on the inference break-up method. Intenigent Data Analysis,1999,3(2):127-137.
    [99]Y ", K. C. Ng. Reduced rule base and direct implementatioh of fuzzy logic control. Proc.13th IFAC World Congress, San. Francisco, CA,1997:85-90
    [100]H. X. Li, H. B. Gatland. Enhanced methods of fuzzy logic control. Proc. of FUZZ-IEEE/IFES'95, Y. okohama, Japan,1995, Yokohama, Japan, 1995,1:331-336
    [101]S. J. Qin. Auto·tuned mzzy logic controller. American Control Conference, Baltimore, USA,1994,3:2465-2469
    [102]W Li. Design of ahybrid fuzzy logic pmportional plus conventional integral-derivative controller. IEEE 1transactions on Fuzzy Systems,1998, 6(4):449-463
    [103]张化光,陈来九,徐治皋.一种模糊自校正控制器及其在单元机组汽温过程控制中的应用.中国电机工程学报.1992.1:46-52
    [104]张化光.复杂系统的模糊辨识与模糊自适应控制.沈阳:东北大学出版社,1994.
    [105]Ying H. Fuzzy Contr01 and Modeling:Analytical Foundations & Applications. New York:IEEE Press,2000
    [106]Ying H. A fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and alocal nonlinear proportional-interal controller. Automatica,1993,29:499-502
    [107]Jian-Xin Xu, Chen Liu, Chang-Chieh Hang. Modified Tuning of a Fuzzy Logic Controller. Engng Applic. Artif. Intell.1996,9(1):65-74
    [108]Wang Yinsong, Liu Jizhen. A PID-type fuzzy controller and its parameters tuning method. Proceedings of the 5th World Congress on intelligent Control and Automation, Hangzhou, P. R. China, June 15-19,2004:2589-2
    [109]LEWIS F.L. Robot Manipulator Control-Theory and Practice-1-2. ABDALLAH C.T.2004.
    [110]Chao KH,Liaw C M. Fuzzy robust speed controller for detuned field-oriented induction motor drive. IEE.Proc.Elec.Power,Applications.2000,147(1):27-3
    [111]A. Leva, PID autotuning algorithm based on relay feedback, IEE Porc-Control Theory Appl., vol.140,1993, pp.328-337
    [112]刘国荣。模型参考模糊自适应控制。控制理论与应用,1996,13(1):92-98
    [113]赵甘露,张文,朱新华。一种改进传统模糊PID控制性能的方法[J].控制理论与应用,2002,21(5):18-21
    [114]谢仕宏.MATLAB R2008控制系统动态仿真实例教程[M].北京:化学工业出版社,2009.
    [115]丘铭军,工程乍辆液压驱动系统模糊PID自适应控制策略研究,长安大学硕士学位论文,2006
    [116]窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社,1995.
    [117]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [118]金晓明.自适应模糊控制的新进展[J].信息与控制,1996,(4):2
    [119]王立新.模糊系统与模糊控制[M].北京:清华大学出版社,2
    [120]王红岩,秦火同,周云山,裘熙定.汽车无级变速传动系统综合控制的研究[J],机械工业学报,2000,36(2)
    [121]刑鹏,提高功率利用率的液压机械复合传动模糊控制研究,吉林大学硕士学位论文,2006
    [122]路甬祥.电液比例控制技术[M].北京:机械工业出版社,1988
    [123]李福义,侯兴凯,李国斌.运用优化参数法建立电液伺服阀的数学模型[J].哈尔滨船舶工程学院学报,1991,12(4):422-427
    [124]王幼民.电液伺服阀结构参数优化[J].安徽机电学院学,2002,17(2):13-16
    [125]花克勤.用辨识的方法确定伺服阀的数学模型四.机床与液压,2004,(1):87-91
    [126]宋俊,于玲.阀控缸建模方法的数字仿真比较[J].机床与液压,2004,(3):122-123
    [127]Mark W.Spong, Seth Hutchinson, and M.Vidyasagar Robot Dynamics and Control 2004(01):153-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700