用户名: 密码: 验证码:
基于P2P的流媒体网络感知及节点选择算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术的发展,流媒体技术也得到了广泛的应用。传统的C/S模式的流媒体系统的资源随着用户的增加很快就被消耗完,成为系统瓶颈。P2P的出现为流媒体的发展提供了新的方向。在P2P模式中媒体内容通过使用客户自己的带宽分发,每个节点具备客户机和服务器功能,作为服务请求节点,在接收网络服务的同时,作为服务提供节点,利用自身剩余的能力为网络中其他节点提供服务,这样就在很大程度上减轻了服务器的负担。但现存的多数P2P流媒体系统用时延或负载平衡等其中的一种或两种属性作为度量值,并没有综合考虑节点可靠性、网络带宽、数据包丢失率及整个算法的维护开销。
     本文以CollectCast节点管理模块为思想基础,提出了较快速准确、较低资源消耗的网络拓扑发现方法以及基于此的最佳节点选择算法。论文主要贡献有以下四点:一是提出和实现了快速并行面向群组的Traceroute方法,该方法通过深度和广度上的并发大大提高了拓扑树的生成速度;二是使用PingGraph工具测量可用带宽估测和丢包率,减少了网络资源的使用和测量的时间;三是提出和实现了基于拓扑树遍历的带宽瓶颈探测算法,通过3次遍历对节点实际可用带宽的计算,有效的避免的了瓶颈的发生;四是提出和实现了以“综合结点可用性分数”来统一衡量节点综合可用性的新节点评估方法。通过实验可以看出该方法硬件资源消耗较少,网络资源占用较低,节点的可用性通过IPAM表现了出来。
With the developing of the network technology, Streaming media technology has been applied extensively. Resource of traditional C/S model streaming media system is to be run out quickly with increasing of user number, become system’s bottleneck. The appearance of P2P provides new technology for streaming media. In the P2P model, contents are distributed by using the bandwidth of the clients themselves, each node with the client and server functionality, as a service request node, at the same time to receive network services, as a service provider node, using its own remainder capacity provide services for the other nodes in the network, to a large extent alleviated the burden on the server. However, most of the existing P2P streaming media system with delay or load balancing, and one or two degrees as the property value did not consider the reliability of nodes, network bandwidth, packet loss rate and the maintenance expenses whole algorithm.
     The thesis developed more rapid, more accurate but lower consumption methods of network topology inference and the following peer selection, which referred the CollectCast peer management module as their ideological basis. The following four points are the main contribution of the thesis. First, it proposed and achieved a rapid, parallel, and group-oriented Traceroute, which adopt the breadth and depth of complicated greatly increased the rate of topologic tree formation. Second, use PingGraph measure available bandwidth and packet loss rate, which reduce the use of network resource and the measurement of time. Third, it proposed and implemented the bandwidth bottleneck detection algorithm through traversing the network topologic tree; calculate available bandwidth through three times traverse effectively prevent the occurrence of the bottleneck. And forth, it proposed and achieved a new peer assessment method, which included a new scale, Integrated Peer Availability Mark, to measure the peer’s integrated availability. It can be seen from the result of experiment, this method use less resource of hardware and network, IPAM show the availability of peer.
引文
[1] D.Pendarakis, etal. ALMI: An application level multicast in frastructure, In: Proc 3rd USENIX Symposium on Internet Technologies Los Alamitos, California: IEEE Computer Society Press, 2001:45-62
    [2] J.Jannotti, etal. Overcast: Reliable multicasting with an overlay network, In: Proc USENIX OSDI, Los Alamitos , California: IEEE Computer Society Press, 2000:173-187
    [3] Napster. http://www.napster.com
    [4] H.Deshpande, M.Bawa, H.Garcia-Molina, Streaming live media over a peer to peer network, Standford Database Group, Tech.Rep: 2001(30):1186-1191
    [5] M.Castro, etal. SplitStream: High-bandwidth content distribution in a cooperative environment, In: Proc IPTPS Los Alamitos, California: IEEE Coomputer Society Press, 2003:298-313
    [6]马凌霄.基于P2P网络的流媒体技术研究:[硕士学位论文].杭州:浙江大学,2005
    [7] Banerjee S, Bhanttacharjee B, Kommareddy C, etal. Scalable application layer multicast. Proc. Of ACM SIGCOMM’02, Pittsburgh, PA.USA, 2005(8):205-217
    [8]龚海刚. P2P流媒体传输的研究进展综述.计算机科学,2004,31(9):20-22
    [9] Hefeeda M, Habib A, Botev B, etal. PROMMISE: A peer-to-peer Media Strreaming using CollectCast. Proceedings of the eleventh ACM international conference on Multimedia, Nov, 2003:139-153
    [10] Mohamed H, Ahsan H, Xu DY, etal. CollectCast: A peer-to-peer service for media streaming. Multimedia Systems, 2005:68-81
    [11] Tran D, Hua K, Do T. Zigzag: an efficient peer-to-peer scheme for media streaming. Proc. of IEEEINFOCOM’03, SanFrancisco, CA, USA, IEEE, 2003:413-428
    [12] Padmanabhan V N, Wang H J, Chou P A, etal. Distributing streaming media content using cooperative network. In ACM/IEEE NOSSDAV, Miami, FL, USA, May, 2002:644-655
    [13] Chou P A, Pandmanabhan V N, Wang H J. Resilient peer-to-peer streaming.Microsoft Research, 2003:183-186
    [14] Pouwelse J.A, Taal J.R, Lagendijk R.L, etal. Real-time video delivery using peer-to-peer bartering networks and multiple description coding. Proceedings International Conference on Systems, Man and Cybernetics, The Hague, The Netherlands (2004) on page(s):4599~4605
    [15] Yang Guo, Kyoungwon, Suh Kurose, etal. A peer-to-peer on-demand streaming service and its performance evaluation. Proc of the IEEE ICME 2003. MARYLAN: IEEE Computer Society, 2003:649~652
    [16] Rejaie R, Ortega A. Peer-to-Peer Adaptive Layered Streaming. 13th International Workshop on Network and Operating Systems Support for Digital Audio and Video. Monterey, CA, United States : Association for Computing Machinery, June 2003:153-161
    [17] Allcast. A p2p streaming product. http://www.allcast.com
    [18] vTrails. A p2p streaming product. http://www.vtrails.com
    [19] Bluefalcon. A p2p streaming product. http://www.bluefalcon.com
    [20]Gandsh A.J, Kermarrec A.M, Massoulie L. Peer-to-Peer Membership Management for Gossip-Based Protocols. IEEE Transactions on Computers, 52(2), Feb 2003:139-149
    [21] Chao Zhang, Hai Jin, Dafu Deng, etal. Anysee: Multicast-based Peer-to-Peer Media Streaming Service System. Asia-Pacific Conference on Communications Fifth, Western Australia 03-05 Oct. 2005:274~278
    [22] X.Hei, C.Liang, J.Liang, etal. Insights into pplive: A measurement study of a large-scale p2p iptv system. Proc of IPTV Workshop, International World Wide Web Conference, 2006:687-692
    [23]赵黎,杨士强. GridMedia流媒体技术瓶颈的克星.中国传媒科技,2005(2):36-37
    [24] CCIPTV. CCIPTV系统解决方案. http://www.cciptv.com
    [25] SETI@home Home Page. http://www.pointera.com
    [26] Peter Haase, Ronny Siebes. Peer selection in peer-to-peer networks with semantic topologies. USA: Proceedings of International Conference on Semantics of a Networked World: Semantics for Grid Databases, 2004:51-54
    [27] Micah Adler, Rakesh Kumar, Keith Ross, etal. Optimal peer selection in afree-market peer resource economy. Cambridge, England: Proceedings of the Second Workshop on Economics of Peer-to-Peer Systems, 2004:221-227
    [28] Daniel S Bernstein, Zhengzhu Feng, Brian Neil Levine, etal. Adaptive peer selection .Berkeley, CA, USA: Proceedings of the 2nd International Workshop on Peer-to-Peer Systems, 2003:734-737
    [29]杨旭士,王羡欠.基于P2P模式的流媒体传输技术.硅谷, 2008(12):23
    [30]杨国燕,韩雪梅.基于P2P网络流媒体直播系统研究与设计.信息技术, 2008(05):152-155
    [31]程德强,钱建生.基于实时流媒体服务的多源应用层组播系统.计算机工程, 2008(10):224-228
    [32]刘永逸. P2P实时流媒体传输调度技术研究:[硕士学位论文].长沙:国防科学技术大学研究生院,2005
    [33] W. Richard Stevens. TCP/IP详解,卷1:协议,范建华等译.北京:机械工业出版社,2004:60-85
    [34] A. Jones, J. Ohlund. Windows网络编程(第2版),杨合庆译.北京:清华大学出版社,2002:102-150
    [35]J. Richter, Windows核心编程,王建华等译.北京:机械工业出版社,2007:73-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700