用户名: 密码: 验证码:
吉林省猪伪狂犬病流行病学调查与防控措施的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪伪狂犬病(Pseudorabies, PR)又名奥叶基氏病(Aujeszky’s, AD)、奇痒症等,是由疱疹病毒科、α-疱疹病毒亚科的伪狂犬病毒(Pseudorabies Virus,PRV)感染引起多种家畜和野生动物以发热、奇痒(猪除外)和脑脊髓炎等为主要特征的一种急性、高度接触性传染病,其中以猪的感染最为普遍,其主要引起母猪的繁殖障碍,主要表现为流产、死胎、木乃伊胎等;新生仔猪发生感染时,死亡率可高达100%;此外,育肥猪感染往往致使其生长缓慢,种公猪感染则导致精液品质下降甚至丧失种用价值,因此该病的发生给养猪业带来巨大的经济损失。目前,该病已被世界动物卫生组织(OIE)列为B类动物疫病,我国也将其列为二类动物疫病。
     近年来,该病的发生呈不断上升的趋势,成为当前严重危害养猪业的重要疫病之一。由于当前绝大多数的猪场主要通过使用gE基因缺失疫苗对该病进行免疫预防,因此配套使用PRV gE-ELISA抗体检测试剂盒能快速、准确地对血清中PRV野毒抗体进行检测,从而能有效监测猪群中PRV野毒感染情况。为了解近年来吉林省各地区猪场中PRV野毒的感染情况,本研究采用PRV gE-ELISA抗体检测试剂盒对2008~2010年间采自吉林省12个市县的152个不同规模的免疫猪场不同批次送检的3849份血清样品进行PRV野毒血清抗体检测,从而为针对感染状况日益严重的猪伪狂犬病科学防控措施的制定提供重要的理论依据。血清学调查结果显示,吉林省各地区的抗体阳性率从9.47%~40.00%不等,抗体平均阳性率为22.66%;在被检测的152个猪场中,PRV抗体阳性的猪场103个,各地区猪场阳性率从37.50%~87.50%不等,这表明吉林省各地区猪场中PRV野毒感染情况仍较为严重。此外,本研究还对不同日龄、不同性别以及不同品种猪PRV野毒感染情况进行了调查与分析,以上血清学调查结果将为吉林省针对PR防治工作的开展提供重要的理论依据。
     2008年11月,吉林省四平地区某猪场怀孕母猪出现流产、死胎,50多头新生仔猪临床上出现呕吐、腹泻,并伴有肌肉震颤、后肢麻痹、四肢呈游泳状滑动等神经症状,经多种抗生素治疗无效,发病后2~3 d后陆续死亡,死亡率高达100%。剖检送检病死仔猪,主要病理变化表现为脑膜充血、淤血,肺脏充血、水肿,肝脏淤血、表面散在有灰白色的坏死灶,而其他组织脏器无明显的病理变化。根据该病的临床症状及眼观病理变化,我们初步诊断为猪伪狂犬病,由于该病在临床上容易与猪繁殖障碍与呼吸综合征、猪细小病毒病、猪布氏杆菌病等相混淆,因此本研究从病理学和病原学角度对该病的发生原因进行了综合分析。首先,本实验从送检病死仔猪的心、肝、脾、肺、肾以及脑组织等进行病理学切片,从病理组织学角度对仔猪的死亡原因进行分析。病理组织学观察可见,脑组织出现“血管套”、噬神经现象等典型的非化脓性脑炎变化,据此我们推断该病变是由病毒感染所引起,同时,细菌学检测结果也排除了细菌感染的可能。此外,肝脏的部分组织坏死形成局灶性的坏死灶,该病变是PRV感染的一个重要的示病病变。为了进一步对该病进行确诊,本试验利用BHK-21细胞进行了系统的病原分离鉴定,并成功获得了1株PRV野毒,并将其命名为PRV JL/08/SP分离株。
     为了进一步了解PRV JL/08/SP分离株在BHK-21细胞中的增殖能力以及侵染细胞的动态过程,本研究通过制作感染细胞的超薄切片对PRV JL/08/SP病毒粒子的形态学发生过程和感染细胞超微结构的变化进行观察,观察可见,PRV在吸附到细胞膜的表面后通过膜融合的方式进入到细胞中,在胞核中进行病毒的复制,装配好的病毒以出芽方式离开细胞核进入胞浆;在胞浆内的病毒粒子又利用高尔基体的膜结构合成第二层囊膜,形成完整的病毒粒子;最后包裹有完整病毒粒子的高尔基囊泡与细胞膜发生融合,将病毒粒子释放到细胞外。该增殖过程及释放形式与之前文献报道的基本一致,这表明不同的PRV分离株在细胞中的形态发生学过程非常相似,仅在PRV囊膜获得方式上存在有一定的差异。此外,本研究还利用BHK-21细胞对其毒力进行了测定,结果显示,PRV JL/08/SP分离株在BHK-21细胞的感染滴度为10-7.2/0.1 mL,这表明该分离株具有较强的毒力;为了进一步确定该毒株的致病性,还选用对PRV最为易感的家兔以及本源动物仔猪进行了动物回归试验,均复制出与自然感染相类似的临床症状。以上我们对PRV JL/08/SP分离株进行了系统全面的鉴定,并从病原学角度对其致病性进行了初步的研究分析,据此从而确诊该病的发生是PRV野毒感染所致。
     由于目前各猪场中PRV野毒感染的情况仍非常普遍,在猪群中多呈隐性感染,因此也是彻底根除该病所面临的一个难题。鉴于此,当前非常有必要建立一种快速、特异、敏感的诊断方法用于PRV野毒株的检测。在控制PR的发生流行过程中,PRV基因缺失疫苗起到了非常重要的作用,其中以PRV gE基因缺失疫苗的使用最为广泛。因此,在此基础上建立一种能有效区分野毒感染和疫苗接种毒株的诊断方法对于野毒感染阳性猪的清除以及猪场的净化起到至关重要的作用。由于目前所使用的PRV gE基因缺失疫苗株均部分甚至全部缺失gE基因,而且gE基因能在野毒株中稳定表达且其本身的遗传变异性较小,因此可将gE基因作为鉴别PRV野毒株和疫苗株的一个标志基因用于PRV分子水平上的诊断。本研究在前期分离获得PRV JL/08/SP株的基础上,根据Genbank中公布的gE基因序列保守区设计特异性引物,利用PCR方法扩增并克隆了PRV JL/08/SP分离株的gE基因并进行了序列测定分析,此外,还对该基因的核苷酸及编码氨基酸同源性进行了分析。分析结果表明,与其他分离株相比,gE基因虽然存在有个别核苷酸的突变位点,但从同源性以及遗传进化分析结果来看,PRV JL/08/SP分离株gE基因仍然高度保守。因此,PRV JL/08/SP分离株的gE基因可作为鉴别PRV野毒株和疫苗株的诊断抗原,我们利用该分离株的gE基因建立用于临床样本快速检测的PCR方法,且该方法具有特异性强、敏感性高以及重复性好等优点。应用该方法对吉林省长春、四平、公主岭、吉林等地猪场送检的68份疑似PRV感染猪的脾脏、肺脏、肝脏以及脑组织等组织样本进行检测,其中样本检出阳性率为27.94%,这与之前的血清流行病学调查结果相符合,这说明猪伪狂犬病在吉林省的发生仍较为普遍。在本研究中,我们利用PRV JL/08/SP分离株gE基因建立的PCR诊断方法不仅能快速、特异地对临床样品进行检测,而且能有效地区分PRV野毒株和疫苗株,从而在很大程度上提高了PRV的检出率和准确程度,此外,该方法对于PRV的早期感染、潜伏感染以及持续感染的诊断均具有十分重要的意义,因此可为猪场中PR的净化及根除提供有力的技术支撑。
     此外,针对当前该病发生的严峻现状,各猪场非常有必要对该病进行净化、根除。因此,本研究在参照国外净化、根除PR成功经验的基础上,在2009~2010年应用PRV gE基因缺失疫苗并结合PRV gE-ELISA抗体检测试剂盒对吉林省6个不同规模的猪场采取免疫、监测以及淘汰等综合防治技术进行净化、根除,并在上述的6个试验猪场达到了预期的净化效果,这将为吉林省乃至全国范围内PR的净化以及根除工作的开展提供参考依据。
Pseudorabies (PR) , also known as Aujeszky’s disease, is an acute and high contagious disease of a variety of domestic and wild animals caused by Pseudorabies virus (PRV). The disease is characterized with fever, extreme itch (except for pig) and encephalomyelitis. The infection in swine is most common. The sow usually display the reproductive disorders such as miscarriage, fetal death and mummy foetus. The mortality rates of newly born piglets are up to 100%. In addition, the infection in growth pigs usually leads to the decrease of semen quality, even the loss of species value. Therefore, the occurrence of the disease will result in enormous economics loss of swine industry. At present, the disease has been listed as class B animal loimia by the world health organization (OIE), and listed as the secondary kind animal loimia in our country.
     In recent years, the occurrence of the disease showed a rising trend. At present, the disease had became an important loimia which composes a threat to swine industry. Currently, the extreme majority of farms carried on immune prevention by the use of PRV gE gene deletion vaccine, so the use of PRV gE-ELISA antibody detection kit could quickly and accurately detect the antibody of PRV wild isolate, thus could effectively monitor the infection of PRV wild isolate. In order to understand the infection status of PRV wild isolate in the farms of different areaes in Jilin province in recent years, the PRV serum antibodies of 3849 serum samples from different batches collected from 152 different scale immunized farms of Jilin province were detected by PRV gE-ELISA antibody detection kit. The results would provide important theoretical basis for the formulation of scientific prevention and control measures. The serological survey result showed that the antibody positive rates in different areaes of Jilin province ranged from 9.47% to 40.00%, and the average positive rates was 22.66%. There were 103 PRV antibody positive farms in 153 detected farms, and the positive rates of farms ranged from 37.50% to 87.50%. The result showed that the infection of PRV wild isolate remained more serious. In addition, we carried on investigation and analysis for the PRV wild infection status in different ages, sexualities and breeds. The serosurvey result would provide important theoretical basis for the prevention and control work in Jilin province.
     In November 2008, the PRV natural infection occurred in a farm in Siping area of Jilin province. The pregnant sows showed the symptoms of abortion and dead foetus, and newly born piglets more than 50 showed vomit, diarrhoea and the neurological symptoms such as muscle trembling, hind limb parlysis and four limbs swimming sliding. The treatment had no effects by a variety of antibiotic. The sick pigs began death one after another after 2 to 3 days. The mortality rate was up to 100%. Necropsies were performed on died piglets. The main pathological changes of the samples showed meningeal congestion , pulmonary congestion and edema, liver congestion and canous necrosis focuses observed in the surface, however, no obvious pathological changes were observed in the other organs. According to the clinical symptoms and pathological changes, the disease was preliminarily diagnosed as Pseudorabies. Because the disease was easily confused with porcine reproductive and respiratory syndrome, porcine parvovirus and porcine brucellosis, the disease was aggregate analyzed from the pathology and etiology aspects. First, the histological section were performed on the inner organs of heart, liver, spleen, lungs, kidney, and brain tissue. The dead reason of piglets was analyzed by histological examination. Microscopic lesions in the brain tissue showed the non-suppurative encephalitis changes including perivascular cuffing and neuronophagia. So we concluded that the pathological changes were caused by viral infection. And the bacteriology detection result also exclused the possibility of bacterial infection. In addition, part of liver occurred necrosis and formed the focal cellular necrosis focus. The pathological change was an important directive change of PRV infection. In order to final diagnosis for the disease, the systemic isolation and identification of pathogen was performed on BHK-21 cells, and one PRV isolate was successfully obtained which be named PRV JL/08/SP isolate.
     In order to further understand the proliferation ability and dynamic infextation process of PRV JL/08/SP isolate on BHK-21 cells, the morphology development process of PRV JL/08/SP isolate and the ultrastructural changes of infected cells were observed by the manufacture of ultrathin sections. After adsorption to the cell membrane surface, PRV entered in the endochylema via membrane fusion way. The viral replication were carried out in the cytoplasm. The assembled virus left nucleus into cytoplasm by budding way. Then, the virions in the cytoplasm synthetized the second peplos using the membrane structure of Golgi's body and further formed complete virions. Eventually, Golgi vesicles packaging with intact virions occurred fusion with cellular membrane and the virons were released to the ecto-cell. The proliferation process and the release form were basic concordance with the report in previous literature. This indicated that the morphology development process of different PRV isolate were very similar, but exist certain differences only in the gain way of peplos. In addition, the virulence of PRV JL/08/SP isolate was determined using BHK-21 cell. The result showed that the titre of PRV JL/08/SP isolate on BHK-21 cells was 107.2/0.1mL. This indicated the PRV isolate had more stronger virulence. In order to further identify its pathogenicity, animal regression experiments were performed on rabbits and piglets, and duplicated the similar clinical symptoms with the natural infection. Above on, PRV JL/08/SP isolate was systemic identified in the study, and its pathogenicity was preliminary analyzed. Thus, the disease was final diagnosed as PRV wild virus infection.
     Because PRV wild virus infection especially inapparent infection was still very common in pig farms, the thorough eradication of PR confronted with a hard problem. Considering the reason, it was necessary to eatablish a quick, specific and sensitive diagnostic method for the detection of PRV wild isolate. In the process of controlling PR, PRV gene deleted vaccine had played a very important role, and the use of PRV gE gene deleted vaccine was most wide. Thus, the foundation of diagnostic method which could effectively distinguish from wild virus infection and vaccine strains would play extremely important role for the elimination of positive pigs and the cleaning of farms. At present, all PRV gE gene deleted vaccine strains deleted partial even complete gE gene, and the gE gene could stable expression in the wild virus isolate and its genetic variability was small, so gE gene could as a marker gene of differentiation for PRV wild virus and vaccine strains which used for PRV molecular level diagnosis. On the basis of obtaining PRV JL/08/SP, we designed specific primers according to the gE gene conservative sequences which published in Genbank database. Then, gE gene of PRV JL/08/SP isolate was amplified and cloned by PCR, and the gE gene was performed on sequencing analysis. The analytic result indicated that gE gene had individual nucleotide mutations compared with other isolates, but gE gene of PRV JL/08/SP isolate was still highly conserved from the the results of homology and genetic evolution analysis. So, the gE gene of PRV JL/08/SP isolate could be used as the diagnostic antigens for the identification of PRV wild isolate and vaccine strains. In addition, a rapid PCR detection method was established which used for the detection of clinical samples, and the method had strong specificity, high sensitivity and good reproducibility. A total of 68 samples including spleen, lung, liver and brain tissue collected from suspected PRV pigs which comed from the farms of different areaes in Jilin province were detected by PCR method. The positive rate of the samples was 27.94%, and it was consistent with the seroepidemiological survey result. This indicated that PRV infection was still very common in Jilin province. In the study, the PCR method based on gE gene of PRV JL/08/SP isolate not only could rapidly and efficiently detect the clinical samples, but also efficiently distinguish PRV wild virus and vaccine strains, which largely improved the detection rate and accuracy of PRV. In addition, the method had very important meaning for the diagnosis of earlier period PRV infection and latent infection persistent infection, so could provide a powerful technical support for the cleansing and eradication of PR.
     In addition, in view of the current severe situation of PR occurrence, it was necessary to performed on cleaning and eradication in different pig farms. Therefore, we applied PRV gE gene deleted vaccine combined with PRV gE-ELISA antibody detection kit to perform on immunization, monitoring and elimination in the six different scale pig farms in Jilin province from 2009 to 2010 years, thus achieved cleaning and eradication, and obtained the expectant cleaning effect. This would provide reference basis for PR cleaning and eradication in Jilin province even whole country.
引文
[1]殷震,刘景华主编.动物病毒学(第二版)[M].北京科学出版社, 1997: 988-1009.
    [2]中国农业科学院哈尔滨兽医研究所主编.动物传染病学(第一版)[M].中国农业出版社, 1999:177-179.
    [3] B.E斯特劳,等主编.赵德明,等译.猪病学(第8版)[M].中国农业大学出版社, 2000:239-253.
    [4] Charles Ec, et al. Advances In veterinary Seience and Compartive medieine: Seleeted Animal Hepres virus. New concepts and technologies, 1985, A.P.
    [5]白文彬主编.动物传染病诊断学[M].北京:中国农业出版社, 2002.
    [6]童光志,陈焕春.伪狂犬病流行现状及我国应采取的防制措施[J].中国兽医学报, 1999, 19 (1): 1-3.
    [7]吕鸿声主编.昆虫病毒分子生物学(第一版)[M].北京:中国农业出版社, 1998.
    [8]娄高明,杜伟贤.伪狂犬病流行情况及猪场防制策略[J].中国动物检疫, 1999, 16 (5): 43-51.
    [9]陆承平.兽医微生物学[M].北京:中国农业出版社, 2001.
    [10] Boelaert F, Deluyker H, Maes D, et al. Prevalence of herds with young sows seropositive to pseudorabies (Aujeszky's disease) in northern Belgium[J]. Prev Vet Med, 1999, 41(4):239-255.
    [11] Hall W F, Weigel R M, Siegel A M, et al. Prevalence of pseudorabies virus infection and associate infections in six large swine herds in Illinois[J]. J Am Vet Med Assoc, 1991, 198(11):1927-1931.
    [12] Regerence of swine health and management in the United States 2000[M]. National animal health monitoring system, 2002.
    [13]张孝安.日本猪伪狂犬病的预防[J].世界农业, 1996, 6:36.
    [14]江焕贤,孙序靳,陈润清.猪伪狂犬病毒京A株的分离鉴定[J].中国兽医杂志, 1993, 19 (4): 6-7.
    [15]陈焕春,方六荣,何启盖,等.猪伪狂犬病毒鄂A株的分离鉴定[J].畜牧兽医学报, 1998, 29 (2): 156-161.
    [16]黄伟坚,温荣辉,秦爱珍,等.猪伪狂犬病病毒桂W株的分离鉴定[J].中国预防兽医学报, 2000, 7: 241-243.
    [17]刘镇明,蓝天,等.猪伪狂犬病病毒粤A株的分离与鉴定[J].华南农业大学学报,2000,21 (2):76-78.
    [18]徐志文,刘春茂,郭万柱.伪狂犬病毒SN株、SL株的分离鉴定[J].四川畜牧兽医, 2000, 3 (27):23.
    [19]赵光政.醴陵市猪伪狂犬病流行情况的调查和防治[J].湖南畜牧兽医, 2003, 6:12-13.
    [20]张维谊,鞠厚斌,周锦萍,等.上海及周边地区散养猪主要病毒病的流行状况调查[J].动物医学进展, 2008, 29 (7): 36-38.
    [21]方六荣,陈焕春,何启盖,等.应用微量中和实验进行猪伪狂犬病血清学调查[J].中国畜禽传染病, 1998, 20 (3):151-153.
    [22]何存利,谢琴,陈祝三,等.宁夏部分地区猪伪狂犬病血清学调查[J].甘肃畜牧兽医, 1998, 28 (1):13-14.
    [23]高巨星,贾文孝,赵永华,等.陕西省猪伪狂犬病血清学调查[J].中国兽医科技, 2001, 31 (4): 17-18.
    [24]王生祥,吴雅玲.猪伪狂犬病血清学调查[J].中国兽医杂志, 2003, 39 (7): 25.
    [25]俞国乔,顾小根,赵灵燕,等.浙江省养猪场猪伪狂犬病野毒抗体检测[J].浙江畜牧兽医, 2000, 4: 24-25.
    [26]韩庆颜,高生智,魏润生,等.甘肃省集约化养猪场猪伪狂犬病的调查[J].中国动物检疫, 2001, 2:32-33.
    [27]王泽洲,石谦,张东,等.种猪场猪伪狂犬病的血清学调查[J].中国兽医杂志,2001, 37(10): 18.
    [28]刘道新,谈志祥,邱立新,等.规模化猪场猪瘟、猪伪狂犬病、猪圆环病毒2型感染的血清学调查[J].中国兽医杂志, 2004, 40(7):18-19.
    [29]赵东升,刘有昌,安福生.近年来我国猪伪狂犬病的流行状况和分析[J].猪场保健, 2008, 6: 26-28.
    [30] Gloster J, Donaldson A I, Hough M N. Analysis of a series of outbreaks ofAujeszky's disease in Yorkshire in 1981~1982: the possibility of airborne disease spread [J]. Vet Rec, 1984, 114 (10): 234-239.
    [31] Christensen L S, Mortensen S, Botner A., et al. Further evidence of long distance airborne Aujeszky's disease (pseudorabies)virus [J].Vet Rec, 1993, 132 (13):317-321.
    [32]李树清,陈志飞.简介美国根除猪伪狂犬病项目及实施进展[J].上海畜牧兽医通讯,2002, 1:26.
    [33] Corn J L, Stallknecht D E, Mechlin N M, et al. Persistence of pseudorabies virus in feral swine populations [J]. J Wild Dis, 2004, 40 (2): 307-310.
    [34] Paul P S edit. Detention of latent PRV in swine using in situ hybridazation[J]. Nucleic Acid probes, 1990, 24 (3):273-280.
    [35] Van Oirschot J T, Gielkens A L. In vivo and invitro nyactivation of latent Pseudorabies virus In Pigs.
    [36] Schoenbaum M.A., G W. Bern, D. R Murphy. Pseudorabies virus latency and reactivation in vaccinated swine[J]. Am. J. Vet. Res., 1990,51: 334-338
    [37] Baskevrille A, et al. Aujeszky’s disease in pig[J]. VetBull (London), 1973, 43: 465-480.
    [38] Davies E B and Beran G W. Influence of environmental factors upon the survival of Aujeszky’s disease virus[J]. Res Vet Sci, 1981, 31: 32-36.
    [39] Seott E. M. and Woodside W. Stability of pseudorabies virus during freeze-drying and storage: effect of suspending media[J]. Clin. Microbiol, 1976, 4: l-5.
    [40] Meefrran J. B. and Dow C.162 Br.Vet. [J].118: 386-389.
    [41]张桂云,甘孟侯,邓同炜.仔猪人工感染伪狂犬病的病理学观察[J].中国兽医杂, 1997,23 (7):16-17.
    [42]徐缤蕊,高齐瑜,刘尚高,等.某猪场发生伪狂犬病的诊断[J].中国兽医杂志, 1998, 24 (3):20- 21.
    [43]樊泰山,谢继光,黄新民.引种导致猪伪狂犬病的发生和防制[J].四川畜牧兽医, 2007,l: l-2.
    [44]娄高明.伪狂犬病分子生物学诊断方法研究进展[J].动物医学进展, 2000, 21(2):31.
    [45]黄骏明,李亚香,朱庆虎,等.应用免疫荧光抗体技术快速检测猪伪狂犬病毒[J].中国畜禽传染病, 1995, 6:38-42.
    [46] Eehevetria M G,Peeoraro M R,Pereyra N B,et al. Rapid diagnosis of Pseudorabies virus infection in swine tissues using the Polymerase chain reaetion (PCR) [J]. Rev Argent Mierobiol, 2000, 32(3):109-115.
    [47]李学伍,陈焕春,扬艳艳,等. PCR法对伪狂大病病猪不同部位的检侧及敏感性试验[J].中国畜禽传染病, 1998, 20 (6):365-368.
    [48] Roizman B, Desrosiers R C, Fleckenstein B, et al. The family herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses [J]. Arch Virol, 1992, 123: 425-449.
    [49] Reilly L, Rall G, Mettenleiter T C, et al. The ability of pseudorabies virus to grow in defferent hosts is affected by the duplication and translocation of sequences from the left end of the genome to the UL-US junction [J]. J Virol, 1991, 65:5839-5847.
    [50] Barbara G. Klupp, Christoph J. Hengartner. Complete Annotated Sequence of the pseudorabies virus Genome [J]. Jourual of Virology, 2004, 1: 424-440.
    [51] Fuchs W, Klupp B G, Granzow A, et al. The interaction UL31 and UL34 gene products of pseudorabies virus are involves in ingress form the host well nuclear and represent components of primary enveloped but not maturevirions [J]. J Virol, 2002, 76: 364-378.
    [52] Ladin BF, IharaS, Hampl H,Ben-Porat T. Pathway of assembly of herpesvirus capsids: ananalysis using DNA temperature-sensitive mutants of Pseudorabie’S virus [J]. Virology, 1982, 116: 544-561.
    [53] Mulder WA, Pol J MA, Grays E, et al. Pseudorabies infections in pigs, Role of viralproteins in virulence, pathogenesis and transmission [J]. Vet. Rec, 1997, 28:1117.
    [54] Van oirshot JT, Gielkens ALJ, Moormann RLM, et al. vet Marker vaccine, virus Protein-spicific antibody assays and the control of Aujesky's disease [J]. Microbio1, 1990, 23: 85-101.
    [55] Liang XP,Babiuk LA,Zamb TJ. Pseudorabies virus gⅢand bovine herpes virusⅠgⅢshare complementary functions [J]. J Virol, 1991, 65(10):5553-5557.
    [56] Zuekermame F,Zsak L, et al. Pseudorabies virus glyeoprotein 911 is a major target antigen for murine and swine view- specitis cytotoxic T- lymphoeytes [J]. JVirol, 1990, 64: 502-512.
    [57] Knapp AC,Enquist LW. Pseudorabies virus recombinants expressing functional virulence determinants gE and gL from bovine herpesvirusl[J]. J Virol, 1997, 71(4): 2731-2739.
    [58] Brack AR,Klupp BG,Granzow H,et al. Role of the cytoPlasmic tail of Pseudorabies virus glyeoprotein E in virion formation [J]. J Virol, 2000, 74(9): 4004-4016.
    [59]潘兹书,张楚瑜.猪伪狂犬病毒蛋白激酶基因的序列测定与分析[J].病毒学报, 2000, 16 (l):38-43.
    [60] Jons A, Dijkstra J, Mijkstra J M,et al. GlycoProteins M and N of Pseudorabies virus form a disulfide complex[J]. J Virol, 1998, 72 (l):550-557.
    [61] Jons A, Mettenteiter T C. Identification and characterization of psseuborabies virus dUTPase [J]. J Virol, 1996, 70(2):1242-1245.
    [62] Coe NE,Mengeling WL. Mapping and characterization of neutralizing gⅢand gP50 of the Indiana-Funkhauser strain of Pseudorabies viru s[J]. Arch Virol, 1990, 110:137-142.
    [63] Aoki H, Sakoda Y, Jukuroki K, et al. Induction of antibodies in mice by a recombinant baculovirus expressing Pseudoabies virus glycoprotein B in manunalian cells [J]. Vet Microbiol, 1999, 68(34):197-207.
    [64] Babie N, Mettenleiter T C, et al. Role of essential glyeoprotein gⅡand gp50 in transneuronal transfer of Pseudorabies virus from the hypoglossal nerves of mice[J]. Journal of Virology, 1993: 4421-4426.
    [65] Zsak L, Zuckermenn F, Sugg N, et al. Glyeoprotein gⅡof pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission [J]. J Virol, 1992, 66 (4): 2316-2325.
    [66] Takada A, Kida H. Induction of Proteetive antibody response against Pseudorabies virus buin tranasal vaccination with glyeoprotein Bin miee[J]. Arch Virol, 1995, 140: 1629-1635.
    [67] Eloit M, Fargeaud D, et al. ldentifieation of the Psuedorabies virus glyeoprotein gp50 as a major target of neutralizing antibodies [J]. Arch Virol, 1988, 99: 45-56.
    [68]张志,范伟兴,赵宏坤.伪狂犬病病毒囊膜糖蛋白的研究进展[J].山东农业大学学报(自然科学版),2001,32(1):85-89.
    [69]范伟兴,赵宏坤.伪狂犬病病毒分子生物学研究新近展[A].中国畜牧兽医学会家畜传染病学分会第九次学术讨论会[C]. 2001.
    [70] Klupp B G, Baumeister J, Dieta P, et al. Pseudorabies virus glyeoprotein gkis a virion structural component involved in virus release but did not required for entry[J]. J Virol, 1998, 72(3): 1949-1958.
    [71] Mayra EM, Campbell, et al. DNA sequences which regulate the expression of Pseudorabies virus major immediate early gene [J]. Virolgy, 1994, l57: 307-326.
    [72]殷震,刘景华.动物病毒学(第二版) [M].北京:科学出版社, 1997, 44-45.
    [73] Boelaert F, Deluyker H, Maes D, et al. Prevalence of herds with young sows seropositive to pseudorabies (Aujeszky,s disease) in northern Belgium[J]. Pre Vet Med, 1999, 41(4):239-255.
    [74]刘有昌,金萍,康立平,等.种猪群伪狂犬病野毒感染的监测[J].中国兽药杂志, 2007, 2:14-18.
    [75]卫秀余,曹玉良. 2007年猪病诊断回顾和2008年流行趋势预测[J].养猪, 2008 (2): 44.
    [76]周绪斌,李聪,栗娟.加强免疫与监测净化猪场伪狂犬病—2006年中国9省市规模化猪场伪狂犬病野毒流行病学调查与分析[J].猪业科学, 2007, 24(11):78-80.
    [77]陈艳红,郭鑫,赵荣茂,等.我国规模化猪场主要繁殖障碍性病毒病的血清学调查[J].中国兽医杂志,2007, 43(06):33-36.
    [78]赵东升,刘有昌,安福生.近年来我国猪伪狂犬病的流行状况和分析[J].今日养猪业,2008,6:26-28.
    [79]周绪斌,秦云,丹尼,等. 2007年规模化猪场伪狂犬病野毒血清流行病学系统监测与分析[J].猪业科学, 2008, 24(11):84-90.
    [80]姜艳芬,杨增岐,祝卫国,等.陕西省猪伪狂犬病流行病学调查和WG株的分离鉴定[J].西北农林科技大学学报, 2006, 34(9):31-35.
    [81]向德林,丁明孝,翟中和.伪狂犬病毒的形态发生研究[J].畜牧兽医学报, 1983(5): 127-130.
    [82] Abert Kaplan. A. S, Eandvatter. A. E.. A comparison of herpes simplex and pseudorabies virus[J]. Virology, 1959, 7: 394-407.
    [83] U. Heine, D. V. Abashi, et al. Morphological studies on Herpesvirus Saimiri in Subhuman and human cell cultures[J]. Cancer Research, 1971, 31: 1019-1029.
    [84] P. M. Mccracken and J. K. Clarke. A thin-section study of the morphogenesis of Aujeszky’s disesase virus in synchronously infected cell cultures[J]. Arch. Ges virus forsch, 1971, 34: 189-201.
    [85]王勤,郭万柱.伪狂犬病病毒Fa株gE基因的克隆与序列的比较分析[J].畜牧兽医学报, 2003, 34(4): 389-393.
    [86]陈陆,郭万柱.猪伪狂犬病毒潜伏感染检测方法研究进展[J].四川畜牧兽医, 2000, 27 : 103-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700