用户名: 密码: 验证码:
零价铁与微生物耦合强化含氯含硝基芳烃类污染物转化和降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯代硝基苯(C1NBs)是一类典型的含氯含硝基芳烃化合物,广泛用作医药、染料、农药等生产行业中间体,我国业已成为氯代硝基苯的主要生产国与供应国。该类化合物因具有三致效应与遗传毒性,且化学性质稳定、难生物降解,极易在水体沉积物、土壤等环境中累积,进而危及公众健康与生态环境安全。为此,开展其经济、高效的污染控制技术与场地修复技术研究具有重要的现实意义与应用价值。本论文基于零价铁(ZVI)还原、微生物降解工艺处理含氯含硝基芳烃类污染物的技术优势与机理特性,以氯代硝基苯为主要研究对象,从强化目标污染物还原脱氯转化与降解出发,开展ZVI固定床-好氧生物处理(SBR)耦合工艺强化氯代硝基苯(C1NB)去除、ZVI与厌氧污泥协同还原转化氯代硝基苯及其作用机制、ZVI-厌氧颗粒污泥形成与特性表征等研究,取得如下主要成果:
     1、研究了ZVI固定床-SBR耦合工艺处理2-氯硝基苯(2-C1NB)过程还原转化及降解矿化特性。结果表明,ZVI固定床可快速还原转化2-C1NB形成2-氯苯胺(2-C1An),还原转化过程遵循准一级反应动力学,还原转化表面归一化速率常数可达(0.59±0.05) L·m-2·h-1。长效性研究发现,ZVI固定床运行42 d后其大部分ZVI(86%以上)仍具较高的2-C1NB还原转化能力;但随着固定床的连续运行,ZVI表面的腐蚀及Fe2O3、Fe(OH)3、Fe6(OH)12(CO3)等沉淀物的形成与滞留不可避免地引起系统逐步失效。
     ZVI-SBR耦合工艺在进水2-C1NB负荷287.4~1266.9 g·m-3·d-1、COD负荷130.9-854.4 g·m-3·d-1条件下连续运行40 d,出水2-C1NB、2-ClAn和COD浓度分别低于0.1 mg·L-1、0.1 mg·L-1和65.0 mg·L-1,平均去除率分别达99.9%、99.9%和92.3%;而单独SBR处理系统2-C1NB去除性能较差,其2-C1NB去除率仅为(25.3±10.2)%,且主要以挥发形式和污泥吸附形式去除。耦合工艺SBR单元2-C1An降解规律研究表明,厌氧污泥2-C1An比降解速率高达0.58 g·g-1·d-1,其降解过程伴随着反应体系氨氮和Cl-相应摩尔质量的增加及TOC的有效去除(平均去除率达95.4%)。研究结果揭示ZVI-SBR耦合系统具有强化目标污染物降解与矿化作用。
     2、ZVI与厌氧污泥复合体系还原4-氯硝基苯(4-C1NB)过程特性研究表明,复合体系可快速还原转化4-C1NB为4-氯苯胺(4-C1An),并进一步还原脱氯4-C1An为苯胺(AN),其4-C1NB还原转化一级速率常数(k4-C1NB)大于单独ZVI体系与单独厌氧污泥体系之和,强化因子Q(kZVI+sludge/(ksludge+kZVI))高达3.698;复合体系中间产物4-C1An还原脱氯速率同样高于单独厌氧污泥体系,表明ZVI与厌氧微生物在还原转化脱氯目标污染物过程具有明显的协同强化效应。
     影响因素分析发现,复合体系还原转化4-C1NB协同强化效应受ZVI种类、ZVI投加量及污泥投加量的影响显著。其中ZVI的种类影响分析表明,不同ZVI与厌氧污泥共还原4-C1NB的强化因子Q大小顺序为:还原铁粉(RZVI)>工-业铁粉(IZVI)>纳米铁(NZVI)。提高ZVI投加量可进一步提高体系k4-C1NB,但未能进一步提高强化因子及4-C1An脱氯速率,此外NZVI和高浓度RZVI对脱氯过程有抑制。提高厌氧污泥投加量可显著提高体系K4-CINB,同时也可进一步提高强化因子及4-ClAn还原脱氯速率;强化因子与污泥/RZVI质量比呈良好的线性正相关,表明厌氧生物反应在复合体系还原脱氯转化目标污染物过程中具有限速特性。
     基于上述研究结果,对RZVI-厌氧污泥复合体系开展流加降解试验,分析其降解目标污染物长效性。结果表明,在二次流加4-C1NB后,复合体系ZVI与厌氧污泥协同强化作用进一步增强,k4-C1NB比第一周期提高2.68-6.42倍。在4-C1An还原脱氯方面,低污泥/RZVI质量比复合体系在长期作用下,RZVI存在对微生物还原脱氯过程产生一定的抑制;而在高污泥/RZVI质量比条件下,复合体系始终维持高效、稳定的目标污染物还原转化与脱氯性能。
     3、研究复合体系ZVI腐蚀产物动态及作用发现,不同ZVI腐蚀产氢活性为:NZVI>RZVI>IZVI,腐蚀产生的氢可作为电子供体被厌氧微生物快速消耗利用,并强化厌氧污泥还原转化4-C1NB和产甲烷性能,其中4-C1NB还原转化过程具有优先用H2能力。厌氧污泥体系分别以H2. RZVI、IZVI和NZVI作为外源电子供体,其还原转化4-C1NB的强化因子Q'((kZVI+sludge-kZVI)/ksludge)分别为4.12-5.65、14.81-35.12、2.85-4.62和1.46-5.69,其中RZVI作为电子供体强化效果最为显著,原因在于RZVI不断腐蚀产生的H2/[H]可被厌氧微生物同步高效利用。NZVI及高浓度RZVI (5 g·L-1)存在条件下,复合体系长期作用下反应生成的高浓度悬浮态铁可在微生物表面沉淀,并造成微生物细胞结构破坏,因此对体系还原脱氯过程具有副作用。而在高污泥/ZVI质量比条件下,ZVI的副作用减弱,同时ZVI表面形成的FeOOH和Fe304可作为电子介体加快微生物利用ZVI电子供体,故复合体系可持续强化4-C1NB还原转化与脱氯性能。
     在反应温度10-40℃范围内,开展了不同体系4-C1NB反应过程热力学研究。结果表明,RZVI、厌氧污泥和复合体系4-C1NB还原转化表观活化能Ea分别为(21.8±3.8) kJ·mol-1、(65.6±3.6) kJ·mol-1和(58.0±6.5)kJ·mol-1,其中复合体系Ea与厌氧污泥体系相近,结果进一步验证复合体系4-C1NB还原转化反应速率受厌氧污泥反应控制,ZVI与厌氧污泥协同强化作用主要通过ZVI腐蚀产氢作为电子供体强化目标污染物厌氧生物还原转化过程实现。
     应用GC/MS、LC/MS分析了不同体系4-C1NB还原转化过程的中间产物,并结合有关文献,推测ZVI-厌氧污泥复合体系的4-C1NB还原转化建议性途径为:4-氯硝基苯→4-氯亚硝基苯→4-氯羟基苯胺→4-氯苯胺→苯胺。
     4、基于ZVI与厌氧污泥的协同强化还原转化效应,开展了ZVI-上流式厌氧污泥反应器(UASB)耦合工艺强化CINBs还原转化与脱氯性能研究。结果表明,在进水COD、3,4-二氯硝基苯(3,4-DC1NB)负荷分别为4200~7700 g·m-3·d-1、6.0~70.0 g·m-3·d-1条件下,投加ZVI的UASB反应器(R2)具有稳定的3,4-DC1NB还原转化脱氯性能(平均还原率达99%以上)、抗高负荷冲击和抗酸化冲击能力。此外,在3,4-DC1NB和4-C1NB两种污染物复合条件下,R2反应器在45 d内即可获得4-C1An对位还原脱氯活性,而未投加ZVI的R1反应器长期运行仍难以获得4-C1An脱氯能力。
     颗粒污泥结构特性研究发现,R2反应器内形成了铁沉淀物(以FeCO3、FeS为主)与微生物菌体相互包埋的结构化ZVI亚核-厌氧脱氯颗粒污泥(ZVI-AGS)。与R1反应器颗粒污泥(AGS)相比,ZVI-AGS结构致密、沉降性优异,更具有较高的CINBs还原转化、对位脱氯活性以及高效产H2、产CH4能力,其还原转化3,4-DC1NB、4-C1NB、3-C1NB和2-C1NB的一级速率常数比AGS分别提高36.4%、64.4%、116.5%和95.6%。
     厌氧污泥颗粒化过程微生物种群结构分析表明,反应器运行不同阶段AGS及ZVI-AGS的细菌、古菌微生物种群结构演替显著。相比而言,成熟ZVI-AGS污泥微生物优势菌群与已报道的六氯苯、四氯乙烯、多氯联苯等污染物降解菌具有较高的同源性,表明ZVI对厌氧微生物具有明显的选择效应,ZVI-AGS形成过程有利于厌氧脱氯微生物发育、富集,进而强化UASB反应器目标污染物还原脱氯性能.
     综合分析认为,ZVI-UASB耦合工艺存在化学生物共还原、ZVI腐蚀产氢与化学沉淀促絮凝、反应体系氧化还原电位降低及提供缓冲能力等一系列作用,可促进ZVI亚核-厌氧微生物污泥颗粒化与还原脱氯菌等功能微生物柔性化富集,消除电子供体[H]、中间产物等代谢流传递空间障碍,具有高效、稳定的有毒有机污染物去除性能。研究结果有望为有毒难降解有机废水高效处理、污染环境生物修复提供创新的集成技术原理。
Chloronitrobenzenes (CINBs), as important intermediates for the synthesis of medicines, dyes and pesticides, are largely produced and used in China. Many studies have comfirmed that C1NBs are mutagenic, genotoxic, refractory and bio-cumulative, and therefore they could be accumulated in sediments and soils and then threaten ecological security and human health. Consequently, it is very important to develop efficient and cost-effective technologies for treatment of complex wastewater containing these compounds and remediation of areas contaminated by these compounds. Based on the advantages and characteristics of anaerobic biological treatment technology and zero-valent iron (ZVI) reduction process, this paper investigated degradation of CINBs by a coupling ZVI fixed bed-sequencing batch reactor(SBR) system, synergistic reductive transformation of CINBs and its mechanism by ZVI and anaerobic sludge as well as formation and characteristics of ZVI-based anaerobic granular sludge (ZVI-AGS) in UASB. The main results are as follows:
     1. The reductive transformation and biodegradation characteristics of a coupling ZVI fixed bed-SBR system for treatment of 2-chloronitrobenzene (2-C1NB) wastewater were investigated in this study. Results showed that 2-C1NB was rapidly transformed into 2-chloroaniline (2-C1An) in the ZVI fixed bed, and the reductive transformation reaction accorded with pseudo-first order kinetic equation with the surface area-normalized rate constant (ksa) of (0.59±0.05) L·m-2·h-1. The results of long-term performance of the ZVI fixed bed indicated that 86.4%(v/v) of ZVI was still capable of reducing 2-C1NB to 2-ClAn after 42 days, but its reduction activity decreased gradually with corrosion of ZVI and accumulation of iron precipitates such as Fe2O3, Fe(OH)2 and so on.
     The coupling ZVI-SBR system was operated at 2-C1NB loadings of 287.4-1266.9 g·m-3·d-1 and COD loadings of 130.9~854.4 g·n-3·d-1, over 99.9% of 2-C1NB and 2-C1An and 92.3% of COD were removed and the effluent concentrations of 2-C1NB, 2-C1An and COD were lower than 0.1 mg·L-1,0.1 mg·L-1 and 65.0 mg·L-1, respectively. On the other hand, the removal efficiency of 2-C1NB in a control SBR without iron pretreatment was only (25.3±10.2)%, which was mainly attribute to the volatilization of the pollutant. The specific degradation rate of 2-C1An in the SBR of the coupling ZVI-SBR system was up to 0.58 g·g-1·d-1. During the decomposition of 2-ClAn, corresponding mol concentrations of NH1+-N and Cl- were synchronously released and the removal efficiency of TOC was up to 95.4%. These results demonstrated that the conducted coupling ZVI fixed bed-SBR system was a feasible approach to enhance the biodegradation and mineralization of CINBs.
     2. With the combination of ZVI and anaerobic sludge,4-chloronitrobenzene (4-C1NB) was quickly reduced into 4-chloroaniline (4-ClAn) and subsequently dechlorinated into aniline (AN). The strengthening factor for the pseudo-first-order transformation rate constant of 4-C1NB (Q,kZVI+sludge/(Ksludge+kZVI)) was up to 3.698. Subsequently, the dechlorination efficiency of 4-ClAn by sludge was also significantly enhanced. Results demonstrated that there was a significant synergistic effect between ZVI and anaerobic sludge.
     In the combined ZVI-anaerobic sludge system, the synergistic effect was largely affected by ZVI's type as well as doses of ZVI and biomass of anaerobic sludge. Results showed that the strengthening factor (Q) for the synergistic effect of different types of ZVI with sludge was followed:Reduced ZVI (RZVI)> Industrial ZVI (IZVI)> Nanoscale ZVI (NZVI). Increasing dosage of ZVI could promote the transformation of 4-C1NB, but the dechlorination rate of 4-ClAn and the values of Q were not enhanced. Besides, NZVI and high concentration of RZVI inhibited the dechlorination of 4-ClAn. With the incresing of biomass of sludge, the k4-C1NB, Q and the dechlorination rate of 4-ClAn were significantly enhanced, and the Q value had positive relation with the mass ratio of sludge to RZVI, which suggested that anaerobic biological reaction maybe the rate-determining step in the ZVI-anaerobic sludge combined system.
     Based on the previous results, the long-term performance of the RZVI-anaerobic sludge combined system was evaluated. Results showed that the synergistic effect was further enhanced and the k4-C1NB of the combined system during the second addition of 4-C1NB was 2.69~9.53 times of that during the first addition. Furthermore, with a high mass ratio of sludge to RZVI,4-C1NB could be efficiently and stably transformed and dechlorinated by the combined system in a long period.
     3. Study on the characteristic of hydrogen (H2) release during ZVI corrosion showed that the activity of H2 released by different types of ZVI was followed as NZVI>RZVI>IZVI. The H2 produced via ZVI corrosion could be effectively consumed as electron donor by the anaerobic microbes, and the reduction of 4-C1NB and production of CH4 by microbes were consequently enhanced. Compared with other electron donors, RZVI displayed the greatest intensification on the 4-C1NB transformation, which may be attributed to the best cross-linking of RZVI with anaerobic sludge and the most effective utilization of the catalytic H2/[H] by anaerobic microorganism. However, it was found that the addition of NZVI and high concentration of RZVI (5 g·L-1) lead to a high concentration of suspended iron, which would like to precipited on cell surface and show an inhibitory effect on microbes in a long term. Fortunately, in the combined system with higher mass ratio of sludge to ZVI, the formation FeOOH and Fe3O4 sorbed by ZVI as a redox mediator could accelerate electron transfer and enhaced the reductive transformation and dechlorination of 4-C1NB.
     The synergistic effect in the combined system was enhanced with the increase of temperature from 10℃to 40℃. The apparent activation energy (Ea) of 4-C1NB transformation in the ZVI, anaerobic sludge and ZVI-anaerobic sludge systems were (21.8±3.8) kJ·mol-1, (65.6±3.6) kJ·mol-1 and (58.0±6.5) kJ·mol-1, respectively. According to that the Ea of ZVI-anaerobic sludge system was closed to that of anaerobic sludge system, it's speculated that the 4-C1NB transformation by microorganism is the rate-limiting step, and the main mechanism of the synergistic transformation of 4-C1NB in the combined system was that the evolution of H2 by ZVI corrosion could be used as electron donor by anaerobic sludge and therfore accelarate the biological reductive transformation.
     According to the results of GC-MS and LC-MS analysis and some related reports, a possible pathway of 4-C1NB transformation by the ZVI and anaerobic sludge combined system was proposed:4-chloronitrobenzene→4-chloronitrosobenzene→4-chlorophenylhydroxylamine→4-chloroaniline→analine.
     4. Based on the synergistic effect of ZVI and anaerobic sludge in batch experiments, the effect of ZVI on the anaerobic biotransformation and dechlorination of chloronitrobenzenes (3,4-DC1NB and 4-C1NB) were also investigated in a ZVI-added upflow anaerobic sludge blanket (ZVI-UASB, R2). Results showed stable COD removal, C1NBs transformation and dechlorination performance were achieved in R2 when operated with influent COD and 3,4-DC1NB loadings of 4200~7700 g·m-3·d-1 and 6.0~70.0 g·m-3·d-1, and R2 showed better shock resistance and buffering capacity for acidification than control UASB (R1). Furthermore, the dechlorination of 4-ClAn to AN was achieved in R2 after 45 days'running, while it did not happen in Rl after long-term operation.
     A novel ZVI-based anaerobic granular sludge (ZVI-AGS) via the cross-linking of ZVI and anaerobic microorganism was successfully developed in R2. Compared with normal AGS formed in R1, the mature ZVI-AGS showed a smaller size, more compact structure and better settling ability. The higher microbial activities including C1NBs transformation and dechlorination rates, H2 and CH4 production rates were all achieved in ZVI-AGS.
     16S rRNA PCR-DGGE analysis indicated that the populations of bacteria and archaea in the AGS and ZVI-AGS were significantly changed during the reactor operation. Compared with AGS, the dominant functional bacteria were closely related to the functional microorganism capable of reductively dechlorinating PCB, HCB and TCE in anaerobic enrichment cultures. Results showed that the addition of ZVI in the UASB provided a suitable niche for the enrichment of anaerobic reductive dechlorinating microbial community.
     Overall, the addition of ZVI to UASB reactor favors the participation of both chemical and microbial degradation, and stimulates H2 production as electron donor via ZVI corrosion and maintains appropriate pH and ORP, all of which may play important roles in creating a favorable niche for the growth and enrichment of 4-C1NB reductive dechlorinating microorganism. At the same time, the reductive transformation and dechlorination of C1NBs could be enhanced in the ZVI-AGS via eliminating the steric hindrance in the transportation of electron and metabolism of [H] and intermediate products. This paper could provide a novel integrated technology for the treatment of wastewaters containing recalcitrant chlorinated nitroaromatics.
引文
[1]Adrian L, Szewzyk U, Gorisch H. Bacterial growth based on reductive dechiorination of trichlorobenzenes. Biodegradation 2000,11:73-81.
    [2]Adrian L, Gorisch H. Microbial transformation of chlorinated benzenes under anaerobic conditions. Research in Microbiology 2002,153:131-137.
    [3]Agrawal A, Tratnyek PG. Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology 1996,30:153-160.
    [4]A1 Momani F. Impact of photo-oxidation technology on the aqueous solutions of nitrobenzene:Degradation efficiency and biodegradability enhancement. Journal of Photochemistry and Photobiology a-Chemistry 2006,179:184-192.
    [5]Alessi DS, Li ZH. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environmental Science & Technology 2001,35: 3713-3717.
    [6]APHA. Standard Methods for the Examination of Water and Wastewater. Washington, DC:American Public Health Association/American Water Works Association/Water Environment Federation,1998.
    [7]Arnold WA, Roberts AL. Inter- and intraspecies competitive effects in reactions of chlorinated ethylenes with zero-valent iron in column reactors. Environmental Engineering Science 2000,17:291-302.
    [8]Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science & Technology 2008,42:6730-6735.
    [9]Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environmental Science & Technology 2007,41:2554-2559.
    [10]Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, Thompson IP. Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 2010a; 80:554-562.
    [11]Barnes RJ, van der Gast CJ, Riba O, Lehtovirta LE, Prosser JI, Dobson PJ. The impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials 2010b,184:73-80.
    [12]Becker JG, Berardesco G, Rittmann BE, Stahl DA. Effects of endogenous substrates on adaptation of anaerobic microbial communities to 3-chlorobenzoate. Applied and Environmental Microbiology 2006,72:449-456.
    [13]Bell LS, Devlin JF, Gillham RW, Binning PJ. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene. Journal of Contaminant Hydrology 2003,66:201-217.
    [14]Bhatt P, Kumar MS, Mudliar S, Chakrabarti T. Enhanced biodegradation of hexachlorocyclohexane in upflow anaerobic sludge blanket reactor using methanol as an electron donor. Bioresource Technology 2008,99:2594-2602.
    [15]Bi EP, Bowen I, Devlin JF. Effect of mixed anions (HCO3--SO42--ClO4-) on granular iron (Fe-0) reactivity. Environmental Science & Technology 2009,43:5975-5981.
    [16]Bisaillon A, Beaudet R, Lepine F, Deziel E, Villemur R. Identification and Characterization of a Novel CprA Reductive Dehalogenase Specific to Highly Chlorinated Phenols from Desulfitobacterium hafniense Strain PCP-1. Applied and Environmental Microbiology 2010,76:7536-7540.
    [17]Biswas JE, Bose P. Zero-valent iron-assisted autotrophic denitrification. Journal of Environmental Engineering 2005,131:1212-1220.
    [18]Bizzigotti GO, Reynolds DA, Kueper BH. Enhanced solubilization and destruction of tetrachloroethylene by hydroxypropyl-beta-cyclodextrin and iron. Environmental Science & Technology 1997,31:472-478.
    [19]Booker RS, Pavlostathis SG. Microbial reductive dechlorination of hexachloro-1,3-butadiene in a methanogenic enrichment culture. Water Research 2000, 34:4437-4445.
    [20]Boussahela R, Harikb D, Mammara M, Lamara-Mohamedb S. Degradation of obsolete DDT by Fenton oxidation with zero-valent iron. Desalination 2007,206:369-372.
    [21]Boyer A, Page-Belanger R, Saucier M, Villemur R, Lepine F, Juteau P, et al. Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1. Biochemical Journal 2003,373:297-303.
    [22]Bumpus JA, Tien M, Wright D, Aust SD. Oxidation of persistent environmental-pollutants by a white rot fungus. Science 1985,228:1434-1436.
    [23]Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, et al. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 2003,421: 357-360.
    [24]Burrow PD, Aflatooni K, Gallup GA. Dechlorination rate constants on iron and the correlation with electron attachment energies. Environmental Science & Technology 2000,34:3368-3371.
    [25]Cabirol N, Jacob F, Perrier J, Fouillet B, Chambon P. Complete degradation of high concentrations of tetrachloroethylene by a methanogenic consortium in a fixed-bed reactor. Journal of Biotechnology 1998,62:133-141.
    [26]Cao J, Wei L, Huang Q, Wang L, Han SK. Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 1999,38:565-571.
    [27]Cao HB, Li YP, Zhang GF, Zhang Y. Reduction of nitrobenzene with H2 using a microbial consortium. Biotechnology Letters 2004,26:307-310.
    [28]Carr CS, Hughes JB. Enrichment of high rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron dopers to sustain activity. Environmental Science & Technology 1998,32:1817-1824.
    [29]Chang BV, Chiu TC, Yuan SY. Dechlorination of polychlorinated biphenyl congeners by anaerobic microorganisms from river sediment. Water Environment Research 2006,78: 764-769.
    [30]Chen JL, Al-Abed SR, Ryan JA, Li ZB. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials 2001,83:243-254.
    [31]Chen IM, Chang BV, Yuan SY, Wang YS. Reductive dechlorination of hexachlorobenzene under various additions. Water Air and Soil Pollution 2002,139: 61-74.
    [32]Cho HH, Lee T, Hwang SJ, Park JW. Iron and organo-bentonite for the reduction and sorption of trichloroethylene. Chemosphere 2005,58:103-108.
    [33]Choe S, Lee SH, Chang YY, Hwang KY, Khim J. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere 2001,42:367-372.
    [34]Choi JH, Kim YH, Choi SJ. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers:Laboratory studies. Chemosphere 2007,67:1551-1557.
    [35]Clark CJ, Rao PSC, Annable MD. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron. Journal of Hazardous Materials 2003,96:65-78.
    [36]Collins G, Foy C, McHugh S, O'Flaherty V. Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15 degrees C. Ferns Microbiology Ecology 2005,53:167-178.
    [37]Cutter LA, Watts JEM, Sowers KR, May HD. Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environmental Microbiology 2001,3:699-709.
    [38]Daniels L, Belay N, Rajagopal BS, Weimer PJ. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole as the sole source of electrons. Science 1987, 237:509-511.
    [39]Deng BL Burros DR, Campbell TJ. Reduction of vinyl chloride in melatlic iron-water systems. Environmental Science & Technology 1999,33:2651-2656.
    [40]Devlin JF, Klausen J, Schwarzenbach RP. Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments. Environmental Science & Technology 1998,32: 1941-1947.
    [41]Devlin JF, Allin KO. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environmental Science & Technology 2005,39:1868-1874.
    [42]Diao M, Yao M. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene:use of zero-valent iron nanoparticles in inactivating microbes. Water Research 2009,43:5243-5251.
    [43]Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F. Iron corrosion by novel anaerobic microorganisms. Nature 2004,427:829-832.
    [44]Distefano TD, Gossett JM, Zinder SH. Hydrogen as an electron-donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Applied and Environmental Microbiology 1992,58:3622-3629.
    [45]Dolfing J, Harrison BK. Redox and reduction potentials as parameters to predict the dgradation pthway of clorinated bnzenes in aaerobic evironments. Fems Microbiology Ecology 1993,13:23-29.
    [46]Dong TT, Luo HJ, Wang YP, Hu BJ, Chen H. Stabilization of Fe-Pd bimetallic nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para-nitrochlorobenzene in water. Desalination 2011,271:11-19.
    [47]Doong RA, Lai YJ. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Research 2005,39:2309-2318.
    [48]Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel KH, von Low E. Anaerobic incorporation of radiolabelled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 1999,38: 2081-2095.
    [49]Duteil L, Queille-Roussel C, Lorenz B, Thieroff-Ekerdt R, Ortonne JP. A randomized, controlled study of the safety and efficacy of topical corticosteroid treatments of sunburn in healthy volunteers. Clinical and Experimental Dermatology 2002,27:314-318.
    [50]Elliott DW, Zhang WX. Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology 2001,35:4922-4926.
    [51]Esteve-Nunez A, Lucchesi G, Philipp B, Schink B, Ramos J L. Respiration of 2,4,6-trinitrotoluene by Pseudomonas strain JLR11. Journal of Bacteriology,2000:1352-1355.
    [52]Fan JH, Wang HW, Wu DL, Ma LM. Effects of electrolytes on the reduction of 2,4-dinitrotoluene by zero-valent iron. Journal of Chemical Technology and Biotechnology 2010,85:1117-1121.
    [53]Farrell J, Kason M, Melitas N, Li T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science & Technology 2000,34:514-521.
    [54]Feltes J, Levsen K, Volmer D, Spiekermann M. Gas-chromatographic and mass spectrometric determination of nitroaromatics in water. Journal of Chromatography 1990, 518:21-40.
    [55]Feng J, Lim TT. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles:comparison with commercial micro-scale Fe and Zn. Chemosphere 2005,59:1267-1277.
    [56]Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Haggblom MM. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology 2004,38:2075-2081.
    [57]Fernandez-Sanchez JM, Sawvel EJ, Alvarez PJJ. Effect of Fe-0 quantity on the efficiency of integrated microbial-Fe-0 treatment processes. Chemosphere 2004,54:823-829.
    [58]Fleischmann TJ, Walker KC, Spain JC, Hughes JB, Craig AM. Anaerobic transformation of 2,4,6-TNT by bovine ruminal microbes. Biochemical and Biophysical Research Communications 2004,314:957-963.
    [59]Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio-Technology 1992,10:1466-1472.
    [60]Gandhi S, Oh BT, Schnoor JL, Alvarez PJJ. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions. Water Research 2002,36:1973-1982.
    [61]Gerlach R, Cunningham AB, Caccavo F. Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal. Environmental Science & Technology 2000,34:2461-2464.
    [62]Gharbani P, Khosravi M, Tabatabaii SM, Zare K, Dastmalchi S, Mehrizad A. Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone. International Journal of Environmental Science and Technology 2010,7: 377-384.
    [63]Gibb C, Satapanajaru T, Comfort SD, Shea PJ. Remediating dicamba-contaminated water with zerovalent iron. Chemosphere 2004,54:841-848.
    [64]Gillham RW, Ohannesin SF. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 1994,32:958-967.
    [65]Glazier R, Venkatakrishnan R, Gheorghiu F, Walata L, Nash R, Zhang W. Nanotechnology takes root. Civil Engineering 2003,73:64-69.
    [66]Gregory KB, Mason MG, Picken HD, Weathers LJ, Parkin GF. Bioaugmentation of Fe(0) for the remediation of chlorinated aliphatic hydrocarbons. Environmental Engineering Science 2000,17:169-181.
    [67]Grotenhuis JTC, Kissel JC, Plugge CM, Stams AJM, Zehnder AJB. Role of substrate concentration in particle size distribution of methanogenic antigranulocytes granular sludge in UASB Reactors. Water Research 1991,25:21-27.
    [68]Guo ZB, Zheng SR, Zheng Z, Jiang F, Hu WY, Ni LX. Selective adsorption of p-chloronitro benzene from aqueous mixture of p-chloronitrobenzene and o-chloronitrobenzene using HZSM-5 zeolite. Water Research 2005,39:1174-1182.
    [69]Haderlein SB, Schwarzenbach RP. Environmental processes influencing the rate of abiotic reduction of nitroaromatic compounds in the subsurface. In Biodegradation of Nitroaromatic Compounds. Spain J, New York,1995, pp.199-225.
    [70]Haggblom MM. Reductive dechlorination of halogenated phenols by a sulfate-reducing consortium. Fems Microbiology Ecology 1998,26:35-41.
    [71]Haggblom MM, Knight VK, Kerkhof LJ. Anaerobic decomposition of halogenated aromatic compounds.Environmental Pollution 2000,199-207.
    [72]Hakulinen R, Salkinojasalonen M. Treatment of pulp and paper industry wastewaters in an anaerobic fluidized bed. Process Biochemistry 1982,17:18-22.
    [73]Hatter DR. The use and importance of nitroaromatic chemicals in the chemical industry. In:Rickert DE, editor. Toxicity of nitroaromatic compounds. Hemisphere, Washington, DC,1985, pp.1-13.
    [74]He F, Zhao DY. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology 2005,39:3314-3320.
    [75]He JZ, Robrock KR, Alvarez-Cohen L. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environmental Science & Technology 2006, 40:4429-4434.
    [76]He N, Li PJ, Zhou YC, Fan SX, Ren WX. Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1). Chemosphere 2009,76:1491-1497.
    [77]Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers:A critical review. Environmental Engineering Science 2007,24: 401-423.
    [78]Hongsawat P, Vangnai AS. Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. Journal of Hazardours Material 2010,186:1300-1307.
    [79]Hu BJ, Luo HJ, Chen H, Dong TT. Adsorption of chromate and para-nitrochlorobenzene on inorganic-organic montmorillonite. Applied Clay Science 2011,51:198-201.
    [80]Huang YH, Zhang TC. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Research 2005,39:1751-1760.
    [81]Huang LP, Cheng SA, Chen GH. Bioelectrochemical systems for efficient recalcitrant wastes treatment. Journal of Chemical Technology and Biotechnology 2011,86:481-491.
    [82]Hung HM, Ling FH, Hoffmann MR. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environmental Science & Technology 2000,34:1758-1763.
    [83]In BH, Park JS, Namkoong W, Hwang EY, Kim JD. Effect of co-substrate on anaerobic slurry phase bioremediation of TNT-contaminated soil. Korean Journal of Chemical Engineering 2008,25:102-107.
    [84]Ismail ZZ, Pavlostathis SG. Influence of sulfate reduction on the microbial dechlorination of pentachloroaniline in a mixed anaerobic culture. Biodegradation 2010,21:43-57.
    [85]Janda V, Vasek P, Bizova J, Belohlav Z. Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron. Chemosphere 2004,54:917-925.
    [86]Jayachandran G, Gorisch H, Adrian L. Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1. Archives of Microbiology 2003,180:411-416.
    [87]Jones CR, Liu YY, Sepai O, Yan H, Sabbioni G. Internal exposure, health effects, and cancer risk of humans exposured to chloronitrobenzene. Environmental Science & Technology 2006,40:387-394.
    [88]Junelles AM, Janatiidrissi R, Petitdemange H, Gay R. Iron efecton acetonne buanol Fermentation. Current Microbiology 1988,17:299-303.
    [89]Kam SK, Chakrabarti SK, Reddy MS. Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 2011,22: 63-69.
    [90]Kamolpornwijit W, Liang LY, Moline GR, Hart T, West OR. Identification and quantification of mineral precipitation in Fe-0 filings from a column study. Environmental Science & Technology 2004,38:5757-5765.
    [91]Karri S, Sierra-Alvarez R, Field JA. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnology and Bioengineering 2005,92:810-819.
    [92]Katsivela E, Wray V, Pieper DH, Wittich RM. Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Applied and Environmental Microbiology 1999,65:1405-1412.
    [93]Keum YS, Li QX. Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere 2004,54:255-263.
    [94]Kim YH, Carraway ER. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology 2000,34:2014-2017.
    [95]Kim J, Cho YC, Frohnhoefer RC, Rhee GY. Dechlorination of individual congeners in aroclor 1248 as enhanced by chlorobenzoates, chlorophenols, and chlorobenzenes. Journal of Microbiology and Biotechnology 2008,18:1701-1708.
    [96]King RA, Miller JDA. Corrosion by the sulphate-reducing bacteria. Nature 1971,233: 491-492.
    [97]Kirschling TL, Gregory KB, Minkley EG, Lowry GV, Tilton RD. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology 2010,44: 3474-3480.
    [98]Klausen J, Ranke J, Schwarzenbach RP. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron. Chemosphere 2001,44:511-517.
    [99]Knackmuss HJ. Basic knowledge and perspectives of bioelimination of xenobiotic compounds. Journal of Biotechnology 1996,51:287-295.
    [100]Kouznetsova I, Bayer P, Ebert M, Finkel M. Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging. Journal of Contaminant Hydrology 2007,90:58-80.
    [101]Kuhn EP, Suflita JM. Sequential reductive dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Environmental Science & Technology 1989,23:848-852.
    [102]Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds:An overview. Journal of Environmental Management 2007,85:496-512.
    [103]Kunapuli U, Lueders T, Meckenstock RU. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. Isme Journal 2007,1:643-653.
    [104]Lai P, Zhao HZ, Zeng M, Ni JR. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process. Journal of Hazardous Materials 2009, 162:1423-1429.
    [105]Lampron KJ, Chiu PC, Cha DK. Reductive dehalogenation of chlorinated ethenes with elemental iron:The role of microorganisms. Water Research 2001,35:3077-3084.
    [106]Latorre J, Reineke W, Knackmuss HJ. Microbial metabolism of chloro -anilines:ehanced evolution by natural genetic exchange. Archives of Microbiology 1984,140:159-165.
    [107]La vine BK, Auslander G, Ritter J. Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment. Microchemical Journal 2001,70: 69-83.
    [108]Leadbetter ER, Foster JW. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Archives of Biochemistry and Biophysics 1959,82: 491-492.
    [109]Lee DK, Cho IC. Characterization of TiO2 thin film immobilized on glass tube and its application to PCE photocatalytic destruction. Microchemical Journal 2001,68:215-223.
    [110]Li Q, Minami M, Inagaki H. Acute and subchronic immunotoxicity of p-chloronitrobenzene in mice. I. Effect on natural killer, cytotoxic T-lymphocyte activities and mitogen-stimulated lymphocyte proliferation. Toxicology 1998,127:223-232.
    [111]Li Q, Minami M, Hanaoka T, Yamamura Y. Acute immunotoxicity of p-chloronitrobenzene in mice:II. Effect of p-chloronitrobenzene on the immunophenotype of murine splenocytes determined by flow cytometry. Toxicology 1999,137:35-45.
    [112]Li BZ, Xu XY, Zhu L. Ozonation of chloronitrobenzenes in aqueous solution:kinetics and mechanism. Journal of Chemical Technology and Biotechnology 2009,84:167-175.
    [113]Li BZ, Xu XY, Zhu L. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds. Journal of Zhejiang University-Science B 2010a,11:177-189.
    [114]Li J, Liu GL, Zhang RD, Luo Y, Zhang CP, Li MC. Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresource Technology 2010b,101:4013-4020.
    [115]Li SZ, Wu PX, Li HL, Zhu NW, Li P, Wu JH, et al. Synthesis and characterization of organo-montmorillonite supported iron nanoparticles. Applied Clay Science 2010c,50: 330-336.
    [116]Li L, Hu XM, Dong YH. Isolation, Identification and Degradation Characteristics of Chloroaniline-degrading strain PSB-CS2. In:Hu J, editor. Advances in Biomedical Engineering. Information Engineering Research Inst, USA, Newark,2011, pp.250-253.
    [117]Lin CJ, Lo SL, Liou YH. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. Journal of Hazardous Materials 2004,116:219-228.
    [118]Liu YH, Yang FL, Chen JW, Gao LN, Chen GH. Linear free energy relationships for dechlorination of aromatic chlorides by Pd/Fe. Chemosphere 2003,50:1275-1279.
    [119]Liu H, Wang SJ, Zhou NY. A new isolate of Pseudomonas stutzeri that degrades 2-chloronitrobenzene. Biotechnology Letters 2005,27:275-278.
    [120]Liu CC, Tseng DH, Wang CY. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials 2006,136:706-713.
    [121]Liu XW, He R, Shen DS. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge. Journal of Environmental Management 2008,88:939-946.
    [122]Liu YJ. Aqueous p-chloronitrobenzene decomposition induced by contact glow discharge electrolysis. Journal of Hazardous Materials 2009,166:1495-1499.
    [123]Liu CY, Jiang X, Wang F, Yang XL, Wang T. Hexachlorobenzene dechlorination as affected by nitrogen application in acidic paddy soil. Journal of Hazardous Materials 2010,179:709-714.
    [124]Liu YW, Zhang YB, Quan X, Zhang JX, Zhao HM, Chen SO. Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures. Bioresource Technology 2011,102:2578-2584.
    [125]Livingston AG. A novel membrane bioreactor for detoxifying industrial waste-water 2 biodegradation of 3-chloronitrobenzene in an industrially produced waste-water. Biotechnology and Bioengineering 1993,41:927-936.
    [126]Lovley DR, Chapelle FH, Woodward JC. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environmental Science & Technology 1994,28:1205-1210.
    [127]Lowry GV, Reinhard M. Pd-catalyzed TCE dechlorination in groundwater:Solute effects, biological control, and oxidative catalyst regeneration. Environmental Science & Technology 2000,34:3217-3223.
    [128]Lowry GV, Johnson KM. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zero-valent iron in a water/methanol solution. Environmental Science & Technology 2004,38:5208-5216.
    [129]Lucas SV. GC/MS analysis of organics in drinking water concentrates and advanced waste treatment concentrates.2:Computer-printed tabulations of compound identification results from large volume concentrates (US EPA Report No. EPA-600/1-84-020b; US NTIS PB85-128239), Research Triangle Park, NC, United States Environmental Protection Agency,1984.
    [130]Ma YF, Wu JF, Wang SY, Jang CY, Zhang Y, Qi SW, et al. Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Applied and Environmental Microbiology 2007,73:4477-4483.
    [131]Ma LM, Zhang WX. Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. Environmental Science & Technology 2008,42:5384-5389.
    [132]Majumder PS, Gupta SK. Degradation of 4-chlorophenol in UASB reactor under methanogenic conditions. Bioresource Technology 2008,99:4169-4177.
    [133]Mantha R, Taylor KE, Biswas N, Bewtra JK. A continuous system for Fe-0 reduction of nitrobenzene in synthetic wastewater. Environmental Science & Technology 2001,35: 3231-3236.
    [134]Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology 1994,28:2045-2053.
    [135]Matsumoto M, Umeda Y, Senoh H, Suzuki M, Kano H, Katagiri T, et al. Two-year feed study of carcinogenicity and chronic toxicity of ortho-chloronitrobenzene in rats and mice. Journal of Toxicological Sciences 2006,31:247-264.
    [136]May HD, Miller GS, Kjellerup BV, Sowers KR. Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Applied and Environmental Microbiology 2008,74:2089-2094.
    [137]Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J. The role of intermolecular interactions:studies on model systems for bacterial biofilms. International Journal of Biological Macromolecules 1999,26:3-16.
    [138]Min JE, Park IS, Ko S, Shin WS, Park JW. Effect of phosphate and sediment bacteria on trichloroethylene dechlorination with zero valent iron. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 2009,44: 362-369.
    [139]Mu Y, Yu HQ, Zheng JC, Zhang SJ, Sheng GP. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere 2004,54:789-794.
    [140]Mu Y, Rozendal RA, Rabaey K, Keller J. Nitrobenzene removal in bioelectrochemical systems. Environmental Science & Technology 2009,43:8690-8695.
    [141]Muftikian R, Fernando Q, Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research 1995,29: 2434-2439.
    [142]Nair RS, Johannsen FR, Levinskas GJ, Terrill JB. Assessment of toxicity of ortho-nitrochlorobenzene in rats followint a 4-week inhalation exposure. Fundamental and Applied Toxicology 1986,7:609-614.
    [143]Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J. Degradation of hexahydro-1,3,5-trinitro-1,15-triazine (RDX) using zero-valent iron nanoparticles. Environmental Science & Technology 2008,42:4364-4370.
    [144]Nam S, Tratnyek PG. Reduction of azo dyes with zero-valent iron. Water Research 2000, 34:1837-1845.
    [145]Nanzai B, Okitsu K, Takenaka N, Bandow H, Maeda Y. Sonochemical degradation of various monocyclic aromatic compounds:Relation between hydrophobicities of organic compounds and the decomposition rates. Ultrasonics Sonochemistry 2008,15:478-483.
    [146]Natarajan MR, Wu WM, Nye J, Wang H, Bhatnagar L, Jain MK. Dechlorination of polychlorinated biphenyl congeners by an anaerobic microbial consortium. Applied Microbiology and Biotechnology 1996,46:673-677.
    [147]Nicholson DK, Woods SL, Istok JD, Peek DC. Reductive Dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium. Applied and Environmental Microbiology 1992,58:2280-2286.
    [148]Nollet H, Van de Putte I, Raskin L, Verstraete W. Carbon/electron source dependence of polychlorinated biphenyl dechlorination pathways for anaerobic granules. Chemosphere 2005,58:299-310.
    [149]Novak PJ, Daniels L, Parkin GF. Rapid dechlorination of carbon tetrachloride and chloroform by extracellular agents in cultures of Methanosarcina thermophila. Environmental Science & Technology 1998,32:3132-3136.
    [150]Oh SY, Chiu PC, Kim BJ, Cha DK. Zero-valent iron pretreatment for enhancing the biodegradability of RDX. Water Research 2005,39:5027-5032.
    [151]Park HS, Lim SJ, Chang YK, Livingston AG, Kim HS. Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus. Applied and Environmental Microbiology 1999 65:1083-1091.
    [152]Peres CMNH, Agathos SN. Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed. Applied Microbiology and Biotechnology.1998,49:343-349.
    [153]Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes:adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research 2008,10:795-814.
    [154]Pol LWH, De Zeeuw WJ. Granulation in UASB-reactors. Water Science and Technology 1983,15:293-304.
    [155]Preuss A, Fimpet J, Diekert G,1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Archives of Microbiology 1993,159:345-353.
    [156]Priya MH, Madras G. Photocatalytic degradation of nitrobenzenes with combustion synthesized nano-TiO2. Journal of Photochemistry and Photobiology a-Chemistry 2006, 178:1-7.
    [157]Ramsburg CA, Abriola LM, Pennell KD, Loffler FE, Gamache M, Amos BK, et al. Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman Road site. Environmental Science & Technology 2004,38:5902-5914.
    [158]Razo-Flores E, Donlon B, Lettinga G, Field JA. Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. Fems Microbiology Reviews 1997,20:525-538.
    [159]Reddy GVB, Gelpke MDS, Gold MH. Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium:Involvement of reductive dechlorination. Journal of Bacteriology 1998,180:5159-5164.
    [160]Rosenthal H, Adrian L, Steiof M. Dechlorination of PCE in the presence of Fe-0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 2004,55: 661-669.
    [161]Ruangchainikom C, Liao CH, Anotai J, Lee MT. Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO2-bubbled system. Water Research 2006,40:195-204.
    [162]Rysavy JP, Yan T, Novak PJ. Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source. Water Research 2005,39: 569-578.
    [163]Sakulchaicharoen N, O'Carroll DM, Herrera JE. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale Fe/Pd particles. Journal of Contaminant Hydrology 2010,118:117-127.
    [164]Saritha P, Aparna C, Himabindu V, Anjaneyulu Y. Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. Journal of Hazardous Materials 2007,149:609-614.
    [165]Saxe JP, Lubenow BL, Chiu PC, Huang CP, Cha DK. Enhanced biodegradation of azo dyes using an integrated elemental iron-activated sludge system:Ⅰ. Evaluation of system performance. Water Environment Research 2006,78:19-25.
    [166]Schachmann A, Muller R. Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Applied Microbiology and Biotechnology 1991,34:809-813.
    [167]Schenzle A, Lenke H, Fischer P, Williams P, Knackmuss HJ.Catabolism of 3-NP by Ralstonia eutropha JMP134. Applied Environmental Microbiology 1997,63,1421-1427.
    [168]Scherer MM, Johnson KM, Westall JC, Tratnyek PG. Mass transport effects on the kinetics of nitrobenzene reduction by iron metal. Environmental Science & Technology 2001,35:2804-2811.
    [169]Schlicker O DA. Combined zero and first-order kinetic model of the degradation of trichloroethene and cis-dichloroethene with commercial iron. Environmental Science & Technology 1999,33:4304-4309.
    [170]Schmidt JE, Macario AJL, Ahring BK, Demacario EC. Effect of magnesium on methanogenic subpopulations in a thermophlic acetate-degrading granular consortium. Applied and Environmental Microbiology 1992,58:862-868.
    [171]Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, et al. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 2005,307:105-108.
    [172]Shea PJ, Machacek TA, Comfort SD. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution 2004,132:183-188.
    [173]Shen DS, He R, Liu XW, Long Y. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor. Journal of Hazardous Materials 2006,136:645-653.
    [174]Shen JM, Chen ZL, Xu ZZ, Li XY, Xu BB, Qi F. Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. Journal of Hazardous Materials 2008,152: 1325-1331.
    [175]Shin KH, Cha DK. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 2008,72:257-262.
    [176]Shrout JD, Williams AGB, Scherer MM, Parkin GF. Inhibition of bacterial perchlorate reduction by zero-valent iron. Biodegradation 2005,16:23-32.
    [177]Sivavec TM, Machenzie PD, Horney DP, et al. Redox-active media for permeable reactive barriers. International Containment Technology Conference, Feb 9-12 1997, St Petersburg, Florida, pp753-759.
    [178]Son A, Lee J, Chiu PC, Kim BJ, Cha DK. Microbial reduction of perchlorate with zero-valent iron. Water Research 2006,40:2027-2032.
    [179]Susarla S, Masunaga S, Yonezawa Y. Transformations of chloronitrobenzenes in anaerobic sediment. Chemosphere,1996,32:967-977.
    [180]Sweeny KH. Reductive Degradation:Versatile, Low Cost. Water & Sewage Works 1979, 126:40-42.
    [181]Tartakovsky B, Manuel MF, Beaumier D, Greer C W, Guiot SR. Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotechnology and Bioengineering 2001,73:476-483.
    [182]Tas DO, Pavlostathis SG. Microbial reductive transformation of pentachloronitrobenzene under methanogenic conditions. Environmental Science & Technology 2005,39: 8264-8272.
    [183]Tas DO, Pavlostathis SG. Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene. Environmental Science & Technology 2008, 42:3234-3240.
    [184]Tas N, Heilig HGHJ, van Eekert MHA, Schraa G, de Vos WM, Smidt H. Concurrent hexachlorobenzene and chloroethene transformation by endogenous dechlorinating microorganisms in the Ebro River sediment. FEMS Microbiology Ecology 2010,74: 682-692.
    [185]Till BA, Weathers LJ, Alvarez PJJ. Fe(0)-supported autotrophic denitrification. Environmental Science & Technology 1998,32:634-639.
    [186]Tiraferri A, Sethi R. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research 2009,11:635-645.
    [187]Travkin V, Baskunov BP, Golovlev EL, Boersma MG, Boeren S, Vervoort J, van Berkel WJH, Rietjens I, Golovleva LA. Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. Fems Microbiology Letters 2002,209: 307-312.
    [188]Travlos GS, Mahler J, Ragan HA, Chou BJ, Bucher JR. Thirteen-week inhalation toxicity of 2- and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice. Fundamental and Applied Toxicology 1996,30:75-92.
    [189]Trova C, Cossa G, Gandolfo G. Behavior and fate of chloronitrobenzenes in a fluvial environment. Bulletin of Environmental Contamination and Toxicology 1991,47: 580-585.
    [190]Tsoi TV, Plotnikova EG, Cole JR, Guerin WF, Bagdasarian M, Tiedje JM. Cloning, expression, and nucleotide sequence of the Pseudomonas aeruginosa 142 ohb genes coding for oxygenolytic ortho dehalogenation of halobenzoates. Applied and Environmental Microbiology,1999,65:2151-2162.
    [191]Uberoi V, Bhattacharya SK. Toxicity and degradability of nitrophenols in anaerobic systems. Water Environment Research 1997,69:146-156.
    [192]Van Aken B, Yoon JM, Schnoor JL. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, an octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp associated with poplar tissues (Populus deltoides x nigra DN34). Applied and Environmental Microbiology 2004,70:508-517.
    [193]Van Langerak EPA, Gonzalez-Gil G, Van Aelst A, Van Lier JB, Hamelers HVM, Lettinga G. Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors. Water Research 1998,32:1255-1263.
    [194]van Zoest R, van Eck GTM. Occurence and behaviour of several groups of organic micropollutants in the Scheldt estuary. Science of the Total Environment 1991,103: 57-71.
    [195]Venkatapathy R, Bessingpas DG, Canonica S, Perlinger JA. Kinetics models for trichloroethylene transformation by zero-valent iron. Applied Catalysis B-Environmental 2002,37:139-159.
    [196]Vlyssides A, Barampouti EM, Mai S. Influence of ferrous iron on the granularity of a UASB reactor. Chemical Engineering Journal 2009,146:49-56.
    [197]Volskay VT, Grady CPL. Respiration inhibition kinetic analysis. Water Research 1990, 24:863-874.
    [198]Wang CB, Zhang WX. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology 1997,31: 2154-2156.
    [199]Wang SM, Tseng SK. Dechlorination of trichloroethylene by immobilized autotrophic hydrogen-bacteria and zero-valent iron. Journal of Bioscience and Bioengineering 2009, 107:287-292.
    [200]Wang B, Sinha T, Jiao K, Serra R, Wang JB. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Human Molecular Genetics 2011,20:271-285.
    [201]Wanner J, Kucman K, Grau P. Activateed-sludge process combined with biofilm cultivation. Water Research 1988,22:207-215.
    [202]Weathers LJ, Parkin GF, Alvarez PJ. Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environmental Science & Technology 1997,31:880-885.
    [203]Wu CY, Zhuang L, Zhou SG, Li FB, Li XM. Fe(Ⅲ)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. Ferns Microbiology Ecology 2010,71:106-113.
    [204]Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Applied Microbiology and Biotechnology 2006,73:166-171.
    [205]Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJJ. Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technology 2010,101:1141-1146.
    [206]Xu XH, Zhou HY, Zhou M. Catalytic amination and dechlorination of para-nitrochlorobenzene (p-NCB) in water over palladium-iron bimetallic catalyst. Chemosphere 2006,62:847-852.
    [207]Xu XH, Wo JJ, Zhang JH, Wu YJ, Liu Y. Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination 2009a,242:346-354.
    [208]Xu ZZ, Chen ZL, Joll C, Ben Y, Shen JM, Tao H. Catalytic efficiency and stability of cobalt hydroxide for decomposition of ozone and p-chloronitrobenzene in water. Catalysis Communications 2009b,10:1221-1225.
    [209]Yang YR, McCarty PL. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environmental Science & Technology 1998,32: 3591-3597.
    [210]Ye MM, Chen ZL, Wang WS, Shen JM, Ma J. Hydrothermal synthesis of TiO2 hollow microspheres for the photocatalytic degradation of 4-chloronitrobenzene. Journal of Hazardous Materials 2010,184:612-619.
    [211]Yoshida N, Takahashi N, Hiraishi A. Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Applied and Environment Microbiology 2005:4325-4334.
    [212]Yoshida N, Yoshida Y, Handa Y, Kim HK, Ichihara S, Katayama A. Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Science of Total Environment 2007,381:233-242.
    [213]Yu HQ, Fang HHP, Tay JH. Enhanced sludge granulation in upnOW anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere,2001,44:31-36.
    [214]Yu XY, Amrhein C, Deshusses MA, Matsumoto MR. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron. Environmental Science & Technology 2006,40:1328-1334.
    [215]Zemb O, Lee M. Low A, Manefield M. Reactive iron barriers:a niche enabling microbial dehalorespiration of 1,2-dichloroethane. Applied Microbiology and Biotechnology 2010, 88:319-325.
    [216]Zhang G, Parker A, House A, Mai BX, Li XD, Kang YH, et al. Sedimentary records of DDT and HCH in the Pearl River Delta, South China. Environmental Science & Technology 2002,36:3671-3677.
    [217]Zhang WX. Nanoscale iron particles for environmental remediation:An overview. Journal of Nanoparticle Research 2003,5:323-332.
    [218]Zhang TY, You LY, Zhang YL. Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titanium dioxide particles. Dyes and Pigments 2006a,68:95-100.
    [219]Zhang WX, Elliott DW. Applications of iron nanoparticles for groundwater remediation. Remediation 2006b,16:7-21.
    [220]Zhang W, Chen L, Chen H, Xia SQ. The effect of Fe-0/Fe2+/Fe3+ on nitrobenzene degradation in the anaerobic sludge. Journal of Hazardous Materials 2007,143:57-64.
    [221]Zhang DM, Chen ZL, Xu ZZ, Shen JM. Adsorptive Removal of p-chloronitrobenzene (pCNB) by Mesoporous Silica HMS from Aqueous Solution. Iceet:2009 International Conference on Energy and Environment Technology, Vol 2, Proceedings 2009:401-404.
    [222]Zhang XX, Wei CH, He QC, Ren YA. Preparation and characterization of biomimetic adsorbent from poly-3-hydroxybutyrate. Journal of Environmental Sciences-China 2010a, 22:1267-1272.
    [223]Zhang Z, Shen QH, Cissoko N, Wo JJ, Xu XH. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. Journal of Hazardous Materials 2010b,182:252-258.
    [224]Zhang M, He F, Zhao DY, Hao XD. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles:Effects of sorption, surfactants, and natural organic matter. Water Research 201 la,45:2401-2414.
    [225]Zhang YB, Jing YW, Zhang JX, Sun LF, Quan X. Performance of a ZVI-UASB reactor for azo dye wastewater treatment. Journal of Chemical Technology and Biotechnology 2011b,86:199-204.
    [226]Zhou CL, Zheng YX, Li ZY, Liu Z, Dong YM, Zhang X. Preparation and electrochemical properties of functionalized ionic liquid self-assembled modified graphite electrode. Electrochimica Acta 2009,54:5909-5913.
    [227]Zhu BW, Lim TT. Catalytic reduction of Chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration. Environmental Science & Technology 2007,41:7523-7529.
    [228]陈芳艳,唐玉斌,钟宇,倪建玲.微波诱导Fenton试剂氧化降解水中对硝基氯苯.环境科学与技术2008,31:46-49.
    [229]陈勇生,庄源益,戴树桂.氯代芳香化合物的微生物降解研究.环境科学进展1997,5:17-26.
    [230]陈忠林,徐贞贞,贲岳,叶苗苗,马新红ZnOOH/O3催化臭氧化体系去除水中痕量对氯硝基苯.环境科学2007,28:2550-2556.
    [231]贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    [232]姜丽娜,佘宗莲,高孟春.上流式厌氧污泥床反应器中2,6-二硝基酚降解研究.环境工程2009,S1:213-217.
    [233]姜楠,曲媛媛,曹同川,杨桦,周集体.硝基芳香化合物的微生物降解研究进展.环境科学与技术2009,32:67-73.
    [234]蒋廷惠,胡霭堂,秦怀英.土壤锌,铜,铁,锰形态区分方法的选择.环境科学学报1990,10:280-286.
    [235]康跃惠,宫正宇,王子健,李国刚.官厅水库及永定河水中挥发性有机物分布规律.环境科学学报2001,21:338-343.
    [236]康跃惠,刘培斌,王子健,吕怡兵,李其军.北京官厅水库-永定河水系水体中持久性有机氯农药污染.湖泊科学2003,2:125-132.
    [237]李白昆,吕炳南,任南琪.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究.环境科学学报1997,17:459-463.
    [238]李少林,马鲁铭,魏宏斌.生化/催化铁内循环工艺处理精细化工区污水.环境工程2007,25:15-18.
    [239]李杏茹,何孟常,孙艳,夏星辉,云影.硝基苯类化合物在黄河小浪底至高村河段水体中的分布特征.环境科学2006,27:513-518.
    [240]刘维岗,佘宗莲,于建伟,高孟春.上流式厌氧污泥床反应器处理3-硝基酚废水研究.环境科学2006,27:2206-2211.
    [241]刘永明.苯胺:行情先扬后抑震荡调整.中国石油和化工2010:22-22.
    [242]刘云,沈幸,鲜殷鸣,邹惠仙,孙成.地表水中微量氯代芳烃和硝基取代芳烃化合物的分析方法.环境化学2005,24:463-466.
    [243]牛少凤,梁瑛,楼章华,黄煜.纳米Ni/Fe双金属还原降解对氯硝基苯的影响因素.天津大学学报2008,41:1362-1366.
    [244]钱慧静,牛少凤,吴燕君,沃静静,张珍,刘永.纳米级镍铁同步处理Cr(VI)和p-NCB的研究.浙江大学学报(理学版)2008,35:562-566.
    [245]钱易,水处理颗粒物和难生物降解有机物的特性与控制技术原理(下卷),北京:中国环境科学出版社,2001.
    [246]全燮,杨凤林,薛大明,赵雅芝,冯文国,苍郁.钯-铁催化还原法对水中三氯乙烯的快速脱氯研究.大连理工大学学报1997,37:46-48+107.
    [247]任华峰,李淑芹,刘志培.氯代苯胺类化合物微生物降解的研究进展.微生物学通报2004,31:120-125.
    [248]沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理研究.精细化工1996,13:57-58.
    [249]沈东升,徐向阳,冯孝善.厌氧处理含氯酚废水的颗粒污泥形成过程研究.环境科学学报1997,17:60-67.
    [250]沈洪艳,甄芳芳,任洪强,宋存义.两种硝基氯苯对鲤鱼的急性毒性.环境科学与技术2007,12:10-11+34.
    [251]史雷,戴友芝,罗春香,汤文琪,王海阳.Fe-O/厌氧微生物体系降解2,4,6-三氯酚特性研究.环境工程学报2009,5:813-816.
    [252]宋卫锋,林美强,倪亚明,朱又春,孙水裕.DSA类电极催化降解硝基苯动力学及机理的研究.环境科学研究2002,15:10-13+21.
    [253]苏春彦,关洁,高丹.硝基苯类制药废水催化氧化降解的研究.长春工业大学学报(自然科学版)2008,29:574-577.
    [254]田怀军,舒为群,张学奎,王幼民,曹佳.长江、嘉陵江(重庆段)源水有机污染物的研究.长江流域资源与环境2003,12:118-123.
    [255]王玲玲,朱叙超,李明.河南境内黄河流域集中式城市饮用水源水有机污染特性研究.环境污染与防治2004,26:104-106.
    [256]王若苹.固相微萃取-毛细管气相色谱法快速同步分析水中硝基苯类及氯苯类化合物.中国环境监测2005,6:15-19.
    [257]项硕,叶敏,徐向阳.氯代硝基苯类生产废水厌氧-好氧序列生物处理研究:I.反应器起动过程的特性.浙江大学学报(农业与生命科学版)2003,29:195-200.
    [258]谢治民,李建华,王海洋,戴友芝.Fe-厌氧微生物体系降解2,4,6-三氯酚特性研究.化工环保2009:105-108.
    [259]徐向阳,冯孝善.工业有机废水为共基质培养降解五氯酚厌氧颗粒污泥.环境科学2001,22:108-112.
    [260]徐应明,戴晓华,孙扬,林大松.硝基氯苯胁迫对小麦种子萌发和幼苗生长的影响.灌溉排水学报2008,27:1-3+21.
    [261]徐中其,陆晓华.活性炭纤维在硝基苯水溶液中的吸附和再生.华中理工大学学报2000,28:102-104.
    [262]杨湘奎,阴秀琦,李洪文.氯苯类化合物定量结构生物降解相关性.黑龙江水专学报2006,33:97-99.
    [263]杨新萍,王世和,周立祥.天氧附着膜膨胀床反应器预处理有机氯农药废水的研究.环境工程学报2007,1:60-63.
    [264]叶常明,金龙珠,21世纪的环境化学,北京:科学出版社,2004
    [265]张鹤清,胡洪营,席劲瑛.6种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能.环境科学2003,24:83-89.
    [266]郑平,冯孝善.废物生物处理.北京:高等教育出版社,2006.
    [267]郑昱,徐向阳,蔡文祥,朱亮.ZVI还原转化硝基芳烃特性及QSAR的研究.浙江大学 学报(农业与生命科学版)2006,32:31-35.
    [268]周洪波,陈坚,邱冠周,胡岳华.五氯苯酚在厌氧颗粒污泥中的吸附研究.环境污染与防治2006,28:248-251.
    [269]朱亮.降解苯胺和氯苯胺好氧污泥颗粒化.浙江大学博士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700