用户名: 密码: 验证码:
功率变换器的分布式控制和结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子技术是21世纪应用最广泛的技术之一,随着电力电子技术在国民经济中的作用不断增强,电力电子技术的发展也非常迅速。因此,对电力电子系统性能的要求,可靠性要求等愈来愈高。本文系统深入地研究了在功率变换器内部实现分布式控制和结构的相关内容,为变换器硬件构成及控制实现提出了一种新的思路,对于实现新型变换器、简化复杂变换器结构、提高系统可靠性等方面具有重要的意义,在较为复杂的电力电子系统中具有良好的应用前景。
     论文第一章对电力电子系统的集中式控制方式进行了归纳和总结。同时,还对分布式变换器结构研究的背景进行了概述,主要包括数字控制技术在电力电子中越来越广泛的应用及电力电子系统集成技术的迅速发展。通过与传统的集中式控制结构的功率变换器的对比可以得出:数字控制技术与电力电子系统集成技术有机的结合,分布式结构的功率变换器具有良好的发展前景。
     论文的第二章提出了分布式结构变换器的基本概念并对其特点进行了阐述。根据仿生学在电力电子中应用的基本观点,通过对分布式电力电子系统和人体系统的类比,总结出两者的共同特点为分层递阶结构和分散自治控制,它们的优越性为可以简化系统结构、提高系统可靠性、便于实现容错技术、易于进行模块化和系统的在线维护等。根据分布式电力电子系统的特点,本文提出了它们的一般性软件结构和两种典型的硬件实现方式。在此基础上,论文提出了适用于分布式控制变换器的功率集成模块——电力电子细胞以及适用于分布式结构变换器的三种基本控制结构。利用分立元件构建了电力电子细胞的实验室原型,为分布式结构变换器的深入研究打下了硬件基础。
     论文的第三章以由两个电力电子细胞构成的双环反馈控制的单相全桥逆变器为典型对象进行了深入的探讨和研究。通过对控制环节进行不同方式的划分,提出四种逆变器控制结构,分别为同步结构、分层结构、主从结构和完全分散自治结构。在对逆变器模型进行理论分析的基础上,论文对模块间参数分散性、启动时刻的不同步、多速率采样、数据通信、参考信号和载波信号的不同步等方面对系统的影响进行了理论分析,并通过仿真和实验验证了分析结果。通过研究发现,对于本文讨论的逆变器,同步结构中电压环的反馈系数的分散性对系统性能的影响显著,而其它参数的微小的差别对系统性能的影响可以忽略;在其它结构中,只要将参数存在的差异限定在一定范围内就可以忽略其影响。同时,同步结构下的两个电压环不同时启动容易造成系统输出的畸变,因此不适合于实际应用。对于其它几个非理想因素,论文的研究表明,适当设计参数可以将它们的不利影响减小甚至完全消除。论文中提出的完全分散自治结构与传统结构具有较大差异,这种结构下两个模块间不存在直接的信息交换,比其它结构更加简单,更适合构造复杂系统,论文专门分析了其特点并给出了它的实现方式以及实验波
As one of the most widely used technologies for 21st century, power electronics gets a rapid progress along with its stepped-up role in the national economy. Reliability and systematic performance requirement are thus demanded more and more. In this dissertation, the topology-related distributed control within the power converter is researched. This work provides a new way to construct the converter and realize the control function, which is valuable for realization of new converter, simplifying the converters' structure and enhancing the system reliability. It can be well applied to the complex power electronics system.In the first chapter, the conventional centralized control method in power converters has been summarized and classified for the purpose of contrast. In the same chapter, the research background of this work is introduced, including the more and more wide applications of digital control technology in the power electronics and the rapid development of the power electronics integration technology. Based on the two aspects, the conclusion can be drawn that the distributed converter structure has a promising prospect.In the second chapter, the basic concept and the characteristics of the distributed converter structure have been clarified. According to the view of the bionics, the distributed power electronics system and the human body system have the same characteristics of hierarchical architecture and autonomous decentralized control. Also the two systems have the similar advantages such as simplified system structure, enhanced reliability, convenient implemention of fault-tolerant technology, convenient modularization and online maintenance. Based on the characteristics of the distributed structure power electronics system, the general software architecture is proposed and two typical hardware structures are illustrated too. In chapter two, the power integration module named power electronics cell has been proposed which can be applied in the distributed converter structure. There control structures of the distributed converter are also proposed. The laboratory prototype of power electronics cell has been realized by using discrete components, which provides the hardware basis for the further study.In the third chapter, as a typical distributed converter structure a single phase full-bridge inverter with dual-loop feedback control, which is composed of two power electronics cells, has been studied. Four inverter control structures including the synchronization mode, hierarchical mode, master-slave mode and fully decentralized autonomous mode are presented by dividing the control loop in different ways. Based
    on the small-signal averaging model, the characteristics of the new structures are discussed and the effects of the parameter dispersivity, the multi-rate sampling, the communication, and the synchronization error of reference and carrier signals in the new structures are analyzed. It can be concluded that for the studied inverter, only the dispersivity of the voltage feedback coefficient in the synchronization mode affects the output greatly and other parameters dispersivity has little effects on the output performance. At the same time, the output waveform will be distorted because of the different startup time of the two cells in the synchronization mode. Compared with other three modes, the synchronization mode has more drawbacks. Conclusion is also made that the effects of the other nonideal factors can be eliminated by well-designed system and control loop. Because of its special structure and characteristics, the proposed fully decentralized autonomous mode has been discussed in detail. The simulation and experimental results included in the dissertation verified the theoretical analysis. The research on distributed inverter structure not only provides the new way to form new type inverters, but also provides the guideline for the other types of distributed converter structures.In the fourth chapter, the distributed multilevel converter structures have been researched. Based on the idea of forming multilevel converter topologies from the basic cells, the division mode of the multilevel converter topologies has been further investigated. Three kinds of division modes have been proposed according to the topologies' features. The advanced basic cells proposed in this paper are more suitable for the multilevel converters because it can be applied to most multilevel converter topologies and at the same time, two complementary switches are included in the same cell. The distributed five-level inverter prototypes for generalized topology and cascaded topology have been built. The prototypes show the distributed control within the complex converter has many advantages such as the simple structure, the shortened interconnection wires and the enhanced reliability. The theoretical analysis shows that the lower-order harmonic contents increase if there is a synchronization error among the cells, but the synchronization method proposed can obtain high accuracy and can avoid its side effects on output performance. So the distributed multilevel converter structures, which have many advantages, can achieve the same output performances as the conventional centralized ones. The research of distributed multilevel converters is valuable for applying multilevel technologies into industry more widely.In the fifth chapter, the fault-tolerant technology is researched. In the multilevel
    converters, the mass components and complex structure lead to low reliability, so the fault-tolerant technology is important. By analyzing the typical multilevel topologies and the existing fault-tolerant method, we find a principle of the fault-tolerant technologies, which is contained in the distributed multilevel converters constructed by the advanced basic cells. The principle is that in the fault-tolerant methods, the two switches in the same cell should be dealt with simultaneously. So the realization of the fault-tolerance in multilevel converters gets the benefits from the distributed control. The quick detection and protection can be obtained in the damaged cell and that prevents the whole system breakdown. The concept of the control signal reconfiguration has been proposed to deal with the fault situations in the multilevel converters, which have the switching states redundancy, such as the flying-capacitor topology, cascaded topology and generalized topology. The fault-tolerant method for carrier-modulated cascaded five-level converter has been proposed. With the proposed method, when the fault occurs in the three-phase multilevel inverters, the normal line-to-line voltage can be achieved. At the same time, the structure of the topology is identical to the normal one and the voltage stress and current stress of the components are not changed. The principle discovered in the dissertation gives the guide for systematic researching on fault-tolerant technology and designing new fault-tolerant methods. And the proposed fault-tolerant method has many advantages and can be easily implemented in the multilevel inverters.Summaries are given in the last chapter, and the consequent research anticipation included.
引文
1.林渭勋,现代电力电子电路,浙江大学出版社,2002
    2.钱照明,何湘宁,”电力电子技术及其应用的最新发展(一)”,中国电机工程学报,Vol.17,No.6,pp.361-366,407,1997
    3.钱照明,董伯藩,何湘宁,”电力电子技术及其应用的最新发展(二)”,中国电机工程学报,Vol.18,No.3,pp.153-159,162,1998
    4. D. Grahame Holmes, Thomas A. Lipo, Pulse width modulation for power converters-principles and practice, Institute of Electrical and Electronics Engineers, Inc, 2003
    5. D.G. Holmes, "The significance of zero space vector placement for carrier-based PWM schemes", Industry Applications, IEEE Transactions on, Vol.32, No.5, pp. 1122-1129, 1996
    6. A. M. Trzynadlowski, "An overview of modern PWM techniques for three-phase, voltage-controlled, voltage-source inverters", Industrial Electronics, 22th Annual Conference IEEE, Vol.1, pp.25-39, 1996
    7. C.B. Jacobina, A. M. N. Lima, E. R. C. da Silva and A. M. Trzynadlowski, "Current control for induction motor drives using random PWM", Industrial Electronics, IEEE Transactions on, Vol.45, No.5, pp.704-712, 1998
    8. D.G. Holmes, "The general relationship between regular-sampled pulse-width-modulation and space vector modulation for hard switched converters", Industry Applications Society Annual Meeting, Vol. 1, pp. 1002-1009, 1992
    9. S.R. Bowes and Y.-S. Lai, "The relationship between space-vector modulation and regular-sampled PWM", Industrial Electronics, IEEE Transactions on, Vol.44, No.5, pp.670-679, 1997
    10. H. Wu and X. He, "Inherent correlation between multilevel carrier-based PWM and space vector PWM: principle and application", Power Electronics and Drive Systems, 4th IEEE International Conference on, Vol. 1, pp.276-281, 2001
    11. F. Wang, "Sine-triangle versus space-vector modulation for three-level PWM voltage-source inverters", Industry Applications, IEEE Transactions on, Vol.38, No.2, pp.500-506, 2002
    12. K. Zhou and D. Wang, "Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis [three-phase inverters]", Industrial Electronics, IEEE Transactions on, Vol.49, No. 1, pp. 186-196, 2002
    13.倪海东,蒋玉萍,高频开关电源集成控制器,机械工业出版社,2005
    14. Rojas Romero, "Method and control circuitry for a three-phase three-level boost-type rectifier", United States Patent, Patent No. US6757185B2, 2004
    15. Jiangjiang Shi, Lifeng Chen, Xiangning He, Yangguang Yan, "A novel combined converter with naturally sharing input-current and high voltage gain applied in aeronautical power supplies", Industry Applications Conference, 39th IAS Annual Meeting, Vol.2, pp.1121-1126, 2004
    16.李成章,现代UPS电源及电路图集,电子工业出版社,2001
    17. K. P. Gokhale, A. Kawamura, R.G. Hoft, "Deadbeat microprocessor control of PWM inverter for sinusoid output waveform synthesis", Power Electronics Specialists Conference, pp. 28-36, 1985
    18. A. Kawamura, T. Haneyoshi and R. G. Hoft, "Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor", Power Electronics, IEEE Transactions on, Vol.3, No.2, pp.118-125, 1988
    19. C. Hua, "Two-level switching pattern deadbeat DSP controlled PWM inverter", Power Electronics, IEEE Transactions on, Vol. 10, No.3, pp.310-317, 1995
    20. C. Hua, "High switching frequency DSP controlled PWM inverter", Control Applications, 1993, Second IEEE Conference on, Vol, 1, pp.273-283, 1993
    21. Z. Kai, K. Yong, X. Jian and C. Jian, "Deadbeat control of PWM inverter with repetitive disturbance prediction", Applied Power Electronics Conference and Exposition, APEC '99. Fourteenth Annual, Vol.2, pp. 1026-1031, 1999
    22. S.-L. Jung and Y.-Y. Tzou, "Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve", Power Electronics, IEEE Transactions on, Vol.11, No.4, pp.567-577, 1996
    23. C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey and J. R. Pinheiro, "A modified discrete control law for LIPS applications", Power Electronics, IEEE Transactions on, Vol. 18, No.5, pp.1138-1145, 2003
    24. T.-L. Tai and J.-S. Chen, "UPS inverter design using discrete-time sliding-mode control scheme", Industrial Electronics, IEEE Transactions on, Vol.49, No.1, pp.67-75, 2002
    25. K. S. Low, "A digital control technique for a single-phase PWM inverter", Industrial Electronics, IEEE Transactions on, Vol.45, No.4, pp.672-674, 1998
    26. K.S. Low, "A DSP-based single-phase AC power source", Industrial Electronics, IEEE Transactions on, Vol.46, No.5, pp.936-941, 1999
    27. C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey and J. R. Pinheiro, "A modified discrete control law for LIPS applications", Power Electronics, IEEE Transactions on, Vol. 18, No.5, pp.1138-1145, 2003
    28. R. Costa-Castello, R. Grino and E. Fossas, "Odd-harmonic digital repetitive control of a single-phase current active filter", Power Electronics, IEEE Transactions on, Vol.19, No.4, pp. 1060-1068, 2004
    29. K. Zhou and D. Wang, "Digital repetitive learning controller for three-phase CVCF PWM inverter", Industrial Electronics, IEEE Transactions on, Vol.48, No.4, pp.820-830, 2001
    30. P. Mattavelli, "An improved deadbeat control for UPS using disturbance observers", Industrial Electronics, IEEE Transactions on, Vol.52, No. 1, pp.206-212, 2005
    31. C. Rech, H. A. Grundling and J. R. Pinheiro, "Comparison of discrete control techniques for UPS applications", Industry Applications Conference, Vol.4, pp.2531-2537, 2000
    32. R.C. Hwang, T. J. Liang and J. W. Chen, "Neural networks controlled PWM inverters", Telecommunications Energy ConferenCe, 19th International, pp.201-206, 1997
    33. D.S. Reay, T. C. Green and B. W. Williams, "Neural networks used for torque ripple minimisation from a switched reluctance motor", Power Electronics and Applications, 1993, Fifth European Conference on, Vol.6, pp. 1-6, 1993
    34. Shamim Choudhury, "Implementing triple conversion single-phase on-line UPS using TMS320C240", TI Application Report, 1999
    35. A. de Castro, P. Zumel, O. Garcia, T. Riesgo and J. Uceda, "Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA", Power Electronics, IEEE Transactions on, Vol. 18, No. 1, pp.334-343, 2003
    36. D. Deng, S. Chen and G. Joos, "FPGA implementation of PWM pattern generators", Electrical and Computer Engineering, Conference on, Vol.2, pp. 1279-1284, 2001
    37. J. Van den Keybus, B. Bolsens, K. De Brabandere, J. Driesen and R. Belmans, "DSP and FPGA based platform for rapid prototyping of power electronic converters and its application to a sampled-data three-phase dual-band hysteresis current controller", Power Electronics Specialists Conference, 33rd Annual IEEE, Vol.4, pp. 1722-1727, 2002
    38. J.A. du Toit, D. D. Bester and J. H. R. Enslin, "A DSP based controller for back to back power electronic converters with FPGA integration", Applied Power Electronics Conference and Exposition, Twelfth Annual IEEE, Vol.2, pp.699-705, 1997
    39. S.-L. Jung, M.-Y. Chang, J.-Y. Jyang, L.-C. Yeh and Y.-Y. Tzou, "Design and implementation of an FPGA-based control IC for AC-voltage regulation", Power Electronics, IEEE Transactions on, Vol. 14, No.3, pp.522-532, 1999
    40. F.C. Lee and D. Peng, "Power electronics building block and system integration", Power Electronics and Motion Control Conference, the Third International, Vol. 1, pp. 1-8, 2000
    41.钱照明,张军明,吕征宇,”电力电子系统集成”,中国集成电路,Vol.50,pp.39-45,2003
    42.王兆安,杨旭,王晓宝,”电力电子集成技术的现状及发展方向”,电力电子技术,Vol.37,No.5,pp.90-94,2003
    43.高勇,陈治明,”新型电力电子器件与功率集成电路最新进展”,半导体技术,Vol.3,pp.12-15,1997
    44. S. Falater and T. Hopkins, "Smart power integration for automotive applications", Automotive Power Electronics, 1989, pp. 119-125, 1989
    45. K. Siddabattula, Z. Chen and D. Boroyevich, "Evaluation of metal post interconnected parallel plate structure for power electronic building blocks", Applied Power Electronics Conference and Exposition, Fifteenth Annual IEEE, Vol. 1, pp.271-276, 2000
    46. S. Haque, K. Xing, G.-Q. Lu, D. J. Nelson, D. Borojevic and F. C. Lee, "Packaging for thermal management of power electronics building blocks using metal posts interconnected parallel plate structure", Thermal and Thermomechanical Phenomena in Electronic Systems, The Sixth Intersociety Conference on, pp.392-398, 1998
    47. D. Boroyevich and R. P. Burgos, "PEBB-oriented generalized representation of switching power converters", Power Engineering Society General Meeting, Vol.3, pp. 1344-1349, 2003
    48. I. Celanovic, I. Milosavljevic, D. Boroyevich, R. Cooley and J. Guo, "A new distributed digital controller for the next generation of power electronics building blocks", Applied Power Electronics Conference and Exposition, Fifteenth Annual IEEE, Vol.2, pp.889-894, 2000
    49. G.S. Thandi, R. Zhang, K. Xing, F. C. Lee and D. Boroyevich, "Modeling, control and stability analysis ofa PEBB based DC DPS", Power Delivery, IEEE Transactions on, Vol. 14, No.2, pp.497-505, 1999
    50. Z. Ye, K. Xing, S. Mazumder, D. Borojevic and F. C. Lee, "Modeling and control of parallel three-phase PWM boost rectifiers in PEBB-based DC distributed power systems", Applied Power Electronics Conference and Exposition, Thirteenth Annual IEEE, Vol.2, pp.1126-1132, 1998
    51. F.C. Lee, P. Barbosa, P. Xu, J. Zhang, B. Yang and F. Canales, "Topologies and design considerations for distributed power system applications", Proceedings of the IEEE, Vol.89, No.6, pp.939-950, 2001
    52. J.A. du Toit, A. D. le Roux and J. H. R. Enslin, "An integrated controller module for distributed control of power electronics", Applied Power Electronics Conference and Exposition, Thirteenth Annual IEEE, Vol.2, pp.874-88, 1998
    53. H. Dai, K. Xing and F. C. Lee, "InveStigation of soft-switching techniques for Power Electronics Building Blocks (PEBB)", Applied Power Electronics Conference and Exposition, Thirteenth Annual IEEE, Vol.2, pp.633-639, 1998
    54. J. Wu, F. C. Lee, D. Boroyevich, H. Dai, K. Xing and D. Peng, "A 100 kW high-performance PWM rectifier with a ZCT soft-switching technique", Power Electronics, IEEE Transactions on, Vol.18, No.6, pp.1302-1308, 2003
    55. L. Solero, D. Boroyevich, Y. P. Li and F. C. Lee, "Design of resonant circuit for zero-current-transition techniques in 100-kW PEBB applications", Industry Applications, IEEE Transactions on, Vol.39, No.6, pp. 1783-1794, 2003
    56.陈文洁,杨拴科,杨旭,王兆安,”采用电力电子集成技术的软开关PFC电路的研究”,电力电子技术,Vol.37,No.2,pp.53-55,2003
    57. S. Rosado, F. Wang, D. Boroyevich and R. Wachal, "Control interface characterization of power electronics building blocks (PEBB) in utility power system applications", Power Engineering Society General Meeting, Vol.3, pp. 1355, 2003
    58. F. Wang, S. Rosado and D. Boroyevich, "Open modular power electronics building blocks for utility power system controller applications", Power Electronics Specialist Conference, 34th Annual IEEE, Vol.4, pp.1792-1797, 2003
    59. I. Celanovic, N. Celanovic, I. Milosavljevic, D. Boroyevich and R. Cooley, "A new control architecture for future distributed power electronics systems", Power Electronics Specialists Conference, 31 st Annual IEEE, Vol. 1, pp. 113-118, 2000
    60. J. Guo, I. Celanovic and D. Borojevic, "Distributed software architecture of PEBB-based plug and play power electronics systems", Applied Power Electronics Conference and Exposition, Sixteenth Annual IEEE, Vol.2, pp.772-777, 2001
    61. J. Guo, S. H. Edwards and D. Borojevic, "Elementary control objects: toward a dataflow architecture for power electronics control software", Power Electronics Specialists Conference, 33rd Annual IEEE, Vol.4, pp. 1705-1710, 2002
    62. Power Integrations Inc, "TOPSwitch-GX flyback design methodology", AN-32 of Data Book and Design Guide, 2003
    63. P.C. Loh, D. G. Holmes and T. A. Lipo, "Implementation and control of distributed PWM cascaded multilevel inverters with minimal harmonic distortion and common-mode voltage", Power Electronics, IEEE Transactions on, Vol.20, No. 1, pp.90-99, 2005
    64.赵生才,”香山科学会议第219-221次学术讨论会简述”,中国基础科学,Vol.6,No.3,pp.38-41,2004
    65.邓爱华,”科学家聚焦仿生学”,科技潮,Vol.4,pp.8-11,2004
    66. D. Li, X. He and Y. Deng, "High reliable power electronic system design based on bionics", Applied Power Electronics Conference and Exposition, Eighteenth Annual IEEE, Vol.1, pp.471-475, 2003
    67.李冬黎,”特种电源技术及其在污水处理中的应用”,浙江大学博士学位论文,2003
    68.李冬黎,何湘宁,”仿生学在电力电子学中的应用研究”,电工技术学报,Vol.17,No.1,pp.64-67,2002
    69.李冬黎,何湘宁,张晋,”仿生学在电力电子设计中应用”,中国电机工程学报,Vol.22,No.8.pp.17-21,2002
    70. L. Hu, W. Li, A. Chen and X. He, "A fully decentralized autonomous module for power electronic converters", Industrial Electronics Society, 30th Annual Conference IEEE, Vol. 1, pp.739-743, 2004
    71.胡磊,何湘宁,”基于仿生学的电力电子系统分散自治控制”,台达电力电子新技术研讨会论文集,pp.441-449,2004
    72.温小云,牛忠霞,师字杰,”电源模块冗余热备份对可靠性的影响”,电子产品可靠性与环境试验,Vol.23,No.1,pp.16-18,2005
    73.蔡昆争,段舜山,”基因的功能冗余”,生态学杂志,Vol.20,No.4,pp.61-64,2001
    74. A. Chen, L. Hu, L. Chen, Y. Deng and X. He, "A multilevel converter topology with fault-tolerant ability", Power Electronics, IEEE Transactions on, Vol.20, No.2, pp.405-415, 2005
    75. D. Mange, E. Sanchez, A. Stauffer, G. Tempesti, P. Marchal and C. Piguet, "Embryonics: a new methodology for designing field-programmable gate arrays with self-repair and self-replicating properties", Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, Vol.6, No.3, pp.387-399, 1998
    76. D. Mange, M. Sipper, A. Stauffer and G. Tempesti, "Toward robust integrated circuits: The embryonics approach", Proceedings of the IEEE, Vol.88, No.4, pp.516-543, 2000
    77. E. Sanchez, M. Sipper, J.-O. Haenni, J.-L. Beuchat, A. Stauffer and A. Perez-Uribe, "Static and dynamic configurable systems", Computers, IEEE Transactions on, Vol.48, No.6, pp.556-564, 1999
    78. M. Borgatti, F. Lertora, B. Foret and L. Cali, "A reconfigurable system featuring dynamically extensible embedded microprocessor, FPGA, and customizable I/O", Solid-State Circuits, IEEE Journal of, Vol.38, No.3, pp.521-529, 2003
    79. S.J. Chiang, C. Y. Yen and K. T. Chang, "A multimodule parallelable series-connected PWM voltage regulator", Industrial Electronics, IEEE Transactions on, Vol.48, No.3, pp.506-516, 2001
    80. T. Kawabata and S. Higashino, "Parallel operation of voltage source inverters", Industry Applications, IEEE Transactions on, Vol.24, No.2, pp.281-287, 1988
    81. Y. Xing, L. P. Huang and Y. G. Yah, "A decoupling control method for inverters in parallel operation", Power System Technology, International Conference on, Vol.2, pp.1025-1028, 2002
    82. X. Sun, Y.-S. Lee and D. Xu, "Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme", Power Electronics, IEEE Transactions on, Vol.18, No.3, pp.844-856, 2003
    83. H. Van Der Broeck and U. Boeke, "A simple method for parallel operation of inverters", Telecommunications Energy Conference, Twentieth International, pp. 143-150, 1998
    84. J.-F. Chen and C.-L. Chu, "Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation", Power Electronics, IEEE Transactions on, Vol.10, No.5, pp.547-558, 1995
    85. M.C. Chandorkar, D. M. Divan and R. Adapa, "Control of parallel connected inverters in standalone AC supply systems", Industry Applications, IEEE Transactions on, Vol.29, No. 1, pp.136-143, 1993
    86. E. A. A. Coelho, P. C. Cortizo and P. F. D. Garcia, "Small-signal stability for parallel-connected inverters in stand-alone AC supply systems", Industry Applications, IEEE Transactions on, Vol.38, No.2, pp.533-542, 2002
    87. A. Tuladhar, H. Jin, T. Unger and K. Mauch, "Control of parallel inverters in distributed AC power systems with consideration of line impedance effect", Industry Applications, IEEE Transactions on, Vol.36, No. 1, pp. 131-138, 2000
    88. U. Borup, F. Blaabjerg and P. N. Enjeti, "Sharing of nonlinear load in parallel-connected three-phase converters", Industry Applications, IEEE Transactions on, Vol.37, No.6, pp.1817-1823, 2001
    89. T.-F. Wu, Y.-K. Chen and Y.-H. Huang, "3C strategy for inverters in parallel operation achieving an equal current distribution", Industrial Electronics, IEEE Transactions on, Vol.47, No.2, pp.273-281, 2000
    90. P. Karlsson and J. Svensson, "DC bus voltage control for a distributed power system", Power Electronics, IEEE Transactions on, Vol. 18, No.6, pp. 1405-1412, 2003
    91. W. Tang and R. H. Lasseter, "An LVDC industrial power distribution system without central control unit", Power Electronics Specialists Conference, 31st Annual IEEE, Vol.2, pp.979-984, 2000
    92. X. Feng, Z. Ye, K. Xing, F. C. Lee and D. Borojevic, "Individual load impedance specification for a stable DC distributed power system", Applied Power Electronics Conference and Exposition, Fourteenth Annual IEEE, Vol.2, pp.923-929, 1999
    93. X. Feng, J. Liu and F. C. Lee, "Impedance specifications for stable DC distributed power systems", Power Electronics, IEEE Transactions on, Vol.17, No.2, pp. 157-162, 2002
    94. N.M. Abdel-Rahim and J. E. Qualcoe, "Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters", Power Electronics, IEEE Transactions on, Vol. 11, No.4, pp.532-541, 1996
    95. M. P. Kazmierkowski and L. Malesani, "Current control techniques for three-phase voltage-source PWM converters: a survey", Industrial Electronics, IEEE Transactions on, Vol.45, No.5, pp.691-703, 1998
    96. M.J. Ryan, W. E. Brumsickle and R. D. Lorenz, "Control topology options for single-phase UPS inverters", Industry Applications, IEEE Transactions on, Vol.33, No.2, pp.493-501, 1997
    97. S.-L. Jung, H.-S. Huang, M.-Y. Chang and Y.-Y. Tzou, "DSP-based multiple-loop control strategy for single-phase inverters used in AC power sources", Power Electronics Specialists Conference, 28th Annual IEEE, Vol. 1, pp.706-712, 1997
    98. P.C. Loh, M. J. Newman, D. N. Zmood and D. G. Holmes, "A comparative analysis of multiloop voltage regulation strategies for single and three-phase UPS systems", Power Electronics, IEEE Transactions on, Vol.18, No.5, pp. 1176-1185, 2003
    99. S. Buso, S. Fasolo and P. Mattavelli, "Uninterruptible power supply muitiloop control employing digital predictive voltage and current regulators", Industry Applications, IEEE Transactions on, Vol.37, No.6, pp. 1846-1854, 2001
    100. M. Oueidat and D. Sadarnac, "Multiple feedback loop control strategy for UPS system having active filter ability", Telecommunications Energy Conference, 18th International, pp.450-453, 1996
    101. N. Abdel-Rahim and J. E. Quaicoe, "Small-signal model and analysis of a multiple feedback control scheme for three-phase voltage-source UPS inverters", Power Electronics Specialists Conference, 27th Annual IEEE, Vol. 1, pp.188-194, 1996
    102. W. Guo, S. Duan and Y. Kang, "A new digital multiple feedback control strategy for single-phase voltage-source PWM inverters", Electrical and Electronic Technology, International Conference on, Vol.2, pp.809-813,2001
    103. H. Wu, D. Lin, D. Zhang, K. Yao and J. Zhang, "A current-mode control technique with instantaneous inductor-current feedback for UPS inverters", Applied Power Electronics Conference and Exposition, Fourteenth Annual IEEE, Vol.2, pp.951-957, 1999
    104. B.-J. Kim, J.-H. Choi, J.-S. Kim and C.-H. Choi, "Digital control scheme of UPS inverter to improve the dynamic response", Electrical and Computer Engineering, Canadian Conference on, Vol.1, pp.318-321, 1996
    105. Karl J Astrom, Bjorn Wittenmark, Computer-controlled system: theory and design, 3rd ed, Prince Hall Inc, 1997
    106.陈道炼,DC-AC逆变技术及其应用,机械工业出版社,2005
    107.陈国呈,PWM变频调速技术,机械工业出版社,1998
    108.李爱文,张承慧,现代逆变技术及其应用,科学出版社,2000
    109. Nabae,I.Takahashi and H.Akagi, "A New Neutral-Point-Clamped PWM Inverter", Industrial Applications, IEEE Transactions on, Vol.17, No.5, pp.518-523,1981
    110.吴洪洋,多电平变换器及其相关技术研究,浙江大学博士学位论文,2001
    111.王鸿雁,多电平逆变器PWM新方法及相关技术,浙江大学博士学位论文,2004
    112.陈阿莲,新型多电平逆变器组合拓扑结构和多电平逆变器的容错技术,浙江大学博士学位论文,2005
    113. J. Rodriguez, J.-S. Lai and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications", Industrial Electronics, IEEE Transactions on, Vol.49, No.4, pp.724-738, 2002
    114. Pradeep M. Bhagwat et al, "Generalized structure of a multilevel PWM inverter", Industry Applications, IEEE Transactions on, Vol.IA-19, No.6, pp. 1057-1069, 1983
    115. J.-S. Lai and F. Z. Peng, "Multilevel converters-a new breed of power converters", Industry Applications, IEEE Transactions on, Vol.32, No.3, pp.509-517, 1996
    116. R. Teodorescu et al, "Multilevel Converters-A Survey", Proceeding of EPE'99 pp.7-10, 1999
    117. J. Rodriguez, J.-S. Lai and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications", Industrial Electronics, IEEE Transactions on, Vol.49, No.4, pp.724-738, 2002
    118. B.-S. Suh, G. Sinha, M. D. Manjrekar and T. A. Lipo, "Multilevel power conversion - an overview of topologies and modulation strategies", Optimization of Electrical and Electronic Equipments, the 6th International Conference on, Vol.2, pp. AD-11-AD-24, 1998
    119. X. Yuan and I. Barbi, "Fundamentals of a new diode clamping multilevel inverter", Power Electronics, IEEE Transactions on, Vol. 15, No.4, pp.711-718, 2000
    120. T. A. Meynard and H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters", Power Electronics Specialists Conference, 23rd Annual IEEE, Vol. 1, pp.397-403, 1992
    121. F. Tourkhani, P. Viarouge and T. A. Meynard, "A simulation-optimization system for the optimal design of a multilevel inverter", Power Electronics, IEEE Transactions on, Vol.14, No.6, pp.1037-1045, 1999
    122. T. A. Meynard, M. Fadel and N. Aouda, "Modeling of multilevel converters", Industrial Electronics, IEEE Transactions on, Vol.44, No.3, pp.356-364, 1997
    123. Y. Liang and C. O. Nwankpa, "A power-line conditioner based on flying-capacitor multilevel voltage-source converter with phase-shift SPWM", Industry Applications, IEEE Transactions on, Vol.36, No.4, pp.965-971, 2000
    124. R. H. Baker and L. H. Bannister, "Electric power converter", U.S. Patent 3867643, Feb. 1975
    125. P. W. Hammond, "Medium voltage PWM drive and method", U.S. Patent 5625545, Apr. 1997
    126. F. Z. Peng and J. S. Lai, "Multilevel cascade voltage source inverter with separate DC sources", U.S. Patent 5642275, Jun. 1997
    127. M. D. Manjrekar, P. K. Steimer and T. A. Lipo, "Hybrid multilevel power conversion system: a competitive solution for high-power applications", Industry Applications, IEEE Transactions on, Vol.36, No.3, pp.834-841, 2000
    128. M. D. Manjrekar and T. A. Lipo, "A hybrid multilevel inverter topology for drive applications", Applied Power Electronics Conference and Exposition, Thirteenth Annual IEEE, Vol.2, pp.523-529, 1998
    129. C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey and J. R. Pinheiro, "Analysis and comparison of hybrid multilevel voltage source inverters", Power Electronics Specialists Conference, IEEE 33rd Annual, Vol.2, pp.491-496, 2002
    130. G. Sinha and T. A. Lipo, "A four-level inverter based drive with a passive front end", Power Electronics, IEEE Transactions on, Vol. 15, No.2, pp.285-294, 2000
    131. S. Sirisukprasert, J.-S. Lai and T.-H. Liu, "Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters", Industrial Electronics, IEEE Transactions on, Vol.49, No.4, pp.875-881, 2002
    132. B. P. McGrath, D. G. Holmes and T. Lipo, "Optimized space vector switching sequences for multilevel inverters", Power Electronics, IEEE Transactions on, Vol.18, No.6, pp. 1293-1301, 2003
    133. R. W. Menzies, P. Steimer and J. K. Steinke, "Five-level GTO inverters for large induction motor drives", Industry Applications, IEEE Transactions on, Vol.30, No.4, pp.938-944, 1994
    134. G. Carrara, S. Gardella, M. Marchesoni, R. Salutari and G. Sciutto, "A new multilevel PWM method: a theoretical analysis", Power Electronics, IEEE Transactions on, Vol.7, No.3, pp.497-505, 1992
    135. J. K. Steinke, "Switching frequency optimal PWM control of a three-level inverter", Power Electronics, IEEE Transactions on, Vol.7, No.3, pp.487-496, 1992
    136. L. M. Tolbert and T. G. Habetler, "Novel multilevel inverter carrier-based PWM method", Industry Applications, IEEE Transactions on, Vol.35, No.5, pp. 1098-1107, 1999
    137. L. M. Tolbert and T. G. Habetler, "Novel multilevel inverter carrier-based PWM method", Industry Applications, IEEE Transactions on, Vol.35, No.5, pp. 1098-1107, 1999
    138. L. M. Tolbert, F. Z. Peng and T. G. Habetler, "Multilevel PWM methods at low modulation indices", Power Electronics, IEEE Transactions on, Vol.15, No.4, pp.719-725, 2000
    139. V. G. Agelidis and M. Calais, "Application specific harmonic performance evaluation of multicarrier PWM techniques", Power Electronics Specialists Conference, 29th Annual IEEE, Vol.1, pp.172-178, 1998
    140. B. P. McGrath and D. G. Holmes, "Multicarrier PWM strategies for multilevel inverters", Industrial Electronics, IEEE Transactions on, Vol.49, No.4, pp.858-867, 2002
    141. J. H. Seo, C. H. Choi and D. S. Hyun, "A new simplified space-vector PWM method for three-level inverters", Power Electronics, IEEE Transactions on, Vol.16, No.4, pp.545-550, 2001
    142. L. Hu, H. Wang, V. Deng and X. He, "A simple SVPWM algorithm for multilevel inverters", Power Electronics Specialists Conference, 35th Annual IEEE, Vol.5, pp.3476-3480, 2004
    143.陈阿莲,何湘宁,吴洪洋,赵荣祥,”基于基本单元串—并(并—串)思想生成多电平变换器拓扑的方法”,电工技术学报,No.2,pp.41-46,2004
    144. F. Z. Peng, "A generalized multilevel inverter topology with self voltage balancing", Industry Applications, IEEE Transactions on, Vol.37, No.2, pp.611-618, 2001
    145. C. Turpin, P. Baudesson, F. Richardeau, F. Forest and T. A. Meynard, "Fault management of multicell converters", Industrial Electronics, IEEE Transactions on, Vol.49, No.5, pp.988-997, 2002
    146. S. Wei, B. Wu, F. Li and X. Sun, "Control method for cascaded H-bridge multilevel inverter with faulty power cells", Applied Power Electronics Conference and Exposition, Eighteenth Annual IEEE, Vol.1, pp.261-267, 2003
    147. X. Kou, K. A. Corzine and Y. L. Familiant, "A unique fault-tolerant design for flying capacitor multilevel inverter", Power Electronics, IEEE Transactions on, Vol.19, No.4, pp.979-987, 2004
    148. F. Richardeau, P. Baudesson and T. A. Meynard, "Failures-tolerance and remedial strategies of a PWM multicell inverter", Power Electronics, IEEE Transactions on, Vol.17, No.6, pp.905-912, 2002
    149. B. Francois and J. P. Hautier, "Design of a fault tolerant control system for a NPC multilevel inverter", Industrial Electronics, IEEE International Symposium on, Vol.4, pp.1075-1080, 2002
    150. G. Sinha, C. Hochgraf, R. H. Lasseter, D. M. Divan and T. A. Lipo, "Fault protection in a multilevel inverter implementation of a static condenser", Industry Applications Conference, Thirtieth IAS Annual Meeting IEEE, Vol.3, pp.2557-2564, 1995
    151. S. Wei, B. Wu, S. Rizzo and N. Zargari, "Comparison of control schemes for multilevel inverter with faulty cells", Industrial Electronics Society, 30th Annual Conference of IEEE, Vol.2, pp. 1817-1822, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700