用户名: 密码: 验证码:
染色体片段代换系的构建及产量相关性状杂种优势的遗传基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国目前第二大粮食作物,全世界有50%以上的人口吃饭问题需要它来满足。因此提高水稻产量是我国乃至全世界的粮食安全重要战略,而水稻高产是主要目标之一。杂种优势是指杂种F1代在性状表现上优于双亲。过去几十年来,人们利用杂种优势进行了多种作物的育种和遗传改良,在生产和实践中取得了巨大的成功。尽管人们针对杂种优势现象做了很多研究工作,但杂种优势形成的遗传机理仍有很多未知的地方。汕优63是一个非常优良的杂交稻,本研究以汕优63的两个原始亲本珍汕97和明恢63为亲本,通过连续回交策略,构建了一套以珍汕97为背景、明恢63为供体的染色体片段代换系,分析染色体片段代换系对产量及其相关性状的遗传效应。同时利用染色体代换系与轮回亲本珍汕97配置的杂交组合剖析了单片段代换系的杂种优势效应,通过杂种优势组装分析上位性对杂种优势的贡献。另外,我们构建了三套正反交材料,探索了生物钟调控途径在杂种优势形成中的作用。主要结果如下:
     1、通过珍汕97和明恢63连续回交,结合分子标记辅助选择,构建了一套202份染色体代换系。202份代换系背景回复率为95.2%,最高为99.0%,最低为91.8%。所有目标片段总长度为2367.5cM,相当于水稻基因组的1.5倍,而目标片段覆盖基因组的长度为1420.3cM,约为水稻基因组的93.2%;导入片段长度在1.2-30.7cM之间,平均长度为11.2cM,其中片段长度小于10cM代换系数目约占20%,介于10~20cM的代换系数目约占70%,而大于20cM的代换系数目约占10%。代换系基本覆盖了珍汕97为背景的全基因组。
     2、两年重复实验考察了染色体代换系群体抽穗期、株高、每穗颖花数、单株产量、单株有效分蘖数、穗长、千粒重和每穗实粒数,研究染色体代换系的遗传效应。结果显示,所有考察性状均有很大的变异范围,明恢63染色体片段的导入影响了珍汕97重要农艺性状的表型变异。
     3、在回交种和染色体代换系群体中,发现不同导入片段位点的遗传效应不同,分别表现为加性效应和显性效应,本研究中没有检测到超显性效应。通过互作分析结果发现,上位性互作对表型变异具有非常大的影响。说明导入片段位点的加性效应和显性效应以及位点与位点之间的互作对表型变异起到非常重要的作用。
     4、以202份染色体代换系为母本,珍汕97为父本,配置了CSSL/珍汕97杂交种,分别考察抽穗期、株高、单株产量等8项性状指标,研究导入明恢63染色体片段的杂种优势。针对所有考察性状,平均有17.8%的杂交组合与对照珍汕97呈现显著差异,所有杂种优势位点均表现出部分显性。2010年分别有4.5%、5.8%、5.9%和5.1%的杂交组合在单株产量、每穗颖花数、株高和每穗实粒数上与ZS97和染色体代换系之间具有显著差异。
     5、在染色体代换系中,我们共检测到12个抽穗期QTL,单个片段对抽穗期变异的贡献率从5.2%到83.5%。其中有5个QTL在F2和RIL群体中没有检测到。通过比较测序结果显示,抽穗期3个主效QTL QHD6, QHD7.2和QHD7.3分别是已经克隆的Hdl, Ghd7和Ghd7.1。其中QHD7.1和QHD2是新的QTL。另外,QHD2,QHD4和QHD8这3个QTL的加性效应大约为4.5天,非常有利于QTL的克隆。两位点互作分析结果显示,QHD7.2和QHD7.3通过遗传互作来调控水稻开花。
     6、本研究中,我们共检测到15个株高杂种优势位点。它们对杂种优势的贡献为显性效应,每个杂种优势位点的中亲优势(MPH)从-7.4%到14.4%。4位点互作分析显示,4位点主效QTL之间存在显著的上位性互作,它们的互作形式主要是加性效应与加性效应(AA),加性效应与显性效应(AD)。其中两个主效株高QTL qPH7.2和qPH7.3的加加互作效应为负值来增加水稻株高。
     7、202个染色体代换系中,我们检测到13个每穗颖花数杂种优势位点和9个单株产量杂种优势位点.其中9个产量杂种优势位点的CSSLs/珍汕97F1的单株产量处于回交亲本珍汕97和染色体代换系的产量之间,也就是说这9个产量杂种优势位点为显性效应杂种优势位点。我们将其中8个单株产量主效位点进行杂种优势组装,产生了2个4位点F1和一个8位点F1。其中8位点的产量杂种优势能够达到汕优63的75.4%。在4位点F2群体中,就每穗颖花数和单株产量而言,上位性互作效应对杂种优势的贡献非常显著,我们检测到加性效应与加性效应,加性效应与显性效应和显性效应与显性效应的互作形式,其中HYD7.1和HYD7.2两位点的加性效应与加性效应的遗传互作效应为负值而提高产量。
     8、我们构建三套正反交材料,分析了生物钟调控的基因网络与产量杂种优势形成的关系。通过表型考察,我们发现正反交之间的表型或杂种优势没有显著差异,也就是说母性遗传对杂种优势没有影响;籼稻亚种内和籼粳亚种间的杂种优势非常明显,生物钟基因及其调控的下游基因(叶绿素合成和淀粉合成基因)的相对表达量也具有非常显著的杂种优势。同时我们检测了叶绿素和淀粉含量,结果显示在正反交F1中含有较多的叶绿素和淀粉。相比较而言,粳稻亚种内的杂种优势不是很明显,生物钟调控网络的基因相对表达量杂种优势也比较低。
Up to now, rice is the second largest food crop in china. Rice yield improvement guarantees the food security,which feeded the more than half world's population. So the development of high-yield varieties is one of the most important objectives in rice breeding. Heterosis, or hybrid vigor, refers to the superior performance of the hybrids relative to the parents. Utilization of heterosis has contributed tremendously to the increased productivity in many crops for decades. Although there have been a range of studies on various aspects of heterosis, the key to understanding the biological mechanisms of heterotic performance in crop hybrids is the genetic basis, much of which is still uncharacterized. Shanyou63is an elite hybrid, in this study, we used original parent Zhenshan97and Minghui63of Shanyou63as the parents, a series of CSSLs were developed following the consecutive backcrossing strategy to study the genetic effects of Minghui63segments on yield and yield-related traits in the genetic background of Zhenshan97. In order to characterize the effects of Minghui63segments on heterosis, the population of CSSLs/Zhenshan97was used. In addition, we we generated three sets of reciprocal F1hybrids of indica and japonica subspecies to evaluate the relationship between yield heterosis and the circadian clock. The major results are as follows:
     1. A total of202CSSLs were constructed, each carrying one to three substitution segments. The average percent recovery of recurrent parent genome is95.2%. The total length of all substitution segments was2367.5cM, which was1.5times of the rice genome. The overlapped substitution segments covered1420.3cM (93.2%) of the entire rice genome. The estimated length of single introgression segments in CSSLs ranged from1.2to30.7cM with an average of11.2cM.
     2. Phenotypic evaluation of CSSLs was carried out in two environments. The traitscharacterized are heading date (HD), plant height (PH), panicles number per plant (PN), panicle length (PL), grains per panicle (GPP), spikelets per panicle (SPP), kilo-grain weight (KGW) and yield per plant (YD). Transgressive segregations observed in all these traits implied that the introgressed Minghui63segments had an effect on agronomic traits.
     3. The genetic effects of Minghui63segments composed of additive and dominant. Genetic effects differentiated among different introgression segments, epistasis interaction was significant contribution to phenotypic variation based on epistasis analysis. These results suggested that additive dominant and epistasis played an important role in trait performance.
     4. CSSLs/Zhenshan97was developed by selecting CSSLs as female and Zhenshan97as the male parents, to study the effects of Minghui63segments on heterosis. Eight traits were evaluated in two environments. Taken all these traits into consideration,17.8percent of hybrids significantly deviated from SY63, and all heterosis loci showed partial dominance. In2010, there were5.7,14.3and5.0percent of chromosome segment substitution lines for grain yield, Spikelet per panicle and grain per panicle, respectively.
     5. Twelve QTLs were identified for heading date. Single QTL individually explained5.2%to83.5%of heading date variation. Five QTLs were not detected in both F2and RIL populations from the same cross Zhenshan97/Minghui63. Parental comparative sequencing showed that the three major QTLs of QHD6, QHD7.2and QHD7.3are allelic with the cloned genes of Hdl, Ghd7and Ghd7.1, respectively. QHD7.1and QHD2are novel QTLs. The QTLs of QHD2, QHD4and QHD8with additive effects of about4.5d would be worthy to conduct QTL cloning. In addition, di-genic interaction between QHD7.2and QHD7.3significantly regulated heading date under long-day conditions. The diverse performance in agronomy and biology between the parents Zhenshan97and Minghui63indicated that the set of CSSLs would be idea materials for QTL mapping and cloning for other traits.
     6. In this study, Fifteen CSSLs had varied plant heights within lines. A total of15partial dominance QTLs for plant height were detected in these15CSSL-F2populations. All hybrids between the15CSSLs and the recurrent parent, Zhenshan97, were shorter than the corresponding CSSLs, but taller than Zhenshan97. These indicated that these15QTLs were also heterosis loci (HLs) contributed to heterosis acted in dominance. Each HL contributed from-7.4to14.4%of midparent heterosis. Additive by additive (AA) and additive by dominance (AD) interactions were detected in the Tetra-F2population segregating at the four major QTLs with the largest effects on plant height. Substantial negative AA effects were detected between two major QTLs qPH7.2and qPH7.3, which increased heterosis in the study.
     7. To understand the genetic basis of heterosis, we developed a set of202chromosome segment substitution lines (CSSLs) of an elite hybrid, Shanyou63.Thirteen and nine partial dominance QTLs for spikelets per panicle and yield were detected. Without exceptional, All hybrids between the9CSSLs and the recurrent parent, Zhenshan97, had less trait values than the corresponding CSSLs, but more than Zhenshan97. These indicated that these9QTLs acted in dominance and contributed to heterosis. Conversely, we generated two4-way F1s and one8-way F1with the genetic background of Zhenshan97. The heterosis of8-way F1reached up to75.4%that of Shanyou63for grain yield. Additive by additive (AA), additive by dominance (AD) and dominance by dominance (DD) interactions were detected in the both Tetra-F2populations each segregating at four major QTLs with the large effects on spikelets per panicle. Substantial negative AA effects were detected between two major QTLs HYD7.1and HYD7.2, which increased heterosis in the study.
     8. In this study, we generated three sets of reciprocal F1hybrids of indica and japonica subspecies to evaluate the relationship between yield heterosis and the circadian clock. There were no differences in trait performance or heterosis between the reciprocal hybrids, indicating no maternal effects on heterosis. The indica-indica and indica-japonica reciprocal F1hybrids exhibited pronounced heterosis for chlorophyll and starch content in leaves and for grain yield/biomass. In contrast the japonica-japonica F1hybrids showed low heterosis. In the hybrids that showed very strong better-parent heterosis (BPH) for grain yield, the investigated three circadian clock genes were expressed in an above-high-parent pattern during the vegetative period35days after sowing.
引文
1. 白美清.新时期我国大米业的发展趋势与整合提升战略.中国稻米,2005,6:1-3
    2.鲍文奎.机会与风险-40年育种研究的思考.生命世界,1990,4:4-5
    3.陈炳松,张云华,张霞等.超级杂交稻两优培九生育后期的光合特性和同化产物的分配.作物学报,2002,6:87-90
    4.程式华,曹立勇,陈深广等.水稻遗传育种回顾与展望.见:翟虎渠主编,科技创新成就辉煌中国农业科学院建院50周年学术文集.北京,中国农业科学院,2007,84-91
    5.华金平.汕优63“永久F2”群体构建及其杂种优势的遗传研究.[博士学位论文]武汉:华中农业大学图书馆,2001
    6.金连登,许立.当前我国优质稻米生产现状及发展对策.中国稻米,2000,7-1-
    7.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,4
    8.李卓坤,谢金刚,朱占玲,刘金良,韩淑晓,田斌,袁倩倩,田纪春.基于QTL定位分析小麦株高的杂种优势.作物学报,2010:771-778
    9. 刘头明.水稻每穗颖花数的遗产基础剖析及主效QTLs精细定位.[博士学位论文].武汉:华中农业大学图书馆,2009
    10.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势.科学通报,2002:1412-1416
    11.邢永忠.用分子标记剖析水稻重要农业性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆,1999
    12.余四斌.优良杂交水稻汕优63杂种优势遗传学基础的分子标记剖析.[博士学位论文].武汉:华中农业大学图书馆,1997
    13.余四斌,李健雄,徐才国,谈移芳,高友军,李香花,张启发,SaghaiMaroof M A.上位性效应是水稻杂种优势的重要遗传基础.中国科学C辑:生命科学,1998:333-342
    14.周刚.基于高密度SNP连锁图的水稻“永久F2"群体产量杂种优势遗传机理研究.[博士学位论文].武汉:华中农业大学图书馆,2012
    15.周红菊.籼粳亚种间染色体片段代换系的构建及其产量性状杂种优势效应研究. [博士学位论文].武汉:华中农业大学图书馆,2009
    16.杨春玲,郭瑞林,关立,侯军红,王阔,宋志均.我国小麦杂种优势利用现状及存在的问题.河南农业科学.2002:14-15
    17.袁隆平.超级杂交水稻育种研究的进展.中国稻米,2008,1:1-3
    18.谢华安.汕优63选育理论和实践.北京:中国农业出版社,2005:2-3
    19.郑康乐,庄杰云,樊叶杨,吴建利.杂交水稻产量性状的上位性效应及杂合度与杂种优势的相关性.云南大学学报(自然科学版),1999:47-48
    20.庄杰云,樊叶杨,吴建利,夏英武,郑康乐.超显性效应对水稻杂种优势的重要作用.中国科学(C辑:生命科学),2001:106-113
    21. Aida Y, Tsunematsu H, Doi K, Yoshimura A. Development of a series of introgression lines of Japonica in the background of Indica rice. Rice Gene Newslett, 1997,14:41-43
    22. Ando T, Yamoamoto T, Shimizu T, Ma X F, Shomura A, Takeuchi Y, Lin S Y, Yano M. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet,2008,116: 881-890
    23. Ashikari M, Hitoshi Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Enrique R. Angeles E R,Qian Q, Kitano H, Matsuoka M. Cytokinin Oxidase Regulates Rice Grain Production. Science,2005,309(741):741-745
    24. Bao J Y, Lee S, Chen C, Zhang X Q, Zhang Y, Liu S Q, Clark T, Wang J, Cao M L, Yang H M, Wang S M, Yu J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol,2005,138:1216-1231
    25. Bassam B J, Anolles G C, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem,1991,196:80-83
    26. Bian X F, Liu X, Zhao Z G, Jiang L, Gao H, Zhang Y H, Zheng M, Chen L M, Liu S J, Zhai H Q, Wan J M. Heading date gene, dth3 controlled late fowering in O. Glaberrima Steud. by down-regulating Ehdl. Plant Cell Rep,2011,30:2243-2254
    27. Botstein B, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map using restriction fragment length polymorphism. Am J Hum Genet,1980,32:314-331
    28. Bruce A B. The Mendelian theory of heredity and augmentation of vigor. Science, 1910,32:627-628
    29. Chuan huan Fan C H, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. Gs3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative Transmembrane protein. Theor Appl Genet, 2006,112:1164-1171
    30. Cockerham C C, Zeng Z B. Design III with marker loci. Genetics,1996,143: 1437-1456
    31. Crow J F. Alternative hypothesis of hybrid vigor. Genetics,1948,33:477-487
    32. Darwin CR (1876). The Effects of Cross-and Self-Fertilization in the Vegetable Kingdom. London:John Murray.
    33. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science,2005,309:630-633
    34. Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O.sativa L.). Rice Genet Newslett,1997,14:39-41
    35. East E M. Heterosis. Genetics,1936,21:375-397
    36. East E M. Inbreeding in corn. Rep Conn Agric Exp Stn,1908,419-428
    37. Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of Indica rice cultivar 'Kasalath' in a genetic background of Japonica elite cultivar'Koshihikari'. Breeding Sci,2005,55:65-73
    38. Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of Indica rice cultivar'Kasalath'in a genetic background of Japonica elite cultivar'Koshihikari'. Breeding Sci,2005,55:65-73
    39. Eichten S R, Foerster J M, Leon N D, Kai Y, Yeh C T, Liu S Z, Jeddeloh J A, Schnabel P S, Kaeppler S M, Springer N M. B73-Mo17 Near-Isogenic Lines Demonstrate Dispersed Structural Variation in Maize. Plant Physiology,2011,156: 1679-1690
    40. Fu Y B, Ritland K Evidence for the partial dominance of viability genes contributing to inbreeding depression in Mimulus guttatus. Genetics,1994,136:323-331.
    41. Fujimoto R, Taylor JM, Shirasawa S, Peacock WJ, Dennis ES. Heterosis of Arabidopsis hybrids between C24 and Col is associated with increased photosynthesis capacity. Proc Natl Acad Sci USA 2012,109,7109-7114.
    42. Furuta T, Uehara K, Angeles-Shim R B, Shim J, Ashikari M, Takashi T. Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segements derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breeding Sci,2014,63(5):468-475
    43. Gao H, Granka J M, Feldman M W. On the classification of eistatic interactions. Genetics,2010,184:827-837
    44. Garcia AA, Wang SC, Melchinger AE, Zeng ZB. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics,2008,180:1707-1724.
    45. Guo M, Rupe M A, Zinselmeier C, Habben J, BoLen B A, Smith O S. Allelic variatioin of gene expressioin in maize hybrids. Plant Cell,2004,16:1707-1716
    46. Gutowska I. Metal-metal interactions in hard tissue studied with statistica neural networks. Ann Acad Medicae Stetin,2005,51:115-124
    47. Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science,2000,290:2110-2113
    48. He GM, Zhu XP, Elling AA, Chen LB, Wang XF, Guo L, Liang MZ, He H, Zhang HY, Chen FF, Qi YJ, Chen RS, Deng XW. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell,2010,22: 17-33.
    49. Hohchholdinger F., Hoecker N. Towards the molecular basis of heterosis. Trends Plant Sci,2007,12:427-432.
    50. Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M. Hdl6, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. The Plant journal,2013,76:36-46
    51. Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome,1996,39:348-358
    52. Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,2003,100: 2574-2579
    53. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162:1885-1895
    54. Huang Y, Zhang LD, Zhang JW, Yuan DJ, Xu CG, Li XH, Zhou DX, Wang SP, Zhang QF. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol,2006,62, 579-591.
    55. Jeuken M J W, Lindhout P. The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet, 2004,109:394-401
    56. Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li JY. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genet,2010,42(6):541-54
    57. Jones D F. Dominance of linked factors as a means of accounting for heterosis. Genetics,1917,2:466-479
    58. Kao C H, Zeng Z B. Modeling Epistasis of Quantitative Trait Loci Using Cockerham's Model. Genetics,2002,160:1243-1261
    59. Keeble F, Pellew C. The mode of inheritance of stature and of time of flowering in peas (Pisum sativum). J Genet,1910,1:47-56
    60. Keurentjes J B, Bentsink L, Alonso-Blanco C, Hanhart C J, Vries H B, Effgen S, Vreugdenhil D, Koornneef M. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics,2007,175:891-905
    61. Konieczny A and Ausubel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J,1993,4:403-410
    62. Krieger U, Lippman Z B, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature Genet,2010,42:459-463
    63. Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breeding Sci,2002,52:319-325
    64. Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Gene Newslett,1999, 16:104-106
    65. Kusterer B, Muminovic J, Friedrich Utz H, Piepho H P, Barth S, Heckenberger M, Meyer R C, Altmann T, Melchinger A E. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics,2007b,175:2009-2017
    66. Kusterer B, Piepho HP, Utz HF, Schon CC, Muminovic J et al.. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics,2007a,177: 1839-1850.
    67. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    68. Lariepe A, Mangin B, Jasson S, Combes V, Dumas F et al. The genetic basis of heterosis:multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.) Genetics,2012,190:795-811.
    69. Li X H, Wei Y L, Nettleton D, Brummer E C. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa. BMC Plant Biol,2009,9,107.
    70. Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. biomass and grain yield. Genetics,2001,158:1737-1753
    71. Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet,1998,96:997'-1003
    72. Lin H X, Ashikari M, Yamanouchi U, Sasaki T, Yano M. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed Sci,2002,52:35-41
    73. Lin HX, Liang ZW, Sasaki T, Yano M. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci,2003, 53:51-59
    74. Lincoln S, Daly M, Lander E. Constructing genetics maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, Whitehead Institute, Cambridge, Massachusetts, USA,1992
    75. Lincoln SE, Daly MJ, Lander ES. Mapping genes controlling quantitative traits with MAPMAKER/QTL2.0:a tutorial and reference manual,2nd edn. Whitehead Institute Technical Report, Cambridge,1993
    76. Lippman Z B, Zamir D. Heterosis:revisiting the magic. Trends in Genetics,2007,23: 60-66
    77. Litt M, Luty JA. Hypervariable microsatellite revealed by in vitro amplification of adinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet,1989, 44:399-401
    78. Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel, J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. grain yield components. Genetics,2001, 158:1755-1771
    79. Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant & cell physiology,2012,53:709-716
    80. Matus I, Corey A, Filichkin T, Hayes P M, Vales M I, Kling J, Riera-Lizarazu O, Sato Powell K W, Waugh R. Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. Spontaneum as a source of donor alleles in a Hordeum vulgare subsp. Vulgare backgroud. Genome, 2003,46:1010-1023
    81. McCouch SR Doerge RW. QTL mapping in rice. Trends in genetics,1995, 11:482-487
    82. McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, Declerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA RES,2002,6:199-207
    83. Melchinger A E, Lee M, Lamkey K R, Loodan L L. Genetic diversity of restriction fragment length polymorphisms relation to estimated genetic effect in maize inbreds. Crop Sci,1990,30:1033-1040
    84. Melchinger A E, Piepho H P, Utz F H, Muminovic J, Wegenast T, Torjek O, Altmann T, Kusterer B. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics,2007,177:1827-1837
    85. Melchinger A E. Genetic diversity and heterosis. In:Coors J G and Pandey S eds., The genetics and exploitation of heterosis in crops. Madison:ASA-CSSA-SSSA,1999, 99-118
    86. Meyer R C, Torjek O, Becher M, Ailmann T. Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiology,2004,134: 1813-1823
    87. Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M et al. QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet,2010,120:227-237
    88. Meyer RC, Witucka-Wall H, Becher M, Blacha A, Boudichevskaia A, Dormann P, Fiehn O, Friedel S, Von KM, Lisec J, Melzer M, Repsilber D, Schmidt R, Scholz M, Selbig J, Willmitzer L, Altmann T. Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. Plant J,2012,71:669-683.
    89. Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science,2003,302:1049-1053
    90. Miller M, Zhang C, Chen, ZJ (2012). Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 (Bethesda) 2, 505-513.
    91. Monforte A J, Tanksley S D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in an L. esculentum genetic background:a tool for gene mapping and gene discovery. Genome,2000,43:803-813
    92. Monna L, Kitazawa N, Yoshino R, Suzauki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1:rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17
    93. Monna L, Lin HX, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet,2002,104:772-778
    94. Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res,1980,8:4321-4325.
    95. Ni Z F, Kim E D, Ha M, Lackey E, Liu J X, Zhang Y R, Sun Q X, Chen Z J. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature,2009, 457,327-331.
    96. Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature, 2002,417,329-335.
    97. Paterson A H, Lander S E, Hewitt J D, Peterson S, Lincoln H D, Tanksley S D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism. Nature,1988,335:721-726
    98. Pea G, Ferron S, Gianfranceschi L, Krajewski P, Pe ME. Gene expression non-additivity in immature ears of a heterotic F1 maize hybrid. Plant Sci,2014, 174:17-24.
    99. Qiu X J, Gong R, Tan Y B, Yu S B. Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds. Theor Appl Genet,2012,125(8):1717-1726
    100.Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet,1990,80:769-775
    101.Saghai Maroof M A, Yang G P, Zhang Q F, Gravois K A. Correlation between molecular marker distance and hybrid distance in US southern long grain rice. Crop Sci,1997,37:145-150
    102.Saito A, Yano M, Kishimoto N, Nakagahra M, Yoshimura A, Saito K, Kuhara S, Ukai Y, Kawase M, Nagamine T, et al. Linkage map of restriction fragment length polymorphism loci in rice. Jpn J Breed,1991,41:665-670
    103.Salvi S, Cometi S, Bellotti M, Carraro N, Sanguineti M C, Castelletti S, Tuberosa R. Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol,2011,11:4
    104.Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie A R. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol,2006,24:447-454
    105.Schneeberger K, Ossowski S, Ott F, Klein J D, Wang X, Lanz C, Smith L M, Cao J, Fitz J, Warthmann N, Henz S R, Huson D H, Weigel D. Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci USA,108: 10249-10254
    106.Schnell F W, Cockerham C C. Multiplicative vs. arbitrary gene action in heterosis. Genetics,1992,131:461-469
    107.Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA,2006,103:12981-12986
    108.Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol,2004,135:1198-1205
    109.Shim R.A., Angeles E.R., Ashikari M. and Takashi T. Development and evaluation of Oryza glaberrima Steud. Chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv.Koshihikari. Breed Sci,2010,60:613-619
    110.Shull G H. The composition of a field of maize. Rpt Am Breeders Assoc,1908,4: 296-301
    111.StatSoft Inc. Statistica. Tulsa OK,1997
    112.Song GS, Zhai HL, Peng YG, Zhang L, Wei G, Chen XY, Xiao YG, Wang LL, Chen YJ, Wu B, Chen B, Zhang Y, Chen H, Feng XJ, Gong WK, Liu Y, Yin ZJ, Wang F, Liu GZ, Xu HL, Wei XL, Zhao XL, Pieter BF, Thomas H, Theo R, Rob VH, Lu CM, Wang M, Greef JV, Zhu Z. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. Mol Plant,2010,1012-1025.
    113.Stuber C W, Edwards M D, Wendel J F. Molecular marker-facilitated investigations of quantitative trait loci in maize. Ⅱ. Factors influencing yield and its component traits. Crop Sci,1987,27:639-648
    114.Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics,1992,132:823-839
    115.Stuber C W, Polacco M, Senior M L. Synergy of empirical breeding, marker-assisted selection, genomics, and genetic engineering to increase crop yield potential. Crop Sci, 1999,39:1571-1583
    116.Stuber C W. Mapping and manipulating quantitative traits in maize. Trends Genet, 1995,11:477-481
    117.Stupar RM, Springer NM. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics,2006, 173:2199-2210
    118.Swanson-Wagner RA, Jia Y, DeCook R, Borsuk LA, Nettleton D, Schnable PS. All possible modes of gene action are observed in a global comparison of gene expression in a maize Fl hybrid and its inbred parents. Proc Natl Acad Sci USA,2006,103, 6805-6810.
    119.Syed N H, Chen Z J. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity,2005,94:295-304
    120.Szalma S J, Hostert B M, LeDeaux J R, Stuber C W, Holland J B. QTL mapping with near-isogenic lines in maize. Theor Appl Genet,2007,114:1211-1228
    121.Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA,2001,98:7922-7927
    122.Tang JH, Yan JB, Ma XQ, Teng WT, Wu WR et al. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet,2010,120:333-340.
    123.Temnykh S, DeCklerck G, Lukashova A, Lipovich L, Cartinhiur S, McCouch S. Computaional and Experimental Analysis of Microsatellites in Rice (Oryza sativa L.): Frequency, Length, Variation, Transpon Associations, and Genetic Marker Potential. Genome Research,2001,11:1441-1452
    124.Temnykh S, Park WD, Ayres NM, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet,2000,100:697-712
    125.Van Berloo R. The development of software for the graphical representation and filtering of molecular marker data:graphical genotypes (GGT). J Hered,1999,90: 328-329
    126.Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M et al. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407-4414
    127.Vuylsteke M, van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics,2005,171, 1267-1275.
    128.Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jiang L, Su N, Wan M. Quantitative Trait Loci (QTL) Analysis For Rice Grain Width and Fine Mapping of an Identified QTL Allele gw-5 in a Recombination Hotspot Region on Chromosome 5. Genetics,2008,179(4):2239-225
    129.Wang ZQ, Yu CY, Liu X, Liu SJ, Yin CB et al. Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theor Appl Genet,2012,124:1351-1364.
    130.Wijnen H, Young M W. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet,2006,40:409-448.
    131.Willams J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are usefull as genetic markers. Nucleic Acids Res,1990, 18:6531-6535
    132.Wu W X, Zheng X M, Lu G W, Zhong Z Z, Gao H, Chen L P, Wu C Y, Wang H J, Wang Q, Zhou K N, Wang J L, Wu F Q, Zhang X, Guo X P, Cheng Z J, Lei C L, Jiang L, Wang H Y, Ge S, Wan J M. Association of functional nucleotide polymorphisms at DTH2 with the northward expression of rice cultivation in Asia. Proc Natl Acad Sci USA 2013,110:2775-2780.
    133.Xiao J H, Li J M, YuanL P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995, 140:745-754
    134.Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G et al. Fing mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa x O.rufipogon cross. Theor Appl Genet,2008,116:613-622
    135.Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G., Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet,2002,105:248-257
    136.Xing Y Z, Tang W J, Xue W Y, Xu C G Zhang Q F. Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet,2008,116:789-796
    137.Xiong L Z, Yang G P, Xu C G, Zhang Q F, Saghai Maroof M A. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed,1998,4:129-136
    138.Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genet,2008,40:761-767
    139.Yamamoto T, Lin H, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics,2000,154:885-891
    140.Yamamoto T. Kuboki Y. Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. TheorAppl Genet,1998,97:37-44
    141.Yan WH, Wang P, Chen HX, Zhou HJ, Li QP et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol plant,2011,4:319-330.
    142.Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Liu H, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res,2013,23:969-971.
    143.Yanagisawa T, Kiribuchi-Otobe C, Hirano H, Suzuki Y, Fujita M. Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker. Theor Appl Genet, 2003,107:84-88.
    144.Yang J Y, Zhao X B, Cheng K, Du H Y, Ouyang Y D, Chen J J, Qiu S Q, Huang J Y, Jiang Y H, Ding J H, Wang J, Xu C G, Li X H, Zhang Q F. A Killer-Protector System Regulates Both Hybrid Sterility and Segregation Distortion in Rice. Science,2012, 337:1336-1340
    145.Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date in rice using a high density linkage map. Theor Appl Genet,1997,95:1025-1032.
    146.Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehare Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely releated to the Arabidopsis flowering time gene CONSTANS. The Plant Cell,2000,12:2473-2483
    147.Yano M, Kojima S, Takahashi Y, Lin H Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiology,2001,127:1425-1429
    148.Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet,1989,77:95-101
    149.Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231
    150.Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA,1993,90:10972-10976
    151.Zhang H Y, He H, Chen L B, Li L, Liang M Z, Wang X F, Liu X G, He G M, Chen R S, Ma L G, Deng X W. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant,2008,1:720-731
    152.Zhang Q F. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007,104:16402-16409
    153.Zhang J H. China's success in increasing per capita food production. J Exp Botany, 2011,62(11):3707-3711
    154.Zhang Y, Jing L, Liu X, Liu S, Chen L, Zhai H, Wang J. Heading date QTL in rice derived from an analysis of chromosome segment substitution lines. Plant Breeding, 2011,130:185-191
    155.Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xing Y Z. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). TheorAppl Genet,2006,113:361-368
    156.Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xing Y Z. Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single mendelian gene in near isogenic background. Theor Appl Genet,2009,118:1035-1044
    157.Zhao M F, Li X H, Yang J B, Xu C G, Hu R Y, Liu D J, Zhang Q F. Relation between molecular marker heterozygosity and hybrid performance in intra-and inter-subspecific crosses of rice. Plant breeding,1999,118:139-144
    158.Zhou G, Chen Y, Yao W, Zhang CJ, Xie WB, Zhang QF. Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,2012,109: 15847-15852.
    159.Zhuang JY, Fan YY, Rao ZM, Wu JL, Xia YW, Zheng KL. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet,2002,105:1137-1145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700