用户名: 密码: 验证码:
LuFe_2O_4及LuFeO_3基陶瓷的结构与多铁性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于其丰富的物理内涵与诱人的潜在应用,同时具有磁性与铁电性的多铁性材料正越来越受到广泛关注。本学位论文系统研究了LuFe2O4与LuFeO3基陶瓷的晶体结构、介电、铁电及磁学性能,并探讨其可能的多铁性机制,获得如下主要结论:
     采用真空反应烧结法可控制备出致密的单相LuFe2O4陶瓷,其在室温下为菱方结构,空间群是R3m。LuFe2O4陶瓷在175-275K间存在一个激活能为0.29eV的类Debye介电弛豫,可归结于Fe2+与Fe3+离子之间的电子涨落作用。LuFe2O4陶瓷的亚铁磁转变温度为250K,温度约216K时发生玻璃态转变。室温下存在的非线性磁滞回线说明LuFe2O4在奈耳温度以上存在一定的弱铁磁性。LuFe2O4陶瓷经磁化处理后的介电常数在室温附近有明显下降,显示了明显的磁介电效应。然而,由于漏电流较大,LuFe2O4陶瓷在室温下难以测出可信的电滞回线。
     通过Mg2+置换Fe2+得到LuFeMgO4,其晶体结构与LuFe2O4-一致。LuFeMgO4陶瓷的反铁磁转变温度为27K,远低于LuFe2O4的磁转变温度,这可归结为非磁性的Mg2+离子置换磁性的Fe2+离子后引起的磁稀释作用。在Fe-O双层中Fe和O原子为非完全共面排列,导致LuFeMgO4在10K时出现宏观净磁化。LuFeMgO4陶瓷在240-420K温度范围内存在一个明显的介电弛豫,主要源于Fe2+与Fe3+离子之间的电荷跃迁。由于Mg2+离子的存在阻碍了电子的传递,其激活能的值比LuFe2O4要略大。经氧气氛热处理后介电弛豫受到明显的抑制,表明氧空位对LuFeMgO4陶瓷的介电弛豫有非常重要的影响。
     通过Cu2+置换Fe2+得到LuFeCuO4,其晶体结构与LuFe2O4及LuFeMgO4类似。LuFeCuO4陶瓷在250-415K间存在一个明显的介电弛豫,其激活能为0.37eV,与LuFe2O4及LuFeMgO4中介电弛豫的激活能较为接近,说明Fe3+/Fe2+及Fe3+/Cu2+离子之间的有序作用对LuFeCuO4的介电行为有重要影响。在LuFe2O4、 LuFeCuO4及LuFeMgO4中,随着二价离子自旋磁矩的降低,磁转变温度逐渐下降,在LuFeCuO4陶瓷中,其反铁磁转变温度为57K。与LuFe2O4相比,LuFeCuCU陶瓷剩余极化较弱,表明Cu2+离子抑制了体系的铁电性。在室温下,LuFeCuO4陶瓷具有显著的磁介电效应,在磁场12kOe,频率10kHz下介电常数变化~7%。
     LuFeO3在室温下为正交扭转的钙钛矿结构,空间群为Pbnm。LuFeO3陶瓷在140-250K及350-500K温度范围内存在两个明显的类Debye介电弛豫,其激活能分别为0.21eV及0.76eV。低温介电弛豫可能源自体系中Fe2+和Fe3+离子之间的电荷跃迁,而高温介电弛豫则与氧空位等缺陷密切相关。LuFeO3陶瓷的反铁磁转变温度为628K,低于该温度时可观测到弱铁磁性的存在,这是由于Fe自旋结构的排列存在一定的倾斜。在室温下,LuFeO3陶瓷具有明显的电滞回线,且其电极化在经过磁化处理后有明显的增大,表明磁性与铁电性之间可能存在耦合作用。室温下可观察到LuFeO3陶瓷中微弱的磁介电效应,进一步说明了其多铁性的存在。
     LuFe0.95Mn0.05O3陶瓷在室温下的晶体结构与LuFeO3一致。在360-530间存在与LuFeO3中的高温介电弛豫相似的介电弛豫,主要源自氧空位的贡献。与LuFeO3相比,LuFe0.95Mn0.05O3陶瓷在室温下的铁电性有一定程度的削弱,说明了Fe2+和Fe3+电荷有序对LuFeO3铁电性的贡献以及Mn置换对电荷有序的破坏作用。LuFe0.95Mn0.05O5陶瓷的反铁磁转变温度为601K,比LuFeO3略低,这是由于Mn3+-O-Mn3+以及Fe3+-O-Mn3+反铁磁交换作用比Fe3+-O-Fe3+交换作用弱。低温下,具有强各向异性能的Mn3+离子对体系的磁各向异性占主导作用,导致LuFe0.95Mn0.05O3在温度约108K时发生自旋重取向。
Recently, multiferroic materials that combine at least two ferroic parameters have attracted remarkable interest due to the rich physical contents and the great potential applications in smart and multifunctional devices. In the present thesis, the crystal structure, dielectric, ferroelectric and magnetic properties of LuFe2O4and LuFeO3-based ceramics were investigated systematically. Moreover, the possible multiferroic characteristics in these ceramics were discussed. The following primary conclusions were obtained.
     Single-phase LuFe2O4could be obtained under vacuum environment and the crystal structure was identified to be rhombohedral in space group R3m. An obvious dielectric relaxation with activation energy of0.29eV was observed between175K and275K, which was ascribed to the electron hopping between Fe2+and Fe3+ions. The Neel temperature of the present ceramics was-250K, and a re-entrant spin glass transition was indicated at-216K. The nonlinear M-H hysteresis loop indicated weak ferromagnetic characteristics at room temperature. Meanwhile, a remarkable decrease appeared in the dielectric constant of the as-magnetized sample, implying the magnetodielectric effect in the LuFe2O4ceramics. No convincing ferroelectric hysteresis could be obtained in LuFe2O4ceramics at room temperatrure, which might be caused by high leakage.
     LuFeMgO4, which was isomorphous to LuFe2O4, was indentified to be antiferromagnetic with a Neel temperature of27K. The slim hysteresis loop measured at10K demonstrated the weak ferromagnetic or ferrimagnetism ordering in LuFeMgO4ceramics, which might be attributed to the canting angle in Fe moment. An obvious Debye-type dielectric relaxation with an activation energy of0.35eV was observed between240and420K. The replacement of Mg2+caused the suppression of electron transfer, resulting a larger activation energy than that of LuFe2O4. The dielectric relaxation could be strongly suppressed by oxygen annealing, indicating that oxygen vacancies played an essential role in the dielectric response of LuFeMgO4ceramics.
     The crystal structure of LuFeCuO4was similar with those of LuFe2O4and LuFeMgO4. An obvious dielectric relaxation with activation energy0.37eV was observed between250and415K, which could be ascribed to the electron hopping between the ions on Fe sites. With the decrease of spin moments of the divalent ions, the values of TN became smaller in the order of LuFe2O4, LuFeCuO4(TN~57K) and LuFeMgO4. A P-E hysteresis loop was observed in LuFeCuO4ceramics at150K, and the replacement of Cu2+resulted in the weaker ferroelectricity than LuFe2O4. At room temperature, remarkable magnetodielectric response (~7%) was observed in LuFeCuO4ceramics.
     LuFeO3was identified to be an orthorhombically distorted perovskite structure with space group Pbnm. Two Debye-type dielectric relaxations were observed in LuFeO3ceramics. The low temperature relaxation was originated from the electron hopping between Fe2+and Fe3+ions, while the high temperature relaxation was related with oxygen vacancies. The Neel temperature for LuFeO3was628K, and the weak ferromagnetic characteristics owing to the canting angle of magnetic spins were detected at room temperature. Obvious ferroelectric loops were observed at room temperature, and the values of electric polarization increased with an applied external magnetic field. Meanwhile, room-temperature magnetodielectric effect was detected, and LuFeO3was expected as a promising candidate for new multiferroic materials.
     In LuFeO3, partially substituting Mn for Fe did not change the crystal structure. The low temperature dielectric relaxation was suppressed and only one dielectric anomaly around360-530K was observed in LuFe0.95Mn0.05O3ceramics. The smaller polarization compared with LuFeO3suggested the important role of electron hopping between Fe2-and Fe3+ions in ferroelectricity. The results of thermal analysis indicated that the Neel temperature decreased with Mn-substitution, which could be ascribed to the weaker Fe3+-O-Mn3+and Mn3+-O-Mn3+exchange interactions compared with Fe3+-O-Fe3+interaction. Due to the strong anisotropy of Mn3+ions, a spin reorientation transition could be induced in LuFeo.95Mno.05O3.
引文
[1]李标荣.电子陶瓷工艺原理.武汉:华中工学院出版社,1986:1-2.
    [2]A. J. Moulson, J. M. Herbert(李世普,陈晓明,樊东辉,刘秋霞译).电子陶瓷:材料、性能、应用.武汉:武汉工业大学出版社,1993:1-4.
    [3]徐廷献,沈继跃,薄占满,方春行,曲远方.电子陶瓷材料.天津:天津大学出版社,1993:1-4.
    [4]Y. Tokura. Multiferroics-toward Strong Coupling between Magnetization and Polarization in a Solid. J. Magn. Magn. Mater.,2007,310(2):1145-1150.
    [5]J. F. Scott and C. A. P. de Araujo. Ferroelectric Memories. Science,1989,246(4936): 1400-1405.
    [6]B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo. Lanthanum-Substituted Bismuth Titanate for Use in Non-Volatile Memories. Nature,1999,401(6754):682-684.
    [7]O. Auciello, J. F. Scott, and R. Ramesh. The Physics of Ferroelectric Memories. Phys. Today, 1998,51(7):22-27.
    [8]J. F. Scott. Data Storage:Multiferroic Memories. Nature Mater.,2007,6(4):256-257.
    [9]刘维良,喻佑华.先进陶瓷工艺学.武汉:武汉理工大学出版社,2004:6-7.
    [10]张金升,王美婷,许凤秀.先进陶瓷导论.北京:化学工业出版社,2007:1-5.
    [11]J. F. Scott. Ferroelectric Memories Today. Ferroelectrics,2000,236(1):247-258.
    [12]G. H. Haertling. Ferroelectric Ceramics:History and Technology. J. Am. Ceram. Soc.,1999, 82(4):797-818.
    [13]B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo. Lanthanum-Substituted Bismuth Titanate for Use in Non-Volatile Memories. Nature,401(6754):682-684.
    [14]H. Schmid. Multi-Ferroic Magnetoelectrics. Ferroelectrics,1994,162(1):317-338.
    [15]E. Ascher, H. Rieder, H. Schmid, and H. Stossel. Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I. J. Appl. Phys.,1966,37(3):1404-1405.
    [16]T. Miyashita and T. Murakami. The Coexistence of the Spontaneous Electric Polarization and Magnetization in Ni-I Boracite. J. Phys. Soc. Jpn.,1970,29(4):1092-1092.
    [17]M. Haida, K. Kohn, and H. Schmid. The Magnetic Properties of Ferroelectric and Ferromagnetic Ni-Cl Boracite at Low Temperature. J. Phys. Soc. Jpn.,1974, 37(5):1463-1463.
    [18]G. T. Rado. Observation and Possible Mechanisms of Magnetoelectric Effects in a Ferromagnet. Phys. Rev. Lett.,1964,13(10):335-337.
    [19]R. P. Santoro, D. J. Segal, and R. E. Newnham. Magnetic properties of LiCoPO4 and LiNiPO4. J. Phys. Chem. Solids,1966,27(6-7):1192-1193.
    [20]Anonymous. Breakthrough of the Year:Areas to Watch. Science,2007,318(5858): 1848-1849.
    [21]G. Lawes and G. Srinivasan. Introduction to Magnetoelectric Coupling and Multiferroic Films. J. Phys. D:Appl. Phys.,2011,44(24):243001.
    [22]林亦琦.La系双钙钛矿陶瓷的介电与磁学性能[博士学位论文].杭州:浙江大学材料系,2010:4-5.
    [23]I. E. Dzyaloshinskii. On the Magneto-Electrical Effects in Antiferromagnets. Sov. Phys. JETP,1960,10(3):628-629.
    [24]V. J. Folen, G. T. Rado, and E. W. Stalder. Anisotropy of the Magnetoelectric Effect in Cr2O3. Phys. Rev. Lett.,1961,6(11):607-608.
    [25]G. T. Rado and V. J. Folen. Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains. Phys. Rev. Lett.,1961,7(8):310-311.
    [26]M. Fiebig. Revival of the Magnetoelectric Effect. J. Phys. D:Appl. Phys.,2005,38(8): R123-R152.
    [27]S. W. Cheong and M. Mostovoy. Multiferroics:a Magnetic Twist for Ferroelectricity. Nature Mater.,2007,6(1):13-20.
    [28]W. F. Brown, Jr., R. M. Hornreich, and S. Shtrikman. Upper Bound on the Magnetoelectric Susceptibility. Phys. Rev.,1968,168(2):574-577.
    [29]何泓材,林元华,南策文.多铁性磁电复合薄膜.科学通报.2008,53(10):1136-1148.
    [30]B. D. H. Tellegen. The Gyrator, A New Electric Network Element. Philips Res. Rept.,1948, 3(2):81-101.
    [31]J. Van Suchtelen. Product Properties:A New Application of Composite Materials. Philips Res. Rep.,1972,27(1):28-37.
    [32]J. van den Boomgaard, D. R. Terrell, R. A. J. Born, and H. F. J. I. Giller. An in Situ Grown Eutectic Magnetoelectric Composite Material:Part 1 Composition and Unidirectional Solidification. J. Mater. Sci.,1974,9(10):1705-1709.
    [33]J. van den Boomgaard and R. A. J. Born. A Sintered Magnetoelectric Composite Material BaTiO3-Ni(Co, Mn)Fe2O4. J. Mater. Sci.,1978,13(7):1538-1548.
    [34]J. Ryu, S. Priya, K. Uchino, and H.-E. Kim. Magnetoelectric Effect in Composites of Magnetostrictive and Piezoelectric Materials. J. Electroceram.,2002,8(2):107-119.
    [35]M. I. Bichurin, D. A. Filippov, and V. M. Petrov. Resonance Magnetoelectric Effects in Layered Magnetostrictive-Piezoelectric Composites. Phys. Rev. B,2003,68(13):132408.
    [36]G. Srinivasan, E. T. Rasmussen, and R. Hayes. Magnetoelectric Effects in Ferrite-Lead Zirconate Titanate Layered Composites:The influence of Zinc Substitution in Ferrites. Phys. Rev. B,2003,67(1):014418.
    [37]G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes. Magnetoelectric Effects in Bilayers and Multilayers of Magnetostrictive and Piezoelectric Perovskite Oxides. Phys. Rev. B,2002,65(13):134402.
    [38]G. A. Smolenskii and 1. E. Chupis. Ferroelectromagnets. Sov. Phys. Usp.,1982, 25(7):475-493.
    [39]E. Ascher. Kineto-Electric and Kinetomagnetic Effects in Crystals. Int. J. Magnetism,1974,5: 287-295.
    [40]H. Schmid. Some Symmetry Aspects of Ferroics and Single Phase Multiferroics. J. Phys.: Condens. Matter.,2008,20(43):434201.
    [41]N. A. Hill. Why Are There so Few Magnetic Ferroelectrics? J. Phys. Chem. B,2000,104(29): 6694-6709.
    [42]马妍BiFeO3、YFeO3与YMnO3基陶瓷的介电弛豫与多铁性[博士学位论文].杭州:浙江大学材料系,2009:13-14.
    [43]王克锋,刘俊明,王雨.单相多铁性材料-极化和磁性序参量的耦合与调控.科学通报.2008,53(10):1098-1135.
    [44]宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994:41-47.
    [45]J. van den Brink and D. I Khomskii. Multiferroicity Due to Charge Ordering. J. Phys.: Condens. Matter.,2008,20(43):434217.
    [46]D. Khomskii. Classifying Multiferroics:Mechanisms and effects. Physics,2009,2(20).
    [47]G. A. Smolenskii, A. I. Agranovskaia, S. N. Popov, and V. A. Isupov. New Ferroelectrics of Complex Composition.2. Pb2Fe3+Nb06 and Pb2YbNb06. Sov. Phys.-Tech. Phys.,1958, 3(10):1981-1982.
    [48]G. A. Smolenskii, A. I. Agranovskaya, and V. A. Isupov. New Ferroelectrics of Complex Composition.3. Pb2MgWO6, Pb3Fe2WO9 and Pb2FeTa06. Sov. Phys.-Solid State,1959,1(6): 907-908.
    [49]G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Kraink. New Ferroelectrics of Complex Composition.4. Sov. Phys.-Solid State,1961,2(11):2651-2654.
    [50]G. A. Smolenskii, V. A. Isupov, and A. I. Agranovskaya. New Ferroelectrics of Complex Composition of the Type A22+(BI3+BⅡ5+)O6.1. Sov. Phys.-Solid State,1959,1(1):150-151.
    [51]R. Blinc, P. Cevc, A. Zorko, J. Hole, M. Kosec, Z. Trontelj, J. Pirnat, N. Dalai, V. Ramachandran, and J. Krzystek. Electron Paramagnetic Resonance of Magnetoelectric Pb(Fe1/2Nb1/2)O3. J. Appl. Phys.,2007,101(3):033901.
    [52]X. S. Gao, X. Y. Chen, J. Yin, J. Wu, Z. G. Liu, and M. Wang. Ferroelectric and Dielectric Properties of Ferroelectromagnet Pb(Fe1/2Nb1/2)O3 Ceramics and Thin Films. J. Mater. Sci., 2000,35(21):5421-5425.
    [53]L. Yan, J. F. Li, and D. Viehland. Deposition Conditions and Electrical Properties of Relaxor Ferroelectric Pb(Fe1/2Nb1/2)O3 Thin Films Prepared by Pulsed Laser Deposition. J. Appl. Phys.,2007,101(10):104107.
    [54]Y. Yang, J. M. Liu, H. B. Huang, W. Q. Zou, P. Bao, and Z. G. Liu. Magnetoelectric Coupling in Ferroelectromagnet Pb(Fe1/2Nb1/2)O3 Single Crystals. Phys. Rev. B,2004,70(13):132101.
    [55]迟振华,靳常青.单相磁电多铁性体研究进展.物理学进展,2007,27(2):225-238.
    [56]Y. H. Chu, L. W. Martin, M. B. Holcomb, and R. Ramesh. Controlling Magnetism with Multiferroics. Mater. Today,2007,10(10):16-23.
    [57]A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G B. Loutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger. Magnetic and Electrical Properties of Single-Phase Multiferroic BiFeO3. J. Appl. Phys.,2005,97(9):093903.
    [58]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wurtig, and R. Ramesh. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science,2003, 299(5613):1719-1722.
    [59]C. Ederer and N. A. Spaldin. Weak Ferromagnetism and Magnetoelectric Coupling in Bismuth Ferrite. Phys. Rev. B,2005,71(6):060401(R).
    [60]M. C. Sekhar and N. V. Prasad. Dielectric, Impedance, Magnetic and Magnetoelectric Measurements on YMnO3. Ferroelectrics,2006,345(1):45-57.
    [61]B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin. The Origin of Ferroelectricity in Magnetoelectric YMnO3. Nature Mater.,2004,3(3):164-170.
    [62]B. B. van Aken, A. Meetsma, and T. T. M. Palstra. Hexagonal YMnO3. Acta Crystallogr., Sect. C:Cryst. Struct. Commun.,2001,57(3):230-232.
    [63]A. K. Singh, S. Patnaik, S. D. Kaushik, and V. Siruguri. Dominance of Magnetoelastic Coupling in Multiferroic Hexagonal YMnO3. Phys. Rev. B,2010,81(18):184406.
    [64]M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev. Observation of Coupled Magnetic and Electric Domains. Nature,2002,419 (6909):818-820.
    [65]T. Portengen, Th. Ostreich, and L. J. Sham. Theory of Electronic Ferroelectricity. Phys. Rev. B,1996,54(24):17452-17463.
    [66]P. G. Radaelli, D. E. Cox, M. Marezio, and S-W. Cheong. Charge, Orbital, and Magnetic Ordering in La0.5Cao.5Mn03. Phys. Rev. B,1997,55(5):3015-3023
    [67]S. Mori, C. H. Chen, and S.-W. Cheong. Pairing of Charge-Ordered Stripes in (La,Ca)MnO3. Nature,1998,392(6675):473-476.
    [68]J. C. Loudon, N. D. Mathur, and P. A. Midgley. Charge-Ordered Ferromagnetic Phase in La0.5Ca0.5MnO3. Nature,2002,420 (6917):797-800.
    [69]H. Das, G. Sangiovanni, A. Valli, K. Held, and T. Saha-Dasgupta. Size Control of Charge-Orbital Order in Half-Doped Manganite La0.5Ca0.5MnO3. Phys. Rev. Lett.,2011, 107(19):197202.
    [70]T. Zhang and M. Dressel. Grain-size Effects on the Charge Ordering and Exchange Bias in Pr0.5Ca0.5MnO3:The Role of Spin Configuration. Phys. Rev. B,2009,80(1):014435.
    [71]S. N. Jammalamadaka, S. S. Rao, S. V. Bhat, J. Vanacken, and V. V. Moshchalkov. Magnetocaloric Effect and Nature of Magnetic Transition in Nanoscale Pr0.5Ca0.5MnO3. J. Appl. Phys.,2012,112(8):083917.
    [72]I. Leonov, A. N. Yaresko, V. N. Antonov, M. A. Korotin, and V. I. Anisimov. Charge and Orbital Order in Fe3O4. Phys. Rev. Lett.,2004,93(14):146404.
    [73]K. Yamauchi, T. Fukushima, and S. Picozzi. Ferroelectricity in Multiferroic Magnetite Fe3O4 Driven by Noncentrosymmetric Fe2+/Fe3+Charge-Ordering:First-Principles Study. Phys. Rev. B,2009,79(21):212404.
    [74]N. Ikeda, S. Mori, and K. Kohn. Charge Ordering and Dielectric Dispersion in Mixed Valence Oxides RFe2O4. Ferroelectrics,2005,314(1):41-56.
    [75]A. Nagano and S. Ishihara. Spin-Charge-Orbital Structures and Frustration in Multiferroic RFe2O4. J. Phys.:Condens. Matter.,2007,19(14):145263.
    [76]Y. Murakami, N. Abe, T. Arima, and D. Shindo. Charge-Ordered Domain Structure in YbFe2O4 Observed by Energy-Filtered Transmission Electron Microscopy. Phys. Rev. B, 2007,76(2):024109.
    [77]J. Wen, G. Xu, G. Gu, and S. M. Shapiro. Robust Charge and Magnetic Orders under Electric Field and Current in Multiferroic LuFe2O4. Phys. Rev. B,2010,81(14):144121.
    [78]R. C. Rai, A. Delmont, A. Sprow, B. Cai, and M. L. Nakarmi. Spin-Charge-Orbital Coupling in Multiferroic LuFe2O4 Thin Films. Appl. Phys. Lett.,2012,100(21):212904.
    [79]N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito. Ferroelectricity from Iron Valence Ordering in the Charge-Frustrated System LuFe2O4. Nature,2005,436(7054):1136-1138.
    [80]M. A. Subramanian, T. He, J. Chen, N. S. Rogado, T. G. Calvarese, and A. W. Sleight. Giant Room-Temperature Magnetodielectric Response in the Electronic Ferroelectric LuFe2O4. Adv. Mater.,2006,18(13):1737-1739.
    [81]H. Katsura, N. Nagaosa, and A. V. Balatsky. Spin Current and Magnetoelectric Effect in Noncollinear Magnets. Phys. Rev. Lett.,2005,95(5):057205.
    [82]M. Mostovoy. Ferroelectricity in Spiral Magnets. Phys. Rev. Lett.,2006,96(6):067601.
    [83]T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev., 1960,120(1):91-98.
    [84]I. A. Sergienko and E. Dagotto. Role of the Dzyaloshinskii-Moriya Interaction in Multiferroic Perovskites. Phys. Rev. B,2006,73(9):094434.
    [85]M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S.-W. Cheong, O. P. Vajk, and J. W. Lynn. Magnetic Inversion Symmetry Breaking and Ferroelectricity in TbMnO3. Phys. Rev. Lett.,2005,95(8):087206.
    [86]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura. Magnetic Control of Ferroelectric Polarization. Nature,2003,426(6962):55-58.
    [87]Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, and K. Kohn. Magnetic and Ferroelectric Properties of Multiferroic RMn2O5. J. Phys.:Condens. Matter.,2008,20(43): 434206.
    [88]L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P.G. Radaelli, and S-W. Cheong. Structural Anomalies and Multiferroic Behavior in Magnetically Frustrated TbMn2O5. Phys. Rev. Lett.,93(17):177402.
    [89]R. Valdes Aguilar, A. B. Sushkov, S. Park, S.-W. Cheong, and H. D. Drew. Infrared Phonon Signatures of Multiferroicity in TbMn2O5. Phys. Rev. B,2006,74(18):184404.
    [90]J. Koo, C. Song, S. Ji, J.-S. Lee, J. Park, T.-H. Jang, C.-H. Yang, J.-H. Park, Y. H. Jeong, K.-B. Lee, T. Y. Koo, Y. J. Park, J.-Y. Kim, D. Wermeille, A.1. Goldman, G. Srajer, S. Park, and S.-W. Cheong. Non-Resonant and Resonant X-Ray Scattering Studies on Multiferroic TbMn2O5. Phys. Rev. Lett.,2007,99(19):197601.
    [91]N. Leo, D. Meier, R. V. Pisarev, N. Lee, S.-W. Cheong, and M. Fiebig. Independent Ferroelectric Contributions and Rare-Earth-Induced Polarization Reversal in Multiferroic TbMn2O5. Phys. Rev. B,2012,85(9):094408.
    [92]C. Wilkinson, P. J. Brown, and T. Chatterji. Temperature Evolution of the Magnetic Structure of TbMn2O5. Phys. Rev. B,2011,84(22):224422.
    [93]M. Mochizuki, N. Furukawa, and N. Nagaosa. Spin Model of Magnetostrictions in Multiferroic Mn Perovskites. Phys. Rev. Lett.,2010,105(3):037205.
    [94]C. Wang, G.-C. Guo, and L. He. Ferroelectricity Driven by the Noncentrosymmetric Magnetic Ordering in Multiferroic TbMn2O5:A First-Principles Study. Phys. Rev. Lett., 2007,99(17):177202.
    [95]N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong. Electric Polarization Reversal and Memory in a Multiferroic Material Induced by Magnetic Fields. Nature,2004, 429(6990):392-395.
    [96]J.-H. Lee, Y. K. Jeong, J. H. Park, M.-A. Oak, H. M. Jang, J. Y. Son, and J. F. Scott. Spin-Canting-Induced Improper Ferroelectricity and Spontaneous Magnetization Reversal in SmFeO3. Phys. Rev. Lett.,2011,107(11):117201.
    [97]S. Acharya, J. Mondal, S. Ghosh, S. K. Roy, and P. K. Chakrabarti. Multiferroic Behavior of Lanthanum Orthoferrite (LaFeO3). Mater. Lett.,2010,64(3):415-418.
    [98]X. P. Yuan, Y. K. Tang, Y. Sun, and M. X. Xu. Structure and Magnetic Properties of Y,.,LuxFeO3 (0    [99]R. L. White. Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare-Earth Orthoferrites. J. Appl. Phys.,1969,40(3):1061-1069.
    [100]D. Treves. Studies on Orthoferrites at the Weizmann Institute of Science. J. Appl. Phys., 1965,36(3):1033-1039.
    [101]D. Treves. Magnetic Studies of Some Orthoferrites. Phys. Rev.,1962,125(6):1843-1853.
    [102]M. Eibschutz, S. Shtrikman, and D. Treves. Mossbauer Studies of Fe57 in Orthoferrites. Phys. Rev.,1967,156(2):562-577.
    [103]I. Dzyaloshinsky. A Thermodynamic Theory of "Weak" Ferromagnetism of Antiferromagnetics. J. Phys. Chem. Solids,1958,4(4):241-255.
    [104]L. Shekhtman, O. Entin-Wohlman, and A. Aharony. Moriya's Anisotropic Superexchange Interaction, Frustration, and Dzyaloshinsky's Weak Ferromagnetism. Phys. Rev. Lett.,1992, 69(5):836-839.
    [105]Y. Tokunaga, S. Iguchi, T. Arima, and Y. Tokura. Magnetic-Field-Induced Ferroelectric State in DyFeO3. Phys. Rev. Lett.,2008,101(9):097205.
    [106]C. W. Bark, S. Ryu, Y. M. Koo, H. M. Jang and H. S. Youn. Electric-Field-Induced Structural Modulation of Epitaxial BiFeO3 Multiferroic Thin Films as Studied using x-ray Microdiffraction. Appl. Phys. Lett.,2007,90(2):022902.
    [107]殷之文.电介质物理学.北京:科学出版社,第二版,2003:307-309.
    [108]钟维烈.铁电体物理学.北京:科学出版社,2000:6-9.
    [109]K. Kato, S. lida, K. Yanai, and K. Mizushima. Ferrimagnetic Ferroelectricity of Fe3O4. J. Magn. Magn. Mater.,1983,31-34(2):783-784.
    [110]A. M. L. Lopes, J. P. Arau'jo, V. S. Amaral, J. G. Correia, Y. Tomioka, and Y. Tokura. New Phase Transition in the Pr1-xCaxMnO3 System:Evidence for Electrical Polarization in Charge Ordered Manganites. Phys. Rev. Lett.,2008,100(15):155702.
    [111]E. J. W. Verwey. Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperature. Nature,1939,144(3642):327-328.
    [112]E. J. W. Verwey and P. W. Haayman. Electronic Conductivity and Transition Point of Magnetite ("Fe3O4"). Physica,1941,8(9):979-987.
    [113]S. Ishihara. Electronic Ferroelectricity and Frustration. J. Phys. Soc. Jpn.,2010,79(1): 011010.
    [114]D. V. Efremov, J. van den Brink, and D.I. Khomskii. Bond- versus Site-Centred Ordering and Possible Ferroelectricity in Manganites. Nature Mater.,2004,3(12):853-856.
    [115]C. Jardon, F. Rivadulla, L. E. Hueso, A. Fondado, M. A. Lopez-Quintela, J. Rivas, R. Zysler, M. T. Causa, and R. D. Sanchez. Experimental Study of Charge Ordering Transition in Pr0.67Ca0.33MnO3. J. Magn. Magn. Mater.,1999,196-197:475-476.
    [116]S. Mercone, A. Wahl, A. Pautrat, M. Pollet, and C. Simon. Anomaly in the Dielectric Response at the Charge-Orbital-Ordering Transition of Pr0.67Ca0.33MnO3. Phys. Rev. B, 2004,69(17):174433.
    [117]J. Y. Park, J. H. Park, Y. K. Jeong, and H. M. Jang. Dynamic Magnetoelectric Coupling in "Electronic Ferroelectric" LuFe2O4. Appl. Phys. Lett.,2007,91(15):152903.
    [118]A. B. Harris and T. Yildirim. Charge and Spin Ordering in the Mixed-Valence Compound LuFe2O4. Phys. Rev. B,2010,81(13):134417.
    [119]Y. Yamada, K. Kitsuda, S. Nohdo, and N. Ikeda. Charge and Spin Ordering Process in the Mixed-Valence System LuFe2O4:Charge Ordering. Phys. Rev. B,2000,62(18): 12167-12174.
    [120]W. Wu, V. Kiryukhin, H.-J. Noh, K.-T. Ko, J.-H. Park, W. Ratcliff Ⅱ, P. A. Sharma, N. Harrison, Y. J. Choi, Y. Horibe, S. Lee, S. Park, H. T. Yi, C. L. Zhang, and S.-W. Cheong. Formation of Pancakelike Ising Domains and Giant Magnetic Coercivity in Ferrimagnetic LuFe2O4. Phys. Rev. Lett.,2008,101(13):137203.
    [121]N. Ikeda. Ferroelectric Properties of Triangular Charge-Frustrated LuFe2O4. J. Phys.: Condens. Matter.,2008,20(43):434218.
    [122]N. Ikeda, Y. Matsuo, S. Mori, and K. Yoshii. Electronic Ferroelectricity from Charge Ordering in RFe2O4. IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,2008, 55(5):1043-1045.
    [123]F. Wang, C.-H. Li, T. Zou, Y. Liu, and Y. Sun. Electrically Driven Magnetic Relaxation in Multiferroic LuFe2O4. J. Phys.:Condens. Matter.,2010,22(49):496001.
    [124]D. S. F. Viana, R. A. M. Gotardo, L. F. Cotica, I. A. Santos, M. O. Dionysio, S. D. Souza, D. Garcia, J. A. Eiras, and A. A. Coelho. Ferroic Investigations in LuFe2O4 Multiferroic Ceramics. J. Appl. Phys.,2011,110(3):034108.
    [125]K.-T. Ko, H.-J. Noh, J.-Y. Kim, B.-G. Park, J.-H. Park, A. Tanaka, S. B. Kim, C. L. Zhang, and S.-W. Cheong. Electronic Origin of Giant Magnetic Anisotropy in Multiferroic LuFe2O4. Phys. Rev. Lett.,2009,103(20):207202.
    [126]J. Wen, G. Xu, G. Gu, and S. M. Shapiro. Magnetic-Field Control of Charge Structures in the Magnetically Disordered Phase of Multiferroic LuFe2O4. Phys. Rev. B,2009,80(2): 020403(R).
    [127]H. X. Yang, Y. Zhang, Y. B. Qin, C. Ma, H. F. Tian, and J. Q. Li. Electronic Ferroelectricity, Charge Ordering and Structural Phase Transitions in LuFe2O4(LuFeO3)n (n=0 and 1). Phys. Status Solidi B,2010,247(4):870-876.
    [128]Y. Yamada, S. Nohdo and N. Ikeda. Incommensurate Charge Ordering in Charge-Frustrated LuFe2O4 System. J. Phys. Soc. Jpn.,1997,66(12):3733-3736.
    [129]M. Kishi, Y. Nakagawa, M. Tanaka, N. Kimizuka, and 1. Shindo. Low-Temperature Transitions of RFe2O4. J. Magn. Magn. Mater.,1983,31-34(2):807-808.
    [130]J. lida, M. Tanaka, Y. Nakagawa, S. Funahashi, N. Kimizuka and S. Takekawa. Magnetization and Spin Correlation of Two-Dimensional Triangular Antiferromagnet LuFe2O4. J. Phys. Soc. Jpn.,1993,62(5):1723-1735.
    [131]N. Ikeda, K. Odaka, E. Takahashi, K. Kohn and K. Siratori. Dipole Glass Behavior of RFe2O4. Ferroelectrics,1997,190(1):191-196.
    [132]Y Todate, C Kikuta, E Himoto, M Tanaka, and J Suzuki. Spin Correlations in the Triangular-Lattice Random Mixed Antiferromagnet. J. Phys.:Condens. Matter.,1998, 10(18):4057-4070.
    [133]K. Yoshii, N. Ikeda, Y. Nishihata, D. Maeda, R. Fukuyama, T. Nagata, J. Kano. T. Kambe, Y. Horibe, and S. Mori. Exchange Bias in Multiferroic RFe2O4 (R=Y, Er, Tm, Yb, Lu, and In). J. Phys. Soc. Jpn.,2012,81(3):033704.
    [134]H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and J. Yang. Origin of the king Ferrimagnetism and Spin-Charge Coupling in LuFe2O4. Phys. Rev. B,2009,80(13): 132408.
    [135]M. Tanaka, H. Iwasaki, K. Siratori and I. Shindo. Mossbauer Study on the Magnetic Stracture of YbFe2O4:A Two-Dimensional Antiferromagnet on a Triangular Lattice. J. Phys. Soc. Jpn.,1989,58(4):1433-1440.
    [136]K. Kuepper, M. Raekers, C. Taubitz, M. Prinz, C. Derks, M. Neumann, A. V. Postnikov, F. M. F. de Groot, C. Piamonteze, D. Prabhakaran, and S. J. Blundell. Charge Order, Enhanced Orbital Moment, and Absence of Magnetic Frustration in Layered Multiferroic LuFe2O4. Phys. Rev. B,2009,80(22):220409(R).
    [137]F. Wang, J. Kim, Y.-J. Kim, and G. D. Gu. Spin-Glass Behavior in LuFe2O4,5. Phys. Rev. B,2009,80(2):024419.
    [138]M. H. Phan, N. A. Frey, H. Srikanth, M. Angst, B. C. Sales, and D. Mandrus. Magnetism and Cluster Glass Dynamics in Geometrically Frustrated LuFe2O4. J. Appl. Phys.,2009,105(7):O7E3O8.
    [139]A. D. Christianson, M. D. Lumsden, M. Angst, Z. Yamani, W. Tian, R. Jin. E. A. Payzant,I S. E. Nagler, B. C. Sales, and D. Mandrus. Three-Dimensional Magnetic Correlations in Multiferroic LuFe2O4. Phys. Rev. Lett.,2008,100(10):107601.
    [140]F. Wang, J. Kim, G. D. Gu, Y. Lee, S. Bae, and Y.-J. Kim. Oxygen Stoichiometry and Magnetic Properties of LuFe2O4+δ.J. Appl. Phys.,2013,113(6):063909.
    [141]S. Patankar, S. K. Pandey, V. R. Reddy, A. Gupta. A. Banerjee, and P. Chaddah. Tuning the Magnetic Properties of the Multiferroic LuFe2O4 by Moderate Thermal Trcatmenl. Europhys. Lett.,2010,90(5):57007.
    [142]X. S. Xu, J. de Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, and J. L. Musfeldt. Lattice Dynamical Probe of Charge Order and Antipolar Bilayer Stacking in LuFe2O4. Phys. Rev. B,2010,82(1):014304.
    [143]F. M. Vitucci, A. Nucara, C. Mirri, D. Nicoletti, M. Ortolani, U. Schade, and P. Calvani. Infrared and Transport Properties of LuFe2O4 under Electric Fields. Phys. Rev. B,2011, 84(15):153105.
    [144]A. M. Mulders, M. Bartkowiak, J. R. Hester, E. Pomjakushina, and K. Conder. Ferroelectric Charge Order Stabilized by Antiferromagnetism in Multiferroic LuFe2O4. Phys. Rev. B, 2011,84(14):140403(R).
    [145]Y. Zhang, H. X. Yang, C. Ma, H. F. Tian, and J. Q. Li. Charge-Stripe Order in the Electronic Ferroelectric LuFe2O4. Phys. Rev. Lett.,2007,98(24):247602.
    [146]N. Ikeda, K. Kohn, N. Myouga, E. Takahashi, H. Kitoh, and S. Takekawa. Charge Frustration and Dielectric Dispersion in LuFe2O4. J. Phys. Soc. Jpn.,2000,69(5): 1526-1532.
    [147]N. Ikeda, S. Mori, and K. Yoshii. Ferroelectricity from Valence Ordering in RFe2O4. Ferroelectrics,2007,348(1):38-47.
    [148]N. Ikeda, K. Kohn, H. Kito, J. Akimitsu, and K. Siratori. Dielectric Relaxation and Hopping of Electrons in ErFe2O4. J. Phys. Soc. Jpn.,1994,63(12):4556-4564.
    [149]D. Niermann, F. Waschkowski, J. de Groot, M. Angst, and J. Hemberger. Dielectric Properties of Charge-Ordered LuFe2O4 Revisited:The Apparent Influence of Contacts. Phys. Rev. Lett.,2012,109(1):016405.
    [150]J. de Groot, T. Mueller, R. A. Rosenberg, D. J. Keavney, Z. Islam, J.-W. Kim, and M. Angst. Charge Order in LuFe2O4:An Unlikely Route to Ferroelectricity. Phys. Rev. Lett.,108(18): 187601.
    [151]Y. B. Kudasov and D. A. Maslov. Frustration and Charge Order in LuFe2O4. Phys. Rev. B, 2012,86(21):214427.
    [152]A. Ruff, S. Krohns, F. Schrettle, V. Tsurkan, P. Lunkenheimer, and A. Loidl. Absence of Polar Order in LuFe2O4. Eur. Phys. J. B,2012,85(8):290.
    [153]J. Y. Park, J. H. Park, Y. K. Jeong, and H. M. Jang. Dynamic Magnetoelectric Coupling in "Electronic Ferroelectric" LuFe2O4. Appl. Phys. Lett.,2007,91(15):152903.
    [154]A. Feteira, D. C. Sinclair,1. M. Reaney, Y. Somiya, and M. T. Lanagan. BaTiO3-Based Ceramics for Tunable Microwave Applications. J. Am. Ceram. Soc.,2004, 87(6):1082-1087.
    [155]C.-H. Li, X.-Q. Zhang, Z.-H. Cheng, and Y. Sun. Room Temperature Giant Dielectric Tunability Effect in Bulk LuFe2O4. Appl. Phys. Lett.,2008,92(18):182903.
    [156]C.-H. Li, F. Wang, Y. Liu, X.-Q. Zhang, Z.-H. Cheng, and Y. Sun. Electrical Control of Magnetization in Charge-Ordered Multiferroic LuFe2O4. Phys. Rev. B,2009,79(17): 172412.
    [157]杨俊逸,李小强,郭亮,陈维平,李元元.放电等离子烧结(SPS)技术与新材料研究. 材料导报.2006,20(6):94-97.
    [158]白玲,赵兴宇,沈卫平,葛昌纯.放电等离子烧结技术及其在陶瓷制备中的应用.材料导报.2007,21(4):96-99.
    [159]T. Sekine and T. Katsura. Phase Equilibria in the System Fe-Fe2O3-Lu2O3 at 1200℃. J. Solid State Chem.,1976,17(1-2):49-54.
    [160]W. Wang, Z. Gai, M. Chi, J. D. Fowlkes, J. Yi, L. Zhu, X. Cheng, D. J. Keavney, P. C. Snijders, T. Z. Ward, J. Shen, and X. Xu. Growth Diagram and Magnetic Properties of Hexagonal LuFe2O4 Thin Films. Phys. Rev. B,2012,85(15):155411.
    [161]X. S. Xu, M. Angst, T.V. Brinzari, R. P. Hermann, J. L. Musfeldt, A. D. Christianson, D. Mandrus, B. C. Sales, S. McGill, J.-W. K.im, and Z. Islam. Charge Order, Dynamics, and Magnetostructural Transition in Multiferroic LuFe2O4. Phys. Rev. Lett.,2008,101(22): 227602.
    [162]M. Tanaka, E. Himoto, and Y. Todate. Mossbauer Study on a Diluted Triangular Antiferromagnet LuFeMgO4. J. Phys. Soc. Jpn.,1995,64(7):2621-2627.
    [163]N. Ikeda, K. Kohn, E. Himoto, and M. Tanaka. Magnetic Relaxation in Diluted Triangular Antiferromagnet LuFeMgO4. J. Phys. Soc. Jpn.,1995,64(11):4371-4377.
    [164]Y. Todate, E. Himoto, C. Kikuta, and M. Tanaka. Spin Correlation in the Diluted Triangular-Lattice Antiferromagnet LuFeMgO4. Phys. Rev. B,1998,57(1):485-491.
    [165]Y. Liu, C.-H. Li, X.-Q. Zhang, Z.-H. Cheng, and Y. Sun. Influence of Mg Doping on the Giant Dielectric Tunability in LuFe2O4. J. Appl. Phys.,2008,104(10):104112.
    [166]R. J. Cava, A. P. Ramirez, Q. Huang, and J. J. Krajewski. Compounds with the YbFe2O4 Structure Type:Frustrated Magnetism and Spin-Glass Behavior. J. Solid State Chem.,1998, 140(2):337-344.
    [167]S. Blundell. Magnetism in Condensed Matter.北京:科学出版社,2009:92-94.
    [168]C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, R. Ramesh, and J. F. Scott. Polarization Relaxation Kinetics and 180° Domain Wall Dynamics in Ferroelectric Thin Films. Phys. Rev. B,2001,65(1):014101.
    [169]Y. Matsuo, Y. Horibe, S. Mori, K. Yoshii, and N. Ikeda. Doping Effect on the Charge Ordering in LuFe2O4. J. Magn. Magn. Mater.,2007,310(2):349-351.
    [170]Y. Matuso, A. Hirata, Y. Horibe, K. Yoshii, N. Ikeda, and S. Mori. Nanometer-Sized Domain Structures in LuFeMO4 (M=Cu, Co) Revealed by Energy-Filtered Transmission Electron Microscopy. Ferroelectrics,2009,380(1):56-62.
    [171]K. Yoshii, N. Ikeda, Y. Matsuo, Y. Horibe, and S. Mori. Magnetic and Dielectric Properties of RFe2O4, RFeMO4, and RGaCuO4 (R=Yb and Lu, M=Co and Cu). Phys. Rev. B,2007, 76(2):024423.
    [172]K. Yoshii, N. Ikeda, Y. Okajima, Y. Yoneda, Y. Matsuo, Y. Horibe, and S. Mori. Magnetic and Dielectric Properties of InFe2O4, InFeCuO4, and lnGaCuO4. Inorg. Chem.,2008,47(14): 6493-6501.
    [173]Y. Matsuo, M. Suzuki, Y. Noguchi, T. Yoshimura, N. Fujimura. K. Yoshii, N. Ikeda, and S. Mori. Effects of Oxygen Annealing on Dielectric Properties of LuFeCuO4. Jpn. J. Appl. Phys.,2008,47(11):8464-8467.
    [174]J. F. Scott. Ferroelectrics Go Bananas. J. Phys.:Condens. Matter.,2008,20(2):021001.
    [175]A. Loidl, S. Krohns, J. Hemberger and P. Lunkenheimer. Bananas Go Paraelectric. J. Phys.: Condens. Matter.,2008,20(19):191001.
    [176]M. Maglione and M. A. Subramanian. Dielectric and Polarization Experiments in High Loss Dielectrics:A Word of Caution. Appl. Phys. Lett.,2008,93(3):032902.
    [177]L. C. Stearns and M. P. Harmer. Particle-Inhibited Grain Growth in Al2O3-SiC:I, Experimental Results. J. Am. Ceram. Soc.,1996,79(12):3013-3019.
    [178]M. W. Lufaso and P. M. Woodward. Prediction of the Crystal Structures of Perovskites using the Software Program SPuDS. Acta Crystallogr., Sect. B:Struct. Sci.,2001,57(6):725-738.
    [179]P. M. Woodward. Octahedral Tilting in Perovskites. Ⅰ. Geometrical Considerations. Acta Crystallogr., Sect. B:Struct. Sci.,1997,53(1):32-43.
    [180]P. M. Woodward. Octahedral Tilting in Perovskites. Ⅱ. Structure Stabilizing Forces. Acta Crystallogr., Sect. B:Struct. Sci.,1997,53(1):44-66.
    [181]C. J. Howard and H. T. Stokes. Group-Theoretical Analysis of Octahedral Tilting in Perovskites. Acta Crystallogr., Sect. B:Struct. Sci.,1998,54(6):782-789.
    [182]A. M. Glazer. The Classification of Tilted Octahedra in Perovskites. Acta Crystallogr., Sect. B:Struct. Sci.,1972,28(15):3384-3392.
    [183]L. Zhang and X. M. Chen. Dielectric Relaxation in LuFeO3 Ceramics. Solid State Commun., 2009,149(33-34):1317-1321.
    [184]A. Chen, Y. Zhi, and L. E. Cross. Oxygen-Vacancy-Related Low-Frequency Dielectric Relaxation and Electrical Conduction in Bi:SrTiO3. Phys. Rev. B,2000,62(1):228-236.
    [185]W. K. Zhu, L. Pi, S. Tan, and Y. H. Zhang. Anisotropy and Extremely High Coerciviry in Weak Ferromagnetic LuFeO3. Appl. Phys. Lett.,2012,100(5):052407.
    [186]H. Katsura, N. Nagaosa, and A. V. Balatsky. Spin Current and Magnetoelectric Effect in Noncollinear Magnets. Phys. Rev. Lett.,2005.95(5):057205.
    [187]V. R. Palkar, Darshan C. Kundaliya, S. K. Malik, and S. Bhattacharya. Magnetoelectricity at Room Temperature in the Bi0.9-xTbxLa0.1FeO3 System. Phys. Rev. B,2004,69(21):212102.
    [188]Z. X. Cheng and X. L. Wang. Room Temperature Magnetic-Field Manipulation of Electrical Polarization in Multiferroic Thin Film Composite BiFeO3/La2/3Ca1/3MnO3. Phys. Rev. B, 2007,75(17):172406.
    [189]1. Apostolova, J. M. Wesselinowa. Magnetic Control of Ferroelectric Properties in Multiferroic BiFeO3 Nanoparticles. Solid State Commun.,2008,147(3-4):94-97.
    [190]H. Horner and C. M. Varma. Nature of Spin-Reorientation Transitions. Phys. Rev. Lett., 1968,20(16):845-846.
    [191]T. Yamaguchi. Theory of Spin Reorientation in Rare-Earth Orthochromites and Orthoferrites. J. Phys. Chem. Solids,1974,35(4):479-500.
    [192]K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin. Spin-Reorientation Transitions in Rare-Earth Magnets. Sov. Phys. Usp.,1976,19(7):574-596.
    [193]E. M. Gyorgy, J. P. Remeika, and D. L. Wood. Effect of Hydrogen Heat Treatment on the Magnetic Reorientation Temperature of SmFeO3. J. Appl. Phys.,1968,39(7):3499-3450.
    [194]A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing. Laser-Induced Ultrafast Spin Reorientation in the Antiferromagnet TmFeO3. Nature,2004,429(6994): 850-853.
    [195]P. Mandal, V. S. Bhadram, Y. Sundarayya, C. Narayana, A. Sundaresan, and C. N. R. Rao. Spin-Reorientation, Ferroelectricity, and Magnetodielectric Effect in YFe1-xMnxO3 (0.1≤x≤0.40). Phys. Rev. Lett.,2011,107(13):137202.
    [196]Y. Nagata and K. Ohta. Magnetic Transition of Orthoferrites with Compositions YFe1-xMnxO3. J. Phys. Soc. Jpn.,1978,44(4):1148-1151.
    [197]Y. Sundarayya, P. Mandal, A Sundaresan and C. N. R. Rao. Mossbauer Spectroscopic Study of Spin Reorientation in Mn-Substituted Yttrium Orthoferrite. J. Phys.:Condens. Matter., 2011,23(43):436001.
    [198]P. Mandal, C. R. Serrao, E. Suard, V. Caignaert, B. Raveau, A. Sundaresan, and C. N. R. Rao. Spin Reorientation and Magnetization Reversal in the Perovskite Oxides, YFe1-xMnxO3 (0    [199]L. Pintillie and M. Alexe. Ferroelectric-like Hysteresis Loop in Nonferroelectric Systems. Appl. Phys. Lett.,2005,87 (11):112903.
    [200]H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, and M. Reece. The Contribution of Electrical Conductivity, Dielectric Permittivity and Domain Switching in Ferroelectric Hysteresis Loops. J. Adv. Dielectric.,2011,1(1):107-118.
    [201]K. A. Krezhov, P. S. Jajdzhiev, A. M. Kadomtseva, I. B. Krinettskii and M. M. Lukina. Magnetic Structure and Spin Reorientation Transitions in a System of Manganese-Substituted Thulium Orthoferrites. J. Phys. C:Solid State Phys.,1982,15(31): 6437-6447.
    [202]Y. Nagata, S. Yashiro, T. Mitsuhashi, A. Koriyamaa Y. Kawashima, and H. Samata. Magnetic Properties of RFe1-xMnxO3 (R=Pr, Gd, Dy). J. Magn. Magn. Mater.,2001,237(3): 250-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700