用户名: 密码: 验证码:
基于码合并的混合差错控制及相关理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高数据速率、高可靠性的分组数据传输将成为未来无线通信的主流。在保障移动环境下数据的可靠传输,需要采用有效的差错控制技术,如前向纠错(FEC)编译码、混合自动重发请求(HARQ)等;为了提高系统接收性能,还需要充分利用移动多径环境下分集接收所带来的空间分集增益和基于重传数据码合并处理所带来的时间分集增益等;此外,各类差错控制技术的实施,都离不开可靠的信道估计信息。本文以无线分组数据传输混合差错控制技术为中心,重点研究了码合并时间分集对HARQ性能的影响,等增益合并(EGC)分集接收的系统性能,高速Turbo并行编译码技术,以及基于重复信息的SNR估计算法等。
     本文首先讨论了AWGN信道和平坦Rayleigh衰落信道条件下带码合并的Ⅰ类HARQ性能。通过将Pursley在异步CDMA通信系统下的信干比分析方法推广到干扰环境下的HARQ,分析了码合并对合并码字信干比的影响。基于拓展信于比的分析结果表明,异步CDMA通信环境下码合并对HARQ性能的改进源于码合并能增加合并码字符号的有效信干比,且增加的系数等于合并码字数目(码合并的累积效应)。提出了Ⅰ类HARQ的准解析分析方法,在对应前向纠错FEC性能的基础上,该方法提供了一种干扰环境下估计带码合并Ⅰ类HARQ性能和干扰环境下Ⅰ类HARQ系统的设计方法。接着本文通过分析独立同分布Rayleigh衰落变量乘积的不等约束关系与近似关系,提出了一种基于统计特性的近似变量替换分析方法。该方法可将独立同分布Raylei曲衰落变量的乘积项替换为两个具有类似统计特性的衰落变量平方之和,并在近似变量替换分析的基础上,推导出了理想交织平坦Rayleigh衰落信道条件下Ⅰ类HARQ性能的上、下界。研究表明,理想交织平坦Rayleigh衰落信道条件下码合并对HARQ性能的改进源于码合并能有效增加系统的分集阶数,且增加的系数大致等于合并码字数目。
     然后,本文将HARQ中利用基于重传数据码合并处理所带来的时间分集性能分析推广到采用速率匹配穿孔卷积(RCPC)编码的Ⅲ类HARQ。研究表明,合并穿孔距阵可以清楚地描述多个RCPC码字合并后的码字特性。对Viterbi的成对错误概率分析进行推广,推导出了AWGN信道条件下的广义成对错误概率的闭式解。在广义成对错误概率的基础上,结合合并穿孔距阵、AWGN信道条件下码合并的累积效应,以及合并RCPC码字特性的变化,推导出了AWGN
    
    第n页
    西南交通大学博士研究生学位论文
    信道条件下111类HARQ性能的上、下界,给出了HARQ性能的近似估计方法。
    在推广Viterbi的成对错误概率分析的基础上,推导并得出了平坦Rayteigh衰落
    信道条件下的广义成对错误概率的闭式解;在广义成对错误概率的基础上,根
    据合并穿孔距阵,结合理想交织平坦Rayleigh衰落信道条件下分集合并的分集
    阶数累积效应以及合并RCPC码字特性的变化,推导出了理想交织平坦
    Rayleigh衰落信道条件下nI类HARQ性能上、下界,给出了衰落信道条件下
    HARQ性能的近似估计方法。
     接着,本文探讨了频率选择性Rayleigh衰落信道条件下等增益合并EGC
    分集接收的系统性能。基于统计特性的近似变量替换的分析思路,将独立同分
    布Rayleigh衰落变量的乘积项替换为两个具有类似统计特性的衰落变量平方之
    和,本文推导得出了频率选择性Ravleigh衰落信道条件下等增益合并EGc分
    集接收系统性能的下界,提出了EGC分集接收系统性能的近似估计方法。EGC
    分集接收系统性能的下界和近似估计算法不仅为分析EGC分集接收系统提供
    一种简捷、有效的方法,一而且通过下界和近似估计还可大致估计出EGC分集接
    收与最大比合并MRC分集接收间的性能差异。采用近似变量替换的分析思路,
    不仅EGC分集接收性能分析计算简单,计算结果与理论值或仿真结果十分吻
    合,而且适用范围广,不受多径数目限制,适用于密集多径/多路独立同分布衰
    落信道条件下(例如MIMO系统、 OFDM系统)分集接收系统的性能分析。
     随后,本文在传统Turb。分块并行译码算法研究的基础上,创造性地提出
    了一种基于分块归零编码和Turb。分块并行译码结构的高速Tuth。并行编译码
    算法。该并行编译码算法通过将一个长的信息帧分隔成若干个互不重叠的信息
    元分块,在逐块编码结束时执行Trellis归零处理,各个分块的编码输出合并为
    一个完整的Tul-bo码字。由于信息元分块编码后的分段肠ellis归零处理,Turb。
    码字各个分块的初始和结束状态为已知零状态。在译码端,对应地实施基于分
    块的Ttlrbo码并行迭代译码处理。仿真研究表明,在大幅度降低译码时延的同
    时,新的Turb。码编译码结构在高码率时的可靠性能接近乃至优于传统Turb。
    码译码性能,特别适用于高数据速率、高可靠性要求的高速Tuth。编译码,具
    有重要的应用价值。
     最后,在现有SNR估计算法的基础上,本文提出了一种基于重传数据或重
    复控制信息(如导频信号)的SNR估计算法。新的估计算法通过充分利用系统
    所提供的冗余信息,并在冗余信息的基础上构造新的观测序列(累加有扰观测
    信号序列AONSS或差分有扰观测信号序列DONSS)。在新的观测序列基础上,
    提出了基于AONss的最大似然估计算法和基于DoNss的盲最大似然估计算
    法,推导得出了基?
High speed packet data transmission with high reliability is the most promising direction for the future wireless communications. In order to gurantee reliable transmission, various error contol schemes including the forward error correction (FEC) and the hybrid ARQ mechanism, are essential. To improve receiver performance, both space diversity in the multipath environment and time diversity, such as code combining in the hybrid ARQ, should normally be employed. Besides, the implementation of a hybrid error correction control scheme is heavily dependent on the proper channel estimation algorithm. Therefore, in this thesis, focusing on various hybrid error control schemes for wireless packet-oriented communication system, the following issues are addressed, hybrid ARQ scheme and its performance enhancement owing to the code combining employed, the performance analysis of equal-gain-combining (EGC) diversity reception, the high-speed parallel Turbo coding scheme, and SNR estimation algorithm based on redundant
     repetition information.
    At first, the performance evaluation of hybrid ARQ with code combining in packet-oriented CDMA system is investigated. By extending Pursley's signal-to-interference plus noise ratio (SINR) analysis to hybrid ARQ with code combining in packet-oriented CDMA system, an extended SINR formula is derived, which describes explicitly the SINR variation of the code symbol involved in code combining. Moreover, it is shown that the effective SINR of the combined symbol is increased by a coefficient which is proportional to the number of repeated replicas involved in the code combining. Based on the extended SINR formula and the resultant SINR variation, a quasi-analytical approximation method is proposed for the performance evaluation of hybrid ARQ with code combining. It is validated that the quasi-analytical approximation offers a simplified routine to' estimate the performance of hybrid ARQ with code combining, particularly for the applications whose reliability performance of the FEC counterpart could be numericall
    y calculated or evaluated through simulation.
    Thereafter, the thesis focuses on the performance analysis of hybrid ARQ with diversity combining on the ideally interleaved flat Rayleigh fading channel, which is known as a frustrated problem due to the difficulty in solving the multiple-fold
    
    
    integration involved. A novel analysis method, i.e., the approximate variable is proposed to simplify the analysis, wherein the involved cross-product of two random variables is substituted with the approximate sum of the power of two random variables. Both the lower and upper bounds are derived, approximate analysis method is also proposed for evaluating the performance of hybrid ARQ with diversity combining on the ideally interleaved flat Rayleigh fading channel. It is disclosed that the diversity combining contributes to an increase in the diversity order on the ideally interleaved flat Rayleigh fading channel, which is approximately proportional to the number of repeated copies involved.
    Next, the thesis moves its attention to the type III hybrid ARQ with code combining. The code combining in type III hybrid ARQ becomes more complicated due to the variation of the combined codeword. And the combined puncturing pattern is proposed to illuminate the involved composite code combining. By extending the analysis to the convolutional codes whose symbols exhibit different effective signal-to-noise ratio owing to the composite code combining, a closed form of the residual pairwise error probability of the combined RCPC codes is derived for the AWGN channel. Based on the combined puncturing patterns and the accumulate SINR effect, upper and lower bounds on the error performance are derived, together with an approximation method which is shown to be quite satisfactory by numerical and simulation results. By extending the analysis to the convolutional codes whose symbols experience fading path with different fading power gain due to the composite code combining, a closed form of the residual pairwise
引文
[1] Motorola, Details of high speed downlink packet access, 3gpp RP-000126, TSG-RAN #7, March 13-15, 2000.
    [2] 3gpp TR 25.848 v4.0.0 (2001-03), Technical Specification Group Radio Access Network; physical layer aspects of UTRA high speed downlink packet access (Release 4), Mar., 2001.
    [3] Willie.W.Lu, Guest-Editorial: 4G Mobile Research in Asia, IEEE Commun. Magzine, Vol.41, No.3, Mar., 2003, pp.104-106.
    [4] Motorola, Clarification on dual-channel stop-and-wait HARQ, 3gpp TSGRI#18(01)0048, Boston, U.S.A., Jan, 2001.
    [5] Nokia, Fast hybrid ARQ description, TSGR1#15(00)1085, Berlin, Germany, August 2000.
    [6] S.Lin and D.J.Costello Jr., Error control coding: fundamentals and applications, Englewood Cliffs, N J: Prentice-Hall, 1984.
    [7] Y.M.Wang, S.Lin, A modified selective-repeat type-Ⅱ hybrid ARQ system and its performance analysis," IEEE Trans. Commun., Vol.31, No.5, pp.593-608, 1983.
    [8] S.Lin, P.S.Yu, A hybrid ARQ scheme with parity retransmission for error control of satellite charmels, IEEE Trans. Commun., Vol.30,No.7, pp.1701-1719, July, 1982.
    [9] D.M. Mandelbaum, An adaptive-feedback coding scheme using incremental redundancy, IEEE Trans. Inform. Theory, Vol.20, No.3, May,1974, pp.388-389.
    [10] J.Hagenauer, Rate compatible punctured convolutional codes (RCPC codes) and their applications, IEEE Trans. Commun., Vol.36, No.4, April, 1988, pp.389-400.
    [11] J.Hagenaure, N.Seshadri, C.W.Sundberg, The performance of rate-compatible punctured convolutional codes for digital mobile radio, IEEE Trans. Commun., Vol.38, No.7, April 1990, pp.966-980.
    [12] A.S.Barbulescu and S.S. Pietroben, Rate Compatible Tubro codes, Electronics Letters, Vol.31, No.7, Mar. 1995, pp.535-536.
    
    
    [13] P.Jung and J.Plechinger, Performance of rate compatible punctured turbo-codes for mobile radio applications, Electronics Letters, Vol.33, No.25, Dec., 1997,pp.2102-2103,;
    [14] D.N.Rowitch, L.B.Milstein, On the performance of hybrid FEC/ARQ systems using rate compatible punctured Turbo (RCPT) codes, IEEE Trans. Commun., Vol.48, No.6, June, 2000, pp.948-959.
    [15] Tingfang Ji, Wayne E.Stark, Turbo-coded ARQ schemes for DS-CDMA data networks over fading and shadowing channels: throughput, delay, and energy efficiency, IEEE Journal on Selected Areas in Commun., Vol.18, No.8, Aug., 2000, pp. 1355-1364.
    [16] M.M.Salah, R.A.Raines, M.A.Temple, T.G.Bailey, Approach for deriving performance bounds of punctured turbo code, Electronics Letters, Vol.35, No.25, Dec., 1999, pp.2191-2192.
    [17] J.B.Cain, G.C.Clark and J.M.Geist, Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding, IEEE Trans. Inform. Theory, Vol.25, No.1, Jan.,1979, pp,97-100.
    [18] L.H.C. Lee, New rate-compatible punctured convolutional codes for Viterbi decoding, IEEE Trans. Commun., Vol.42, No. 12, Dec., 1994, pp.3073-3079.
    [19] 3GPP TR 25.835 (vl.0.0), Report on hybrid ARQ type Ⅱ/Ⅲ (Release 2000), Sep., 2000;
    [20] S.Kallel and D.Haccoun, Generalized type Ⅱ hybrid ARQ scheme using punctured convolutional coding, IEEE Trans. Commun., Vol. 38, No.11, Nov., 1990, pp. 1938-1946.
    [21] S.Kallel, Analysis of a type-Ⅱ hybrid ARQ scheme with code combining, IEEE Trans. Commun., Vol.38, Aug., 1990, pp.1133-1137.
    [22] Zihuai Lin, Ame Svensson, New rate-compatible repetition convolutional codes, IEEE Trans. Inform. Theory, Vol.46, No.7, Nov., 2000, pp.2651-2659.
    [23] S.B.Wicker, Adaptive rate error control through the use of diversity combining and majority-logic decoding in a hybrid-ARQ protocol, IEEE Trans. Commun., Vol.39, No.3, Mar., 1991, pp.380-385.
    [24] F.Adachi, S.Ito, K.Ohno, Performance analysis of a time diversity ARQ in land mobile radio, IEEE Trans. Commun.,Vol.37, No.2, Feb., 1989, pp.177-183.
    [25] B.A.Harvey, S.B.Wicker, Packet combining systems based on the Viterbi decoder, IEEE Trans. Commun., Vol.42, No.2/3/4, 1994, pp.1544-1557.
    
    
    [26] S.Souissi, S.B.Wicker, A diversity combining DS/CDMA system with convolutional encoding and Viterbi decoding, IEEE Trans. Commun., Vol.44, No.2, May, 1995, pp.304-312.
    [27] D.Chase, Code combining: a maximum-likelihood decoding approach for combining an arbitrary number of noisy.packets, IEEE Trans. Commun., Vol.33, No.5, May, 1985, pp.385-393.
    [28] L.R.Lugand, D.J.Costello,Jr., R.H.Deng, Parity retransmission hybrid ARQ using rate 1/2 convolutional codes on a nonstationary channel, IEEE Trans. Commun., Vol.37, No.7, July, 1989, pp.755-765.
    [29] S.B.Wicker, M.J.Bartz, Type Ⅱ hybrid ARQ protocols using puncturing MDS codes, IEEE Trans. Commun., Vol.42, No.2/3/4, 1994, pp. 1431-1440.
    [30] E.Malkamaki, H.Leib, Performance of truncated ARQ schemes with noisy feedback over block fading channels, IEEE Trans. Commun., Vol.48, No.9, Sept., 2000, pp. 1477-1487.
    [31] R.H.Deng, Hong Zhou, An adaptive coding scheme with code combining for mobile radio systems, IEEE Trans. Veh. Techn., Vol.42, No.4, Nov., 1993, pp.389-400.
    [32] C.Berrou, A.Glavieux, P.Thitimajshima, Near shannon limit error-correcting coding and decoding: Turbo-codes, in Proc. Of IEEE International Conference on Commun., Geneva, Swtizerland, May, 1993, pp. 1064-1070.
    [33] Lin Nan Lee, A.Roger Hammons,Jr, Feng-Wen Sun and Mustafa Eroz, Application and standardization of Turbo codes in third-generation high-speed wireless data services, IEEE Trans. Veh. Techn., Vol.49, No.6, Nov. 2000, pp.2198-2207.
    [34] W.E.Ryan, A Turbo code tutorial, available on the http://telsat.nmsu.edu/~wryan/turbo2c.ps.
    [35] D.Divsalar and G.Montorsi, Design of parallel concatenated convolutional codes, IEEE Trans. Commun., Vol.44, No.5, May 1996, pp.591-600.
    [36] S.Dolinar and D. Divsalar, Weight distribution for turbo codes using random and nonrandom permutations, JPL TDA ProgressReport 42-122,Aug., 1995, pp.56-65.
    [37] L.C.Perez, J.Seghers and D.J.Costello, Jr., A distance spectrum interpretation of turbo codes, IEEE Trans. Inform. Theory, Vol.42, No.9, Nov., 1996, pp. 1698-1709.
    
    
    [38] W. Blackert, E. Hall and S.Wilson, An upper bound on turbo code free distance, in Proc. Of Int. Conf. Communications, 1996, pp.957-961.
    [39] D.Divsalar, S.Dolinar, F.Pollara, R.J.McEliece, Transfer function bounds on the performance of Turbo codes, JPL TDA Research Report 42-122, 1995, pp.44-55.
    [40] T.M.Duman and M.Salehi, New performance bounds for Turbo codes, IEEE Trans. Commun., Vol.46, No.6, Jun., 1998, pp.717-723.
    [41] I.Sason and S. Shamai (Shitz), Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum, IEEE Trans. Inform. Theory, Vol.46, No.1, Jan., 2000, pp.24-47.
    [42] M.Breiling and J.B.Huber, Upper bound on the minimum distance of turbo codes, IEEE Trans. Commun., Vol.49, No.5, May, 2001, pp.808-815.
    [43] M.Breiling and J.B.Huber, Combinatorial analysis of the minimum distance of turbo codes, IEEE Trans. lnform. Theory, Vol.47, No.7, 2001, pp.2737-2750.
    [44] R.Garello, P.Pierleoni, and S.Benedetto, Computing the free distance of Turbo codes and serially concatenated codes with interleaver: algorithms and applications, IEEE Journ. On Select. Areas in Communications, Vol.19, No.5, May, 2001, pp.800-812.
    [45] H.R.Sadjapour, N.J.A.Sloane, M.Salehi and G.Nebe, Interleaver design for Turbo codes, IEEE Journal on Select. Areas in Communications, Vol.19, No.5, May, 2001, pp.831-837.
    [46] J.Hokfelt, O. Edfors, and T. Maseng, Turbo codes: correlated extrinsic information and its impact to iterative decoding performance, in Proc. Of VTC'99, Houston, 1999, pp.1871-1875.
    [47] W.Blackert, E.Hall, and S.Wilson, Turbo code termination and interleaver conditions, Electron. Letters, Vol.31, No.24, 1995, pp.2082-2084.
    [48] A.S.Barbulescu and S.S. Pietroben, Terminating the trellis of the turbo codes in the same state, Electron. Letters., Vol.31, No. 1, Jan.,1995, pp.22-23.
    [49] S.Benedetto and G.Montorsi, Unveiling turbo codes: some results on parallel concatenated decoding schemes, IEEE Trans. Inform. Theory, Vol.42, No.2, Mar., 1996, pp.409-428.
    [50] E.K.Hall, S.G.Wilson, Design and analysis of Turbo codes on Rayleigh fading channels, IEEE Journal on Select. Areas in Commun., Vol.16, No.2, 1998, pp.160-174.
    
    
    [51] P.Robertson, Illuminating the structure of code and decoder of parallel concatenated recursive systematic (turbo) codes, in Proc. Of GLOBECOM'94, Dec., 1994, pp.1298-1303.
    [52] L.R.Bahl, J.Cocke, F.Jelink, and R.Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Inform. Theory, Vol.20, Mar., 1974, pp.284-286.
    [53] Li Jing, Low-Complexity, Capacity-approaching coding schemes: design, analysis and applications, Ph.D. disseration, Texas A&M Univeristy, Dec., 2002.
    [54] R.Y.Shao, S.Lin, and M.P.Fossorier, Two simple stopping criteria for turbo decoding, IEEE Trans. Commun., Vol.47, No.8, Aug., 1999, pp.1117-1120.
    [55] Yufei Wu, Brain D. Woerner, and William J.Ebel, A simple stopping criterion for Turbo decoding, IEEE Commun. Letter, Vol 4, No.8, Aug., 2000, pp.258-260.
    [56] P.Robertson, E.Villebrun and P.Hoeher, A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain, in Proc. Of ICC '95, June 1995, pp. 1009-1013.
    [57] G.Colavolpe, G.Ferrari and T. Maseng, Reduced-state BCJR-type algorithms, IEEE Journal on Select. Areas in Commun., Vol. 19, No.5, 2001, pp.848-859.
    [58] J.Hagenauer, P.Hoeher, A Viterbi algorithm with soft-decision ouputs and its applications, in Proc. Of Globecome'89, Nov., 1989, pp. 1680-1686.
    [59] J.P.Woodard, L.Hanzo, Comparative study of Turbo decoding techniques: an overview, IEEE Trans. Vech. Techn., Vol.49, No.6, 2000, pp.2208-2233.
    [60] Jah-Ming Hsu, Chin-Liang Wang, A parallel decoding scheme for Turbo codes, in Proc. Of IEEE Int. Conf. on Circuits and Systems (ICCAS '98), June, 1998, pp.445-448.
    [61] U.Dasgupta, K.R.Narayanan, Parallel decoding of Turbo codes using soft-output T-algorithms, IEEE Commun. Letters, Vol.5, No.8, 2001, pp.352-354.
    [62] Seokhyun Yoon, Yeheskel Bar-Ness, A parallel MAP algorithm for low latency Turbo decoding, IEEE Commun. Letters, Vol.6, No.7, 2002, pp.288-290.
    [63] Motorola, High-speed downlink packet access. 3gpp TSGR1#13(00)0727, 22-25th, May, 2000, Tokyo, Japan.
    [64] T.A.Summers, S.G.Wilson, SNR mismatch and online estimation in Turbo decoding, IEEE Trans. Commun., Vol.46, No.4, 1998, pp.421-423.
    
    
    [65] Soonyoung Kim, Junsu Chang, Moon Ho Lee, Simple iterative decoding stop criterion for wireless packet transmission, Electronics Letters, Vol.36, No.24, 2000, pp.2026-2027.
    [66] R.M.Gagliadri, C.M.Thomas, PCM data reliability monitoring through estimation of signal-to-noise ratio, IEEE Trans. Commun. Techn., Vol.16, No.3, 1968, pp. 479-486.
    [67] Ansari, R.Viswanathan, On SNR as a measure of performance for narrowband interference rejection in direct sequence spread spectrum systems, IEEE Trans. Commun., Vol.43, No.2/3/4, 1995, pp. 1318-1322.
    [68] B.Shah and S.Hinedi, The split symbol moments SNR estimator in narrow-band channels, IEEE Trans. Aerosp. Electorn. System, Vol.AES-26, No.5, Sep., 1990, pp.737-747.
    [69] David R. Pauluzzi, Norman C. Beaulieu, A comparison of SNR estimation techniques for the AWGN channel, IEEE Trans. Commun., Vol.48, No. 10, Oct., 2000, pp.1681-1691.
    [70] Harry L. Van Tree, Detection, es.timation, and modulation theory----Part Ⅰ detecion, estimation, and linear modulation theory, John Wiley and Sons, Inc., 1968.
    [71] R.Matzner and F.Engleberger, An SNR estimation algorithm using fourth-order moments, in Proc. IEEE Int. Symp. Information Theory, June, 1994, pp. 119.
    [72] A.L.Brandao, L.B.Lopes, D.C.McLemon, In-service monitoring of multipath delay and cochannel interference for indoor mobile communication systems, in Proc. OfICC'94, Vol.3, 1994, pp.1458-1462.
    [73] N.C.Beaulieu, A.S.Toms, D.R.Pauluzzi, Comparison of four SNR estimators for QPSK, IEEE Commun. Letters, Vol.4, No.2, 2000, pp.43-45.
    [74] Dae-Ki Hong, Cheol-Hee Park, et al., SNR estimation in frequency domain using circular correlation, Electronics Letters, Vol.38, No.25, 2001, pp. 1693-1694.
    [75] Julian Cheng, N.C.Beaulieu, Generalized moment estimators for the Nakagami fading parameter, IEEE Commun. Letters, Vol.6, No.4, 2002, pp.144-146.
    [76] Ramesh, A.Chochalingam, L.B.Milstein, SNR estimation in generalized fading channels and its application to Turbo decoding, in Proc. OflCC'01, Finland, Helsinki, 2001, pp. 1094-1098.
    
    
    [77] Ramesh, A.Chochalingam, L.B.Milstein, SNR estimation in Nakagami-m fading with diversity combining and its application to Turbo decoding, IEEE Trans. Commun., Vol.50, No.11, 2002, pp.1719-1724.
    [78] Qingchun Chen, Pingzhi Fan, Performance evaluation of hybrid ARQ with code combining in packet-oriented CDMA system, Chinese Journal of Electronics, 2004, No.1, pp.168-174.
    [79] M.B.Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication---Part Ⅰ: system analysis, IEEE Trans. Commun., Vol.25, No.8, Aug., 1977, pp.795-799.
    [80] Qingchun Chen, Hong Chen, Pingzhi Fan, On the Performance of hybrid ARQ with code combining over ideally interleaving Rayleigh channel, in Proc. Of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'2003), IEEE Press (03EX684, ISBN: 0-7803-7840-7), 2003, pp.408-412.
    [81] J.Hagenauer, Viterbi decoding of convolutional codes for fading and burst channel, in Proc. Of 1980 Int. Zurich Sem., March, 1980, pp.G.2.1-G2.7.
    [82] Youngkou Lee, Sungsoo Choi, Kiseon Kim, Performance of RCPC codes with soft-decision decoding over Nakagami-m fading channel, IEEE Commun. Letter, Vol.6, No. 1, 2002, pp.31-33.
    [83] F.Gagnon, D.Haccoun, Bounds on the error performance of coding for nonindependent Rician-fading channels, IEEE Trans. Commun., Vol.40, No.2, Feb., 1992, pp.351-360.
    [84] Robert van Nobelen, D.P.Taylor, Analysis of the pairwise error probability of non-interleaved codes on the Rayleigh-fading channel, in Proc. Of GLOBECOM 1997, pp.181-185.
    [85] E.Malkamaki, H.Leib, Rate 1/n convolutional codes with interleaving depth of n over a block fading rician channel, in Proc. Of VTC'97, May, 1997, pp.2002-2006.
    [86] Sunghyun Choi, Kang G. Shin, A class of adaptive hybrid ARQ schemes for wireless links, IEEE Trans. Veh. Techn., Vol.50, No.3, May 2001, pp.777-790.
    [87] C.H.Cho, J.J.Won, H.W.Lee, Performance of hybrid Ⅱ ARQ schemes using punctured RS code for wirelss ATM, IEE Proc. Commun., 2001, Vol. 148, No.4, pp.229-233.
    
    
    [88] N.C.Beaulieu, A.A.Abu-Dayya, Analysis of equal gain diversity on Nakagami fading channels, IEEE Trans. Commun., Vol.39, No.2, 1991, pp.225-234.
    [89] M.K.Simon, M.S.Alouini, A unified approach to the performance analysis of digital communication over generalized fading channels, Proceedings of IEEE, Vol.86, No.9, 1998, pp. 1866-1877.
    [90] A.Annamalai, M.K.Simon, Performance analysis of coherent equal-gain combining over Nakagami-m fading channel, IEEE Trans. Veh. Tech., Vol.50, No.6, Nov. 2001, pp. 1449-1463.
    [91] N.C.Beaulieu, An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables, IEEE Trans. Commun., Vol.38, No.9, 1990, pp.1463-1474.
    [92] S.G.Wilson, Digital modulation and coding, Prentice Hall Inc., 1996.
    [93] 陈庆春,范平志,在混合自动重发请求系统中并行冗余发送与并行合并接收分组数据的方法”,中国02133719.5号发明专利申请。
    [94] Qingchun Chen, Pingzhi Fan, On the performance of truncated type Ⅲ hybrid ARQ scheme with code combining, Journal of Wireless Communications and Mobile Computing, John Wiley &' Sons, Ltd., Vol.3, No.5, August, 2003, pp.641-658.
    [95] 3gpp TR 25.835 (vl.0.0), Report on hybrid ARQ type Ⅱ/Ⅲ (Release 2000), Sep., 2000;
    [96] A.J.Viterbi, Convolutional codes and their performance in communication systems, IEEE Trans. Commun. Techn., Vol.19, No.5, 1971, pp.751-772.
    [97] J.Conan, The weight spectra of some short low-rate convolutional codes, IEEE Trans. Commun., Vol.32, No.9, 1984, pp.1050-1053.
    [98] A.Aunamalai,C.Tellambura, Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals, IEEE Trans. Commun.,Vol.49, No.1, 2001, pp.58-68.
    [99] Q.T.Zhang, Probability of error for equal-gain combiners over Rayleigh channels: some closed-form solutions, IEEE Trans. Commun., Vol.45, No.3, 1997, pp.270-273.
    [100] J.G.Proakis, Digital communications, McGraw-Hill Inc., 3rd edition, 1995.
    [101] Ke Wan, Qingchun Chen, Pingzhi-Fan, A novel parallel encoding and decoding method for Turbo codes, in Proc. Of the 4th International Conference
    
    on Parallel and Distributed Computing, Applications and Technologies (PDCAT'2003), IEEE Press (03EX684, ISBN: 0-7803-7840-7), 2003, pp.927-930.
    [102] 万科,陈庆春,范平志,基于分块处理的Turbo码并行编译码方法,中国031174744号发明专利申请。
    [103] Qingchun Chen,Ke Wan, Pingzhi Fan, A parallel Turbo coding scheme based on frame-split and trellis termination techniques, submitted to IEEE Commun. Letters.
    [104] 3GPP TS25.212(v.3.5.0), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network: Multiplexing and Channel Coding (FDD) (Release 1999), 2000-12.
    [105] S.Golomb, Shift register sequences. (revised edition), Laguna Hills, CA: Aegeon Park Press, 1982.
    [106] A.Khandani, Design of turbo-code interleaver using hungarian method, Electron. Letters, Vol.34, No. 1, 1998, pp.63-65.
    [107] S.Seo, T.Dohi, F.Adachi, SIR-based transmit power control of reverse link for coherent DS-CDMA mobile radio, IEICE Trans. Commun., July, Vol.E81-B, No.7, 1998, pp.1508-1516.
    [108] C.C.Lee, R.Steele, Closed-loop power control in CDMA systems, IEE Proc. Commun., Vol.143, No.4, 1996, pp.231-239.
    [109] N.Freis, T.G.Jeans, P.Taaghol, Adaptive SIR estimation in DS-CDMA cellular systems using Kalman filtering, Electronics Letters, Vol.37, No.5, 2001, pp.315-317.
    [110] J.K.Cavers, An analysis of pilot symbol assisted modulation for Rayleigh fading channels, IEEE Trans. Veh. Tech., Nov., Vol.40, No.4, 1991, pp.686-693.
    [111] M.C.Valenti, B.D.Woemer, Iterative channel estimation and decoding of pilot symbol assisted Turbo codes over flat-fading channels, IEEE Journal on Select. Areas in Commun., Vol.19, No.9, 2001, pp.1697-1705.
    [112] R.A.Iltis, Joint estimation of PN code delay and multipath using the extended Kalman filter, IEEE Trans. Commun., Vol.38, No.10, 1990, pp.1677-1685.
    [113] Qingchun Chen, Pingzhi Fan, A novel SNR estimation scheme associated with hybrid ARQ, in Proc. Of the Seventh International Symposium on Communication Theory and Applications (ISCTA'2003), Ambleside, U.K. pp.126-130.
    
    
    [114] Qingchun Chen, Pingzhi Fan, New Cramer-Rao lower bound and SNR estimation techinique in hybrid ARQ system, in Proc. Of the 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '2003), IEEE Press (03TH8677, ISBN: 0-7803-7822-9), 2003, pp. 1819-1823.
    [115] N.S.Alagha, Cramer-Rao bounds of SNR estimates for BPSK and QPSK modulated signals, IEEE Commun. Letters, Vol.5, No. 1,2001, pp. 10-12.
    [116] Wiesel, J.Goldberg, H.Messer, Non-data-aided signal-to-noise-ratio estimation, in Proc. ICC'02, 2002, pp. 197-201.
    [117] I.S.Gradshteyn, I.M.Ryzhik, Table of integrals, series, and products (Corrected and Enlarged Edition), Academic Press, 1980.
    [118] M.Abramowitz, I.A.Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards-Applied Mathematics Series, 1964.
    [119] Simon Haykin, Adaptive filter theory, 4th edition, Prentice Hall.
    [120] Qingchun Chen, Zheng Ma, Pingzhi Fan, In-service SNR estimation over fading channel, in Proc. Of the 4th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'2003), IEEE Press (03EX684, ISBN: 0-7803-7840-7), 2003, pp.442-446.
    [121] 陈庆春,范平志,基于混合自动重发请求重传数据的盲信号干扰比估计方法,中国031173160号发明专利申请。
    [122] M.J.Gans, A power-spectral theory of propagation in the mobile-radio environment, IEEE Trans. Vech. Techn., Vol.-21, No.1, Feb., 1972, pp.27-38.
    [123] Qingchun Chen, Pingzhi Fan, Extended SNR and its application to the performance analysis of hybrid ARQ with code combining wystem, in Proc. Of The 4th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT'2003), IEEE Press (03EX684, ISBN: 0-7803-7840-7), 2003, pp.437-441.
    [124] Qingchun Chen, Pingzhi Fan, Performance analysis of type Ⅲ hybrid ARQ scheme with Code combining on the fading channel, submitted to IEE Proceedings-Commun., Jan., 2004.
    [125] Qingchun Chen, Pingzhi Fan, A novel analysis of equal-gain-combiner diversity system on frequency-selective Rayleigh fading channel, submitted to IEEE Trans. Signal Processing, Nov., 2003.
    
    
    [126] Qingchun Chen and Pingzhi Fan, A novel SNR estimation technique associated with hybrid ARQ for the AWGN channel, submitted to IEEE Trans. Commun., May, 2003.
    [127] 王新梅,肖国镇,《纠错码——原理与方法》,西安电子科技大学出版,2001年(修订版)。
    [128] Nakagami, M.: The m-distribution—a general formula of intensity distribution of fading, in Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. New York: Pergamon, 1960.
    [129] Kallel, S., Complementary punctured convolutional (CPC)codes and their applications, IEEE Trans. Commun., Vol.43, No.6, June 1995, pp.2005-2009.
    [130] Kallel, S., Link, R., Bakhtiyari, Throughput performance of memory ARQ schemes, IEEE Trans. Veh. Techn., Vol.48, No.3, May, 1999, pp.891-899.
    [131] Q. T. Zhang, A simple approach to probability of error for equal gain combiners over Rayleigh channels, IEEE Trans. Veh. Techn., Vol.48 , No. 4, July 1999, pp.1151-1154.
    [132] M.S. Alouini, Ali Abdi, M. Kaveh, Sum of Gamma Variates and Performance of Wireless Communication Systems Over Nakagami-Fading Channels, IEEE Trans. Veh. Techn., Vol.50, No. 6, Nov. 2001, pp.1471-1480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700