用户名: 密码: 验证码:
基于简化基因组测序的油菜高通量SNP分析及白菜基因组DNA甲基化解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芸薹属包括白菜、甘蓝和甘蓝型油菜等很多重要的经济作物,是与模式植物拟南芥亲缘关系最近的近缘种之一。芸薹属中绝大部分物种都是多倍体,其中二倍体的白菜和甘蓝也属于古三倍体,很多基因均存在三个及以上拷贝。而甘蓝型油菜是异源四倍体作物,由白菜和甘蓝在自然条件下杂交而成。目前,甘蓝型油菜的基因组序列还未公布,依赖参考基因组序列的大规模SNP分析还无法进行。另外,基因组中普遍存在的同源序列,阻碍了芸薹属作物基因组学和表观基因组学等方面的研究。本研究主要基于双酶切缩减文库和高通量测序技术,对甘蓝型油菜的一个DH分离群体进行简化基因组测序,并开发了配套的SNP分析软件RFAPtools,从复杂的同源序列中识别等位基因,构建高密度遗传连锁图谱;此外,我们还将双酶切缩减文库结合重亚硫酸盐测序,开发了双酶切RRBS技术,对白菜基因组水平上的DNA甲基化进行了解析。
     1.构建甘蓝型油菜高密度遗传图谱。遗传图谱是基因组学研究的必备工具,而多态性标记又是遗传图谱的基础。大量存在的同源序列及基因组序列的缺乏,使得很难在多倍体作物如甘蓝型油菜中,开发和定位SNP等多态性标记。为了解决这个问题,我们设计了一种缩减文库的构建方法,同时开发了配套的生物信息学分析软件RFAPtools。该软件主要包括三部分:1)模拟参考序列的构建;2)SNP检测;3)从同源序列中区分出等位SNP变异。
     通过模拟酶切,我们分析了富集到的酶切片段在染色体上的位置分布、片段的大小分布以及每个单株所需的最适数据量,证明了所开发的简化基因组测序技术的可行性。RFAPtools软件首先通过模拟参考序列的构建,可以将部分同源序列分开,同时利用prf_allele.sh脚本,基于群体数据可以从同源序列中区分出属于同一位点的等位SNP。因此该技术适用于所有物种,进行高通量SNP分析,特别是类似于甘蓝型油菜、小麦等基因组复杂且未完成全基因组测序的物种。对两个亲本及BnaNZDH群体进行简化基因组测序,利用RFAPtools软件开发SNP及分析群体基因型。最终构建了两张平行的高密度遗传连锁图,包括一张包含8780个SNP位点的遗传连锁图以及一张包含12423个显性位点的PAV遗传连锁图。将这两张遗传连锁图A亚基因组上的位点序列与白菜基因组进行共线性分析,总共检测到14个可能的拼接错误及8个可能的定位错误scaffolds序列,对白菜基因组序列进行纠正。同时与白菜未定位的scaffolds序列进行比对分析,将44个未定位的scaffolds序列(包含8.15mb)定位到白菜不同染色体上。为了验证该方法的准确性和重复性,我们随机选取44个SNP位点进行Sanger测序,并将其转化成CAPS标记检测亲本间多态性。其中26个位点得到验证,而未被验证的18个SNP位点的PCR扩增产物中,均包含多条同源序列或不含目标位点序列。利用26个得到验证的SNP位点检测91个DH单株的基因型,总共检测到2251基因型且准确性高达99.3%。对其中6个DH单株重新构建缩减文库并测序,进行重复实验,其中SNP位点的重复性高达99%以上,而PAV重复性与数据量有关,当两次重复的数据量均高于150万reads时,其重复性也较高,达到98%以上。
     2.解析白菜的全基因组DNA甲基化。DNA甲基化在基因表达及转座子沉默等过程中起调控作用,是最重要的表观修饰之一。近年来利用各种高通量技术对多种植物的DNA甲基化组进行了分析,为此我们改进了之前开发的缩减文库构建方法,开发了双酶切RRBS技术,并利用该技术对白菜全基因组DNA甲基化进行研究。通过比较分析发现,双酶切RRBS技术富集到的染色体区域中三种基序分别在基因和转座子区的比例,与白菜全基因组水平上基因和转座子区甲基化比例一致。同时对水稻基因组进行模拟酶切,通过与全基因组的比较分析,也得到一致的结果,证明双酶切RRBS技术能够被用来解析全基因组DNA甲基化。
     利用该方法,我们分析了白菜CG和non-CG位点的全基因组DNA甲基化水平,分别为CG52.4%、CHG31.8%及CHH8.3%。绝大部分CG位点不是未甲基化就是被高度甲基化修饰,而51.8%CHG及77.4%CHH位点为低甲基化修饰。同时分析了白菜不同染色体上DNA甲基化分布,发现DNA甲基化与转座子等重复序列分布一致,而与基因的分布相反。除了A02染色体的真实着丝粒区域,绝大部分真实着丝粒和古着丝粒区域均维持在高度甲基化状态。基因和转座子区域的DNA甲基化水平差异很大,其分布规律均与拟南芥类似,即在基因转录起始和终止位置区域甲基化水平最低,且基因区明显低于侧翼序列,转座子区域维持在一个比较恒定的高甲基化修饰状态。
     对不同亚基因组间基因区DNA甲基化进行分析,表现为LFThe cultivated Brassica species include many important economic crops like Brassica rapa, Brassica oleracea and Brassica napus et al., which are one of the most closely related species to Arabidopsis thaliana. Most members of the Brassicaceae family are all polyploidy species, that diploid B. rapa and B. oleracea are considered as ancient triploid in which many genes contained three copies, and allotetraploid B. napus derived from naturally hybridization between B. rapa and B. oleracea. It is unable to high-throughput analyze SNP variations in B. napus without reference genome sequence. On the other hand, the presence of homoeologous sequences, would also hinder the Brassica genomics and epigenomics studies et al. Based on double-digestion reduced representation library and next generation sequencing technology, we sequenced an oilseed DH population and designed RFAPtools software to discriminate allelic SNPs from homoeologous sequences, and constructed two high-density genetic maps; Combined bisulfite-treatment technology, we developed modified RRBS technology to perform the genome-scale DNA methylation profiling in B. rapa.
     1. Construction of high-density genetic map in B. napus. Genetic maps have become essential tools for a wide range of genetic and genomics studies, which largely depend on polymorphic molecular markers. The presence of homoeologous sequences and absence of a reference genome sequence make discovery and genotyping of single nucleotide polymorphism (SNP) more challenging in allotetraploid B. napus. To address this challenge, we developed a reduced representation library construction technology, and designed a bioinformatics software called RFAPtools. RFAPtools consisted of three modules i.e.,1) assembly of a pseudo-reference sequence,2) SNP identification and3) discrimination of allelic SNPs from homoeologous sequence variations.
     Through in silico enzyme digestion, we analyzed the distribution of fragments across chromosomes, the length of fragments and suitable sequence data for each individual. RFAPtools would separated most homoeologous sequences, through the construction of pseudo-reference sequence. On the other hand, based of population sequence data, prf_allele.sh script would discriminate allele SNPs from homoeologous sequences. Hence this methodology is suitable for SNP analysis in all species, especially for species with complex genome structure without genome sequence. A common set of restriction fragments across a double haploid (DH) population (BnaNZDH) of highly established allotetraploid Brassica napus and its two parents were sequenced. Allelic SNPs and the presence/absence variations (PAVs) were identified using RFAPtools. Two parallel linkage maps, one SNP bin map containing8780SNP loci and one PAV linkage map containing12,423dominant loci, were constructed. By aligning these linkage maps to the B. rapa reference genome sequence, we assigned44unassembled sequence scaffolds comprising8.15Mb onto the B. rapa chromosomes, and also identified14instances of possible misassembly and eight instances of possible mis-ordered sequence scaffolds. To investigate the authenticity of identified SNPs, we randomly selected44SNPs, to directly sanger sequence and be transfer to CAPS markers to detected polymorphism between parents.26of all could be confirmed, and the PCR products of other18SNPs loci contained homoeologous sequences or did not result in target sequences. We also surveyed the91DH lines to validate the SNP genotypes using the26confirmed SNPs. A total of2251genotypes were generated with an accuracy of99.33%. Furthermore, we sequenced6DH lines in duplicate with different number of reads. The consistency of SNP genotypes between the two replications was higher than99.88%, and the consistency of PAV genotypes was sensitive to sequence data that higher than98%with more than1.50million reads.
     2. Genome-scale DNA methylation analysis in B. rapa. DNA methylation is one of the most important epigenetic modification, which would influence the gene transcription and transposon silencing. Recently epigenome of many important plant species were dissected using diverse high-throughput technology. Here we modified reduced representiation library methodology designed previously and developed modified RRBS technology, and applied it to dissect genome-scale DNA methylation in B. rapa. Through the comparism between sequences enriched by mRRBS and whole genome sequence, by calculating the percentage of three contexts (CG, CHG and CHH) distributed in gene and transposon region. Consistent results, which also from the in silico double digestion study in rice, confirmed that mRRBS could be used to dissect whole genome DNA methylation.
     Using mRRBS, we calculated whole-genome methylation levels at CG and non-CG sites, and observed overall genome-wide levels of52.4%CG,31.8%CHG and8.3%CHH methylation. Most CGs were either unmethylated or highly methylated, and51.8%CHG and77.4%CHH sites were hypomethylated. The chromosomal distribution of average methylation level of three contexts were studied and found that the distributions are consistent positive with repeats and negative with gene contents. Except lower DNA methylation distributed at pericentromeric region of A02chromosome, extensive DNA methylation detected around extant and ancient centromere regions. DNA methylation in gene and transposon regions were different, and the distributions in these regions were similar to Arabidopsis, that lowest around transcription start site and transcription termination region, and lower in gene-body compare to upstream or downstream regions. We also found stable extensive DNA methylation along transposon regions.
     We profiled the DNA methylation in gene regions belonging to three paleogenomes, resulted in LF
引文
1. Abeel T, Van Parys T, Saeys Y, Galagan J, Van de Peer Y. GenomeView: a next-generation genome browser. Nucleic Acids Res, 2012,40:e12
    2. Akalin A, Kormaksson M, Li S, Garrett-Bakelman F, Figueroa M, Melnick A, Mason C. methylKit:a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol, 2012,13:R87
    3. Akman K, Haaf T, Gravina S, Vijg J, Tresch A. Genomewide, quantitative analysis of DNA methylation from bisulfite sequencing data. Bioinformatics,2014, 10.1093/bioinformatics/btul 42
    4. Alix K, Ryder CD, Moore J, King GJ, Pat Heslop-Harrison JS. The genomic organization of retrotransposons in Brassica oleracea. Plant Mol Biol,2005,59: 839-851
    5. Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Pat Heslop-Harrison JS. The CACTA transposon Botl played a major role in Brassica genome divergence and gene proliferation. Plant J,2008,56:1030-1044
    6. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T, Stern DL. Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res,2011,21:610-617
    7. Arabidopsis Genome I. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000,408:796-815
    8. Arumuganathan K, Earle E. Nuclear DNA content of some important plant species. Plant Mol Biol Rep,1991,9:208-218
    9. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CF, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Mol Genet Genomics,2003,268: 656-665
    10. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE,2008,3:e3376
    11. Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L, Baker D, Long Y, Meng J, Wang X, Liu S, Trick M. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol,2011,29:762-766
    12. Bao H, Guo H, Wang J, Zhou R, Lu X, Shi S. Map View:visualization of short reads alignment on a desktop computer. Bioinformatics,2009,25:1554-1555
    13. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, Zhang L, Farmer AD, Bell CJ, Kim RW, May GD, Woodward JE, Caillier SJ, McElroy JP, Gomez R, Pando MJ, Clendenen LE, Ganusova EE, Schilkey FD, Ramaraj T, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature,2010,464:1351-1356
    14. Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE,2011,6:e19315
    15. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature,2008,456:53-59
    16. Berkman PJ, Visendi P, Lee HC, Stiller J, Manoli S, Lorenc MT, Lai K, Batley J, Fleury D, Simkova H, Kubalakova M, Weining S, Dolezel J, Edwards D. Dispersion and domestication shaped the genome of bread wheat. Plant Biotechnol J,2013, 10.1111/pbi.12044:n/a-n/a
    17. Bild AH, Chang JT, Johnson WE, Piccolo SR. A field guide to genomics research. PLoS Biol,2014,12:e1001744
    18. Blanc G, Barakat A, Guyot R, Cooke R, Delseny M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell,2000,12:1093-1101
    19. Borgel J, Guibert S, Weber M. Methylated DNA immunoprecipitation (MeDIP) from low amounts of cells. Methods Mol Biol,2012,925:149-158
    20. Brunet FG, Roest Crollius H, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol,2006,23:1808-1816
    21. Bus A, Hecht J, Huettel B, Reinhardt R, Stich B. High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genomics,2012,13:281
    22. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: building and genotyping Loci de novo from short-read sequences. G3 (Bethesda), 2011,1: 171-182
    23. Chen H, Wang X. CrusView:A Java-Based Visualization Platform for Comparative Genomics Analyses in Brassicaceae Species. Plant Physiol,2013,163:354-362
    24. Chen PY, Cokus SJ, Pellegrini M. BS Seeker:precise mapping for bisulfite sequencing. BMC Bioinformatics,2010,11:203
    25. Chen X, Li X, Zhang B, Xu J, Wu Z, Wang B, Li H, Younas M, Huang L, Luo Y, Wu J, Hu S, Liu K. Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence:a case study in allotetraploid Brassica napus. BMC Genomics,2013,14:346
    26. Chen ZJ. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet,2013,14:471-482
    27. Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang X. Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell,2013, 10.1105/tpc.113.110486
    28. Cheng F, Wu J, Fang L, Sun S, Liu B, Lin K, Bonnema G, Wang X. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE,2012,7:e36442
    29. Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    30. Cheung F, Trick M, Drou N, Lim YP, Park J-Y, Kwon S-J, Kim J-A, Scott R, Pires JC, Paterson AH, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell,2009,21:1912-1928
    31. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature,2008,452: 215-219
    32. Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol, 2000,43:387-399
    33. Cortijo S, Wardenaar R, Colome-Tatche M, Johannes F, Colot V. Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. Methods Mol Biol, 2014,1112:125-149
    34. Cox M, Peterson D, Biggs P. SolexaQA:At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics,2010,11:485
    35. Craig DW, Pearson JV, Szelinger S, Sekar A, Redman M, Corneveaux JJ, Pawlowski TL, Laub T, Nunn G, Stephan DA, Homer N, Huentelman MJ. Identification of genetic variants using bar-coded multiplexed sequencing. Nat Meth,2008,5: 887-893
    36. Cui C, Ge X, Gautam M, Kang L, Li Z. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids. Genetics,2012,191:725-738
    37. Cui C, Ge X, Zhou Y, Li M, Li Z. Cytoplasmic and genomic effects on non-meiosis-driven genetic changes in Brassica hybrids and allotetraploids from pairwise crosses of three cultivated diploids. PLoS ONE,2013,8:e65078
    38. Dal Santo S, Tornielli GB, Zenoni S, Fasoli M, Farina L, Anesi A, Guzzo F, Delledonne M, Pezzotti M. The plasticity of the grapevine berry transcriptome. Genome Biol,2013,14:r54
    39. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet,2011,12:499-510
    40. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet,2011,43:491-498
    41. Durstewitz G, Polley A, Plieske J, Luerssen H, Graner EM, Wieseke R, Ganal MW. SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome,2010,53:948-956
    42. Edwards D, Batley J. Plant genome sequencing:applications for crop improvement. Plant Biotechnol J,2010,8:2-9
    43. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE,2011,6:e19379
    44. Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM. Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci U S A,2010,107:16196-16200
    45. Feil R, Fraga MF. Epigenetics and the environment:emerging patterns and implications. Nat Rev Genet,2012,13:97-109
    46. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA,2010,107:8689-8694
    47. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet,2006,7:85-97
    48. Frith MC, Mori R, Asai K. A mostly traditional approach improves alignment of bisulfite-converted DNA. Nucleic Acids Res,2012,40:e100
    49. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A, 1992,89:1827-1831
    50. Gao M, Li G, Yang B, Qiu D, Farnham M, Quiros C. High-density Brassica oleracea linkage map:identification of useful new linkages. Theor Appl Genet, 2007, 115: 277-287
    51. Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell,2006,124:495-506
    52. Geraldes A, Pang J, Thiessen N, Cezard T, Moore R, Zhao Y, Tam A, Wang S, Friedmann M, Birol I, Jones SJ, Cronk QC, Douglas CJ. SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. Mol Ecol Resour, 2011,11 Suppl 1:81-92
    53. Giurato G, De Filippo MR, Rinaldi A, Hashim A, Nassa G, Ravo M, Rizzo F, Tarallo R, Weisz A. iMir:An Integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics,2013,14: 362
    54. Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchinson D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong JP, Miguel T, et al. A draft sequence of the rice genome (Oryza sativa L. sspjaponica). Science,2002,296:92-100
    55. Gonen S, Lowe N, Cezard T, Gharbi K, Bishop S, Houston R. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC Genomics,2014,15:166
    56. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES. A first-generation haplotype map of maize. Science,2009,326:1115-1117
    57. Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O'Shaughnessy AL, Lambert GM, Arauzo-Bravo MJ, Lee J, Fishman M, Robbins GE, Lin X, Venepally P, Badger JH, Galbraith DW, Gage FH, Lasken RS. RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A,2013,110:19802-19807
    58. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res,2013,10.1101/gr.161679.113
    59. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham B-K, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet, 2012,45:51-58
    60. Harris EY, Ponts N, Levchuk A, Roch KL, Lonardi S. BRAT:bisulfite-treated reads analysis tool. Bioinformatics,2010a,26:572-573
    61. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O'Geen H, Lister R, Pelizzola M, Xi Y, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol,2010b,28:1097-1105
    62. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics,1998,148:479-494
    63. He G, Chen B, Wang X, Li X, Li J, He H, Yang M, Lu L, Qi Y, Wang X, Wang Deng X. Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol,2013,14:R57
    64. He XJ, Chen T, Zhu JK. Regulation and function of DNA methylation in plants and animals. Cell Res,2011,21:442-465
    65. Hegarty M, Yadav R, Lee M, Armstead I, Sanderson R, Scollan N, Powell W, Skot L. Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnol J,2013,11:572-581
    66. Hegarty MJ, Hiscock SJ. The complex nature of allopolyploid plant genomes. Heredity,2009,103:100-101
    67. Hong CP, Plaha P, Koo DH, Yang TJ, Choi SR, Lee YK, Uhm T, Bang JW, Edwards D, Bancroft I, Park BS, Lee J, Lim YP. A Survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. Mol Cells, 2006,22:300-307
    68. Hu Z, Huang S, Sun M, Wang H, Hua W. Development and application of single nucleotide polymorphism markers in the polyploid Brassica napus by 454 sequencing of expressed sequence tags. Plant Breeding,2012,131:293-299
    69. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,2003,100:2574-2579
    70. Huang S, Deng L, Guan M, Li J, Lu K, Wang H, Fu D, Mason A, Liu S, Hua W. Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genomics,2013,14:717
    71. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet,2009a,41:1275-1281
    72. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B. High-throughput genotyping by whole-genome resequencing. Genome Res,2009b,19:1068-1076
    73. Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet,2012a,44:32-39
    74. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42:961-967
    75. Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012b,490:497-501
    76. International Barley Genome Sequencing C, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N. A physical, genetic and functional sequence assembly of the barley genome. Nature,2012,491:711-716
    77. Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding:from theory to practice. Brief Funct Genomics,2010,9:166-177
    78. Jeddeloh JA, Greally JM, Rando OJ. Reduced-representation methylation mapping. Genome Biol,2008,9:231
    79. Jones PA. Functions of DNA methylation:islands, start sites, gene bodies and beyond. Nat Rev Genet,2012,13:484-492
    80. Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). BMC Genomics,2013,14:32
    81. Kapoor R, Banga SS, Banga SK. A microsatellite (SSR) based linkage map of Brassica rapa. Nat Biotechnol,2009,26:239-243
    82. Kerstens HH, Crooijmans RP, Veenendaal A, Dibbits BW, Chin AWTF, den Dunnen JT, Groenen MA. Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology:applied to turkey. BMC Genomics,2009,10:479
    83. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S. TopHat2:accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol,2013,14:R36
    84. Kim JA, Yang TJ, Kim JS, Park JY, Kwon SJ, Lim MH, Jin M, Lee SC, Lee SI, Choi BS, Um SH, Kim HI, Chun C, Park BS. Isolation of circadian-associated genes in Brassica rapa by comparative genomics with Arabidopsis thaliana. Mol Cells,2007, 23:145-153
    85. Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science,2004,303:521-523
    86. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe WJ, Koornneef M, Kakutani T. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J,2007,49:38-45
    87. Kohler C, Page DR, Gagliardini V, Grossniklaus U. The Arabidopsis thaliana MEDEA polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet,2005,37:28-30
    88. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet,2009,5:e1000551
    89. Kowalski SP, Lan TH, Feldmann KA, Paterson AH. Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics,1994,138:499-510
    90. Krueger F, Andrews SR. Bismark:a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics,2011,27:1571-1572
    91. Krueger F, Kreck B, Franke A, Andrews SR. DNA methylome analysis using short bisulfite sequencing data. Nat Methods,2012,9:145-151
    92. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150:1217-1228
    93. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, et al. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet,2010,42:1027-1030
    94. Lam H-M, Xu X, Liu X, Chen W, Yang G, Wong F-L, Li M-W, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS-M, Zhang G Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet,2010,42:1053-1059
    95. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012,9:357-359
    96. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet,2010,11:204-220
    97. Li G, Gao M, Yang B, Quiros CF. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet,2003,107: 168-180
    98. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics,2009,25:1754-1760
    99. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res,2008a,18:1851-1858
    100. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009a,25:2078-2079
    101. Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breeding,2011a,28:585-596
    102. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet,2012a,45:43-50
    103. Li H, Younas M, Wang X, Li X, Chen L, Zhao B, Chen X, Xu J, Hou F, Hong B, Liu G, Zhao H, Wu X, Du H, Wu J, Liu K. Development of a core set of single-locus SSR markers for allotetraploid rapeseed(Brassica napus L.). Theor Appl Genet, 2013,126:937-947
    104. Li M, Wu H, Luo Z, Xia Y, Guan J, Wang T, Gu Y, Chen L, Zhang K, Ma J, Liu Y, Zhong Z, Nie J, Zhou S, Mu Z, Wang X, Qu J, Jing L, Wang H, Huang S, et al. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat Commun, 2012b,3:850
    105. Li Q, Li N, Hu X, Li J, Du Z, Chen L, Yin G, Duan J, Zhang H, Zhao Y, Wang J. Genome-wide mapping of DNA methylation in chicken. PLoS ONE,2011b,6: e19428
    106. Li R, Li Y, Kristiansen K, Wang J. SOAP:short oligonucleotide alignment program. Bioinformatics,2008b,24:713-714
    107. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K. SNP detection for massively parallel whole-genome resequencing. Genome Res,2009b,19:1124-1132
    108. Li S, Li R, Li H, Lu J, Li Y, Bolund L, Schierup M, Wang J. SOAPindel:Efficient identification of indels from short paired reads. Genome Res,2012c, 10.1101/gr.132480.111
    109. Li X, Ramchiary N, Choi SR, Van Nguyen D, Hossain MJ, Yang HK, Lim YP. Development of a high density integrated reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Genome,2010,53:939-947
    110. Li X, Zhu J, Hu F, Ge S, Ye M, Xiang H, Zhang G, Zheng X, Zhang H, Zhang S, Li Q, Luo R, Yu C, Yu J, Sun J, Zou X, Cao X, Xie X, Wang J, Wang W. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genomics,2012d,13:300
    111. Lister R, Ecker JR. Finding the fifth base:genome-wide sequencing of cytosine methylation. Genome Res,2009,19:959-966
    112. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell,2008,133:523-536
    113. Liu B, Wang Y, Zhai W, Deng J, Wang H, Cui Y, Cheng F, Wang X, Wu J. Development of InDel markers for Brassica rapa based on whole-genome re-sequencing. Theor Appl Genet,2013,126:231-239
    114. Long Y, Xia W, Li R, Wang J, Shao M, Feng J, King GJ, Meng J. Epigenetic QTL mapping in Brassica napus. Genetics,2011,189:1093-1102
    115. Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF, Solter D, Messerschmidt DM. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science,2013,341:1110-1112
    116. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE. Switchgrass Genomic Diversity, Ploidy, and Evolution:Novel insights from a network-based SNP discovery protocol. PLoS Genet,2013,9:e1003215
    117. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics,2003,164:359-372
    118. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol,2006,140:336-348
    119. Luo L, Boerwinkle E, Xiong M. Association studies for next-generation sequencing. Genome Res,2011,10.1101/gr.115998.110
    120. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, et al. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler. GigaScience,2012,1:18
    121. Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res,2005,15:516-525
    122. Ma XF, Gustafson JP. Timing and rate of genome variation in triticale following allopolyploidization. Genome,2006,49:950-958
    123. Madlung A, Wendel JF. Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res,2013,140:270-285
    124. Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L. Genomic changes in synthetic Arabidopsis polyploids. Plant J,2005,41: 221-230
    125. Mahfouz MM. RNA-directed DNA methylation:mechanisms and functions. Plant Signal Behav,2010,5:806-816
    126. Makino T, McLysaght A. Positionally biased gene loss after whole genome duplication:Evidence from human, yeast, and plant. Genome Res,2012,22: 2427-2435
    127. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437: 376-380
    128. McClintock B. The significance of responses of the genome to challenge. Science, 1984,226:792-801
    129. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, et al. Genetic properties of the maize nested association mapping population. Science,2009,325:737-740
    130. Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet,2010, 11:31-46
    131. Meuwissen T. Genomic selection:marker assisted selection on a genome wide scale JAnim Breed Genet,2007,124:321-322
    132. Morrell PL, Buckler ES, Ross-Ibarra J. Crop genomics:advances and applications. Nat Rev Genet,2012,13:85-96
    133. Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol,2009,10:R111
    134. Mun JH, Kwon SJ, Seol YJ, Kim JA, Jin M, Kim JS, Lim MH, Lee SI, Hong JK, Park TH, Lee SC, Kim BJ, Seo MS, Baek S, Lee MJ, Shin JY, Hahn JH, Hwang YJ, Lim KB, Park JY, et al. Sequence and structure of Brassica rapa chromosome A3. Genome Biol,2010,11:R94
    135. Munroe DJ, Harris TJR. Third-generation sequencing fireworks at marco island. Nat Biotechnol,2010,28:426-428
    136. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature,2013,502:59-64
    137. Nair SS, Coolen MW, Stirzaker C, Song JZ, Statham AL, Strbenac D, Robinson MD, Clark SJ. Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics,2011,6: 34-44
    138. Nelson J, Wang S, Wu Y, Li X, Antony G, White F, Yu J. Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genomics,2011,12:352
    139. Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet,2000,34: 401-437
    140. Pacurar DI, Pacurar ML, Street N, Bussell JD, Pop TI, Gutierrez L, Bellini C. A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. J Exp Bot, 2012,63:2491-2501
    141. Park PJ. ChIP-seq:advantages and challenges of a maturing technology. Nat Rev Genet,2009,10:669-680
    142. Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome,1995,38:1122-1131
    143. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-781
    144. Patel RK, Jain M. NGS QC Toolkit:A toolkit for quality control of next generation sequencing data. PLoS ONE,2012,7:e30619
    145. Pearson WR, Wood T, Zhang Z, Miller W. Comparison of DNA sequences with protein sequences. Genomics,1997,46:24-36
    146. Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q. De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genomics,2013,14:556
    147. Peng H, Zhang J. Plant genomic DNA methylation in response to stresses:Potential applications and challenges in plant breeding. Proc Natl Acad Sci U S A,2009,19: 1037-1045
    148. Pennisi E. DNA sequencers still waiting for the nanopore revolution. Science,2014, 343:829-830
    149. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE,2012,7:e37135
    150. Poland JA, Brown PJ, Sorrells ME, Jannink J-L. Development of High-Density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE,2012,7:e32253
    151. Potato Genome Sequencing C, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, et al. Genome sequence and analysis of the tuber crop potato. Nature,2011,475:189-195
    152. Rambani A, Page J, Udall J. Polyploidy and the petal transcriptome of Gossypium. BMC Plant Biol,2014,14:3
    153.Reuter JS, Mathews DH. RNAstructure:software for RNA secondary structure prediction and analysis. BMC Bioinformatics,2010,11:129
    154. Rubin BER, Ree RH, Moreau CS. Inferring phylogenies from RAD sequence data. PLoS ONE,2012,7:e33394
    155. Rusk N. Genomics:Genomes in 3D improve one-dimensional assemblies. Nat Methods,2013,11:5-5
    156.Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA,1977,74:5463-5467
    157. Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, Libiger O, Schork NJ, Ecker JR. Transgenerational epigenetic instability is a source of novel methylation variants. Science,2011,334:369-373
    158. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ, Ecker JR. Patterns of population epigenomic diversity. Nature,2013a,495:193-198
    159. Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, Nery JR, Diers B, Xu D, Stacey G, Ecker JR. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res,2013b,23:1663-1674
    160. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, et al. Genome sequence of the palaeopolyploid soybean. Nature,2010,463:178-183
    161. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, et al. The B73 maize genome:complexity, diversity, and dynamics. Science,2009,326:1112-1115
    162. Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen JE, Weigel D, Andersen SU. SHOREmap:simultaneous mapping and mutation identification by deep sequencing. Nat Methods,2009,6:550-551
    163. Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci,2006,11: 535-542
    164. Seoighe C, Gehring C. Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet,2004,20:461-464
    165. Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell,2012,24:875-892
    166. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008,26: 1135-1145
    167. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS:a parallel assembler for short read sequence data. Genome Res,2009,19:1117-1123
    168. Snowdon RJ, Friedrich T, Friedt W, Kohler W. Identifying the chromosomes of the A-and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet,2002,104:533-538
    169. Song K, Lu P, Tang K, Osborn TC. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A, 1995,92:7719-7723
    170. Song QX, Lu X, Li QT, Chen H, Hu XY, Ma B, Zhang WK, Chen SY, Zhang JS. Genome-wide analysis of DNA methylation in soybean. Mol Plant,2013, 10.1093/mp/sst123
    171. Sun Z, Wang Z, Tu J, Zhang J, Yu F, McVetty PB, Li G. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet,2007,114:1305-1317
    172. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana:the genetic origin of clubroot resistance. Genetics,2006,173:309-319
    173. T M. Interspecific hybridization in Brassica Cytologia,1934,6:62-67
    174. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J,2013,10.1111/tpj.12105:n/a-n/a
    175. Tariq M, Paszkowski J. DNA and histone methylation in plants. Trends Genet,2004, 20:244-251
    176. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform, 2012,10.1093/bib/bbs017
    177. Tiffin P, Hahn MW. Coding sequence divergence between two closely related plant species:Arabidopsis thaliana and Brassica rapa ssp. pekinensis. J Mol Evol,2002, 54:746-753
    178. Tomato Genome C. The tomato genome sequence provides insights into fleshy fruit evolution. Nature,2012,485:635-641
    179. Tong C, Wang X, Yu J, Wu J, Li W, Huang J, Dong C, Hua W, Liu S. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics,2013,14:689.
    180. Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359
    181. Trebbi D, Maccaferri M, de Heer P, Serensen A, Giuliani S, Salvi S, Sanguineti M, Massi A, van der Vossen E, Tuberosa R. High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet,2011, 10.1007/s00122-011-1607-7:1-15
    182. Trick M, Long Y, Meng JL, Bancroft I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J,2009,7:334-346
    183. UN. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot,1935,7:389-452
    184. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, Sidow A, Fire A, Johnson SM. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res,2008,18:1051-1063
    185. van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES. Hi-C:a method to study the three-dimensional architecture of genomes. J Vis Exp,2010,10.3791/1869
    186. van Orsouw NJ, Hogers RC, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJ. Complexity reduction of polymorphic sequences (CRoPS):a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE,2007,2:e1172
    187. van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JN, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RG, Bakker J, van Eck HJ. Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics,2006,173:1075-1087
    188. van Poecke RM, Maccaferri M, Tang J, Truong HT, Janssen A, van Orsouw NJ, Salvi S, Sanguineti MC, Tuberosa R, van der Vossen EA. Sequence-based SNP genotyping in durum wheat. Plant Biotechnol J,2013,11:809-817
    189. Van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods,2008,5:247-252
    190. Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A. A high density barley microsatellite consensus map with 775 SSR loci. TheorAppl Genet,2007,114:1091-1103
    191. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, et al. The sequence of the human genome. Science,2001,291:1304-1351
    192. Vergeer P, Wagemaker N, Ouborg NJ. Evidence for an epigenetic role in inbreeding depression. Biol Letters,2012,10.1098/rsb1.2012.0494
    193. Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Liibberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M. Two high-density AFLP? linkage maps of Zea mays L.:analysis of distribution of AFLP markers. Theor Appl Genet,1999,99:921-935
    194. Wang F, Wang X, Chen X, Xiao Y, Li H, Zhang S, Xu J, Fu J, Huang L, Liu C, Wu J, Liu K. Abundance, marker development and genetic mapping of microsatellites from unigenes in Brassica napus. Mol Breeding,2011a,10.1007/s 11032-011-9658-7:1-14
    195. Wang H, Chung PJ, Liu J, Jang I-C, Kean M, Xu J, Chua N-H. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res,2014a,10.1101/gr.165555.113
    196. Wang J, Xia Y, Li L, Gong D, Yao Y, Luo H, Lu H, Yi N, Wu H, Zhang X, Tao Q, Gao F. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics,2013a,14:11
    197. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol,2014b,15:R39
    198. Wang N, Fang L, Xin H, Wang L, Li S. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol,2012,12:148
    199. Wang W, Wei Z, Lam TW, Wang J. Next generation sequencing has lower sequence coverage and poorer SNP-detection capability in the regulatory regions. Sci Rep, 2011b,1:55
    200. Wang X, Shi X, Hao B, Ge S, Luo J. Duplication and DNA segmental loss in the rice genome:implications for diploidization. New Phytol,2005,165:937-946
    201. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, et al. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet,2011c,43:1035-1039
    202. Wang Y, Lu J, Yu J, Gibbs RA, Yu F. An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data. Genome Res,2013 b, 10.1101/gr.146084.112
    203. Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet,2009,10:57-63
    204. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature,1953,171:737-738
    205. Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) Inbred Lines. PLoS ONE,2011,6:e29229
    206. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, et al. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics,2006,7:Article No.:206
    207. Westermeier P, Wenzel G, Mohler V. Development and evaluation of single-nucleotide polymorphism markers in allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet,2009,119:1301-1311
    208. Whitfeld PR. A method for the determination of nucleotide sequence in polyribonucleotides. Biochem J,1954,58:390-396
    209. Wiedmann RT, Smith TP, Nonneman DJ. SNP discovery in swine by reduced representation and high throughput pyrosequencing. BMC Genetics,2008,9:81
    210. Woodhouse MR, Cheng F, Pires JC, Lisch D, Freeling M, Wang X. Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proc Natl Acad Sci U S A,2014,10.1073/pnas.1402475111
    211. Wu X, Ren C, Joshi T, Vuong T, Xu D, Nguyen H. SNP discovery by high-throughput sequencing in soybean. BMC Genomics,2010,11:469
    212. Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet,2008,4: e1000212
    213. Xi Y, Li W. BSMAP:whole genome bisulfite sequence mapping program. BMC Bioinformatics,2009,10:232
    214. Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, Zhang H, Zhang G, Li D, Dong Y, Zhao L, Lin Y, Cheng D, Yu J, Sun J, Zhou X, Ma K, He Y, Zhao Y, Guo S, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol,2010,28:516-520
    215. Xiao S, Xu J, Li Y, Zhang L, Shi S, Wu J, Liu K. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome,2007,50:611-618
    216. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA,2010,107:10578-10583
    217. Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King GJ, Wu J, Liu K. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics, 2010,11:594
    218. xu m, Dong y, zhang q, zhang 1, luo y, sun j, fan y, wang 1. Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics,2012a,13:421
    219. Xu P, Xu S, Wu X, Tao Y, Wang B, Wang S, Qin D, Lu Z, Li G Population genomic analyses from low-coverage RAD-Seq data:a case study on the non-model cucurbit bottle gourd. Plant J,2013,10.1111/tpj.12370:n/a-n/a
    220. Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang J-W, Ge X, Lei Y, He Q, Miao Y, Wang L, et al. The draft genome of sweet orange(Citrus sinensis). Nat Genet,2012b, 45:59-66
    221. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell,2006,18:1339-1347
    222. Yilmaz S, Singh AK. Single cell genome sequencing. Curr Opin Biotechnol,2012, 23:437-443
    223. Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE,2011,6:e17595
    224. Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, Cao ML, Liu J, Sun JD, Tang JB, Chen YJ, Huang XB, Lin W, Ye C, Tong W, Cong LJ, et al. A draft sequence of the rice genome(Oryza sativa L. ssp indica). Science, 2002,296:79-92
    225. Zerbino DR, Birney E. Velvet:Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res,2008,18:821-829
    226. Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, et al. Genome sequence of foxtail millet(Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol,2012, doi:10.1038/nbt.2195
    227. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell,2006,126:1189-1201
    228. Zhao M, Du J, Lin F, Tong C, Yu J, Huang S, Wang X, Liu S, Ma J. Shifts in evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant J,2013,10.1111/tpj.12291:n/a-n/a
    229. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet,2007,39:61-69
    230. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LTY, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A. Charting a dynamic DNA methylation landscape of the human genome. Nature,2013,500:477-481

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700