用户名: 密码: 验证码:
xLi_(0.05)Ni_(0.95)O/(1-x)SrTiO_3复相陶瓷与LuFeO_3陶瓷的巨介电效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨介电常数材料在电子元件小型/微型化以及高能量密度存储等方面有着巨大的应用前景。为探索巨介电常数材料新体系,本论文系统地研究了0.4Li_(0.05)Ni_(0.95)O/0.6SrTiO_3复相陶瓷与LuFeO_3陶瓷的结构与巨介电效应,得出了如下主要结论:
     通过固相烧结法获得了导电相和绝缘相共存的xLi_(0.05)Ni_(0.95)O/(1-x)SrTiO_3复相陶瓷。在xLi_(0.05)Ni_(0.95)O/(1-x)SrTiO_3的复相陶瓷的各个组分中,0.4Li_(0.05)Ni_(0.95)O/0.6SrTiO_3陶瓷的介电性能最为理想,具有较大的介电常数和相对较低的介电损耗。在0.4Li_(0.05)Ni_(0.95)O/0.6SrTiO_3陶瓷中存在低温下,中温下及高温下3个频率色散型介电弛豫。首先用Skanavi模型来解释0.4Li_(0.05)Ni_(0.95)O/0.6SrTiO_3中低温下介电弛豫,即由于空气中烧结的钙钛矿结构的陶瓷会有一定量的Ti~(4+)转变成Ti~(3+),热激活过程可以让电子在之间Ti~(4+)与Ti~(3+)之间跃迁,从而在低温部分产生一个具有频率色散的弛豫峰;中温区的介电常数在氧气氛处理后被抑制,所以可以推断该温度区域的介电弛豫应当与点缺陷的作用密切相关,即空气环境下烧结过程中可能产生的氧空位引起的介电弛豫;最后高温的介电弛豫应当与晶界效应有关,既导电相之间的相互接近是造成介电常数增大的主要原因,导电颗粒Li_(0.05)Ni_(0.95)O和SrTiO_3基体在界面处形成异质结构而产生空间电荷区,空间电荷区阻碍了载流子在界面附近的迁移使其无法及时响应外电场的变化而出现介电弛豫。
     采用传统固相反应烧结法制得LuFeO_3致密陶瓷并进行了介电性能评价。LuFeO_3陶瓷中存在低温下巨介电常数台阶及高温下类弛豫铁电体行为两个频率色散型介电弛豫,且这两个介电弛豫均符合Arrhenius热激发定律。高温区介电弛豫可由氧气氛处理几乎完全消除,因而属于氧空位相关的缺陷有序诱导的非本征弛豫行为;而低温区巨介电常数台阶对氧气氛处理不敏感,基于LuFe_2O_4中低温巨介电效应起源于异价Fe离子有序导致的电子铁电性的推断,采用修正的德拜方程进行分析,得到LuFeO_3的低温弛豫的激活能,发现该激活能与LuFe_2O_4的低温弛豫激活能相差不大,所以作者推断低温的弛豫也是由于Fe~(2+)与Fe~(3+)电子跃迁,之后作者通过XPS分析给出了LuFeO_3中Fe~(2+)与Fe~(3+)的比例,提出异价Fe离子有序导致的电子铁电性为LuFeO_3低温介电行为的本征物理起源的最终结论。
Giant dielectric constant materials have great potential in application of miniaturization of electronic devices and high density energy storage.In the present work,the structure and giant dielectric response have been systematically investigated in 0.4Li_(0.05)Ni_(0.95)O/0.6SrTiO_3 composite ceramics and LuFeO_3 ceramics.The following primary results and conclusions have been obtained.
     Novel high dielectric constant composite materials were prepared by incorporating the dispersed Li_(0.05)Ni_(0.95)O particles into SrTiO_3 matrix.A dielectric constant in the order of 10~4 was obtained in the composite with 40mol%Li_(0.05)Ni_(0.95)O. In 0.4Li_(0.05)Ni_(0.95)O/0.6SrTiO_3 composites,the low-temperature dielectric relaxation ascribed to the e,lectron hoping between Ti~(3+)and Ti~(4+)because of the processing of thermal activation.The medi-temperature dielectric relaxations is significantly suppressed by the O_2-annealing,while the low and high-temperature dielectric relaxation is just affected slightly.Since there is no crystal structure change,the medi-temperature dielectric relaxations is deeply related with the oxygen vacancy. There a significant increasing for the dielectric constant in the high-temperature,as we know,the separated conducting particles approach to each other,which lead to the thinner of the small capacitors between two semi-conducting particles,and hence the higher effective dielectric constant of the composites.Hetero-structures formed in the interfaces of Li_(0.05)Ni_(0.95)O and SrTiO_3 during the sintering progress,which hindered the movements of oxygen vacancies near the interfaces,leading to a dielectric relaxation at high temperatures.
     The dielectric properties of dense LuFeO_3 ceramics prepared by solid state sintering process have also been characterized.An giant dielectric constant step is observed in LuFeO_3 ceramics,and there is a frequency-dependent critical temperature where the dielectric constant drops quickly when the sample is cooled down through there.A very high relaxor-like dielectric peak with strong frequency dispersion is also observed in the higher temperature range.The high-temperature dielectric relaxations is significantly suppressed by the O_2-annealing,while the low-temperature dielectric relaxation is just affected slightly.As the results,the dielectric constant peak is reduced significantly,and the dielectric constant step is extended and the magnitude is decreased.Since there is no crystal structure change,the only possible structural change is the reduced oxygen vacancy concentration and the subsequent reduction of Fe~(2+)content to keep the electric compensation.These results confirm the relaxation peaks are observed on the curve of dielectric loss vs temperature.According to analysis of XPS,the estimated ratio of Fe~(2+):Fe~(3+)is about 1:2.The presence of Fe~(2+) ions in the LuFeO_3 ceramics is compensated by the presence of oxygen vacancies. The mixed-valance structure of Fe~(2+)/Fe~(3+)offers the possibility of charge ordering,and subsequently offers the structure origin for the low-temperature relaxor-like dielectric behavior and the electronic ferroelectricity.The high-temperature dielectric relaxation is deeply related to the oxygen vacancies.
引文
[1]李翰如:电介质物理学导论,成都科技大学出版社,1990。
    [2]殷之文主编,电介质物理学,科学出版社,2003。
    [3]B.Tareev,Physics of dielectric materials,Mir Publisheers.Moscow,1975.
    [4]M.E.Lines and A.M.Glass,"Principles and applications of ferroelectrics and related materials",Clarendon Press,Oxford,1977.
    [5]张良莹,姚熹编著,电介质物理,西安交通大学出版社,1991。
    [6]李言荣,恽正中 主编,电子材料导论,清华大学出版社,2001。
    [7]李标荣,莫以豪,王筱珍编,无机介电材料,上海科学技术出版社,1986。
    [8]王零森编著,特种陶瓷,中南工业大学出版社,2000。
    [9]钟维烈 著,铁电物理学,科学出版社,1998。
    [10]R.C.Buchanan,Ceramic materials for electronics,2nd ed.Marcel Dekker Inc.,1991.
    [11]K.S.Cole and R.H.Cole,"Dispersion and Absorption in Dielectrics I.Alternating Current Characteristics" J.Chem.Phys.,(1941),9,:341-367.
    [12]N.Setter,"Electroceramics:looking ahead",J.Eur.Ceram.Soc.,(2001),21:1279-1293.
    [13]彭榕,周和平,宁晓山,林渊博,徐伟,铝/氮化铝陶瓷基板的制备及性能的研究,无机材料学报,(2002),17(6):1203-1208。
    [14]W.Wersing,"Microwave ceramics for resonators and filters",Curr.Opin.Solid State Mat.Sci.,(1996),1(5):715-731.
    [15]王振平,赵俊斌,李勇,章士瀛,表面层型半导体陶瓷电容器,电子元件与材料,(2000),19(5):13-16。
    [16]陈志雄,周方桥,付刚,唐大海,钙钛矿结构陶瓷N型半导化评述,材料导报,(2000),14(3):44-47。
    [17]Y.Cheng-Fu,"Improvement of the sintering and dielectric characteristics of surface barrier layer capacitors by CuO addition",Jpn.J.Appl.Phys.,(1996),35:1806-1813.
    [18]Y.Cheng-Fu,"An equivalent circuit for CuO modified surface barrier layer capacitors",Jpn.J.Appl.Phys.,(1997),36:188-193.
    [19]S.Asanuma,Y.Uesu,C.Malibert and J.M.Kiat,"Synthesis of relaxor/ferroelectric superlattice thin films Pb(Sc_(1/2)Nb_(1/2))O_3/PbTiO_3 and their dielectric properties",Appl.Phys.Lett.,(2007),90(24):242910.
    [20]Z.G.Xia,L.Wang,W.X.Yah,Q.Li and Y.L.Zhang,"Comparative investigation of structure and dielectric properties of Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3(65/35)and 10%PbZrO_3-doped Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3(65/35)ceramics prepared by a modified precursor method",Mater.Res.Bul.,(2007),42(9):1715-1722.
    [21]T.R.SNout and J.Fielding Jr.,"Relaxor ferroelectric materials",Ultrasonics symposium,(1990):711-720.
    [22]B.H.Venkataraman and K.B.R.Varma,"Frequency-dependent dielectric characteristics of ferroelectric SrBi_2Nb_2O_9 ceramics",Solid State Ionics,(2004),167:197-202.
    [23]D.Szwagierczak and J.Kulawik,"Thick film capacitors with relaxor dielectrics",J.Eur.Ceram.Soc.,(2004),24:1979-1985.
    [24]G.H.Haertling,"Ferroelectric Ceramics:History and Technology",J.Am.Ceram.Soc.,(1999),82:797-818.
    [25]C.Pecharroman,F.Esteban-Betegon,J.F.Bartolome,S.Lopes-Esteban,and J.S.Moya,"New Percolative BaTiO_3-Ni Composite with a High and Frequency-Independent Dielectric Constant(ε'≈80 000)",Adv.Mater.,(2001),13:1541.
    [26]Y.Cheng-Fu,"Improvement of the sintering and dielectric characteristics of surface barrier layer capacitors by CuO addition",Jpn.J.Appl.Phys.,(1996),35:1806-1813.
    [27]J.Wu,C.W.Nan,Y.Lin and Y.Deng,"Giant Dielectric Permittivity in Li and Ti Doped NiO",Phys.Rev.Lett.,(2002),89:217601.
    [28]Mingrong Shen,Shuibing Ge,Wenwu Cao,"Dielectric enhancement and Maxwell-Wagner effects in polycrystalline ferroelectric multilayered thin films",J.Phys.D:Appl.Phys.,(2001),34:2935-2938
    [29]K.J.Choi,M.Biegalski,Y.L.Li,"Enhancement of Ferroelectricity in Strained BaTiO_3 Thin Films",Scienc.,(2004),306:1005-1009.
    [30]Stephen C.Hwang,John E.Huber,Robert M.McMeeking,"The simulation of switching in polycrystalline ferroelectric ceramics",Journal of Applied Physics,(1998),84:1530-1540.
    [31]Shintaro Yamamichi,Hisato Yabuta,Toshiyuki Sakuma,"(Ba+Sr)/Ti ratio dependence of the dielectric properties for(Ba_(0.5)Sr_(0.5))TiO_3 thin films prepared by ion beam sputtering",Appl.Phys.Lett.,(1994),64:1644-1646.
    [32]S.Nabunmee and G.Rujijanagul,"Observation of high dielectric constants in xPb(Zn_(1/3)Nb_(2/3))O_3)-(0.2-x)Pb(Ni_(1/3)Nb_(2/3))O_3-0.8Pb(Zr_(1/2)Ti_(1/2))O_3 ternary solid solutions",J.Appl.Phys.,(2007),102:094108.
    [33]C.Tantigate,J.Lee and A.Safari,"Processing and properties of Pb(Mg_(1/3)Nb_(2/3))O_3-PbTiO_3 thin films by pulsed laser deposition",Appl.Phys.Lett.,(1995),66(13):1611-1613.
    [34]B.G.Kim,S.M.Cho,T.Y.Kim and H.M.Jang,"Giant dielectric permittivity observed in Pb-based perovskite ferroelectrics",Phys.Rev.Lett.,(2001),86:3404-3406.
    [35]W.Jo,T properties of Pb(Mg_(1/3)Nb_(2/3))O_3-30'mol%PbTiO_3 ceramics",J.Appl.Phys.,(2007),102:074116.
    [36]H.Kim,D.Y.Kim and S.K.Pabi,"Effects of grain size on the dielectric Appl.Phys.Lett.,(2002),81:4814-4816.
    [37]Junjie Wu,D.S,"McLachlan Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride",Phys.Rev.B.,(1997),56:1236-1248.
    [38]S.Kirkpatrick,"Percolation and Conduction",Rev.Mod.Phys.,(1973),45:574-588.
    [39]J.Xu and C.P.Wong,"Low-loss percolative dielectric composite",Appl.Phys.Lett.,(2005),87:082907.
    [40]M.A.Subramanian,D.Li,N.Duan,B.A.Reisner and A.W.Sleight,"High dielectric constant in ACu_3Ti_4O_(12)and ACu_3Ti_3FeO_(12)phases",J.Solid State Chem.,(2000),151:323-325.
    [41]A.P.Ramirez,M.A.Subramanian,M.Gardel,G.Blumberg,D.Li,T.Vogt and S.M.Shapiro,"Giant dielectric constant reponse in a copper-titanate",Solid State Commun.,(2000),115:217-220.
    [42]Z.Zeng,M.Greenblatt,M.A.Subramanian and M.Croft,"Large low-field magnetoresistance in perovskite-type CaCu_3Mn_4O_(12)without double exchange",Phys.Rev.Lett.,(1999),82:3164-3167
    [43]D.C.Sinclair,T.B.Adams,F.D.Morrison and A.R.West,"CaCu_3Ti_4O_(12):one-step internal barrier layer capacitor",Appl.Phys.Lett.,(2002),80(12):2153-2155.
    [44]M.H.Cohen,J.B.Neaton,L.X.He and D.Vanderbilt,"Extrinsic models for the dielectric response of CaCu_3Ti_4O_(12)",J.Appl.Phys.,(2003),94(5),3299-3306.
    [45]C.C.Homes,T.Vogt,S.M.Shapiro,S.Wakimoto and A.P.Ramirez,"Optical response of high-dielectric-constant perovskite-related oxide",Science,(2001),293:673-676.
    [46]Y.Liu and R.L.Withers,"Structurally frustrated relaxor ferroelectric behavior in CaCu_3Ti_4O_(12)",Phys.Rev.B,(2005),72:134104.
    [47]C.C.Wang and L.W.Zhang,"Polaron relaxation related to localized charge carriers in CaCu_3Ti_4O_(12)",Appl.Phys.Lett.,(2007),90:142905.
    [48]S.Saha and T.P.Sinha,"Structural and dielectric studies of BaFe_(0.5)Nb_(0.5)O_3",J.Phys.:Condensed Matter,(2002),14:249-258.
    [49]I.P.Raevski,S.A.Prosandeev,A.S.Bogatin,M.A.Malitskaya and L.Jastrabik,"High dielectric permittivity in AFe_(1/2)B_(1/2)O_3 nonferroelectric perovskite ceramics (A=Ba,Sr,Ca;B=Nb,Ta,Sb)",J.Appl.Phys.,(2003),93(7):4130-4136.
    [50]C.-Y.Chung,Y.H.Chang and G.J.Chen,"Effects of lanthanum doping on the dielectric properties of Ba(Fe_(0.5)Nb_(0.5))O_3 ceramic",J.Appl.Phys.,(2004),96(11):6624-6628.
    [51]Z.Wang,X.M.Chen,L.Ni,Y.Y.Liu and X.Q.Liu,"Dielectric relaxations in Ba(Fe_(1/2)Ta_(1/2))O_3 giant dielectric constant ceramics",Appl.Phys.Lett.,(2007),80:102905.
    [52]Z.Wang,X.M.Chen,L.Ni,Y.Y.Liu and X.Q.Liu,"Dielectric abnormities of complex perovskite BaFe_(1/2)Nb_(1/2)O_3 ceramics",Appl.Phys.Lett.,(2007),90:022904.
    [53]R.Hagenbeck and R.Waser,"Detailed Temperature Dependence of the Space Charge Layer Width at Grain Boundaries in Acceptor-doped SrTiO_3-ceramics",J.Euro.Ceram.Soc.,(1999),19:683-686.
    [54]J.Wu,C.W.Nan,Y.Lin and Y.Deng,"Giant Dielectric Permittivity in Li and Ti Doped NiO",Phys.Rev.Lett.,(2002),89:217601.
    [55]Yuanhua Lin,Lei Jiang,Rongjuan Zhao,Ce-Wen Nan,"High-permittivity core/shell stuctured NiO-based ceramics and their dielectric response mechanism",Phys.Rev.B,(2005),72:014103.
    [56]Y.Lin,J.Wang,L.Jiang,Y.Chen,and C.Nan,"High permittivity Li and Al doped NiO ceramics",Appl.Phys.Lett.,(2004),85:5664-5667.
    [57]Z.Dang,Y.Lin,and C.Nan,"Novel ferroelectric polymer composites with high dielectric constants", Adv. Mater., (2203), 15: 1625-1628.
    [58] B. J. Last and D. J. Thouless, "Percolation Theory and Electrical Conductivity", Phys. Rev. Lett., (1971), 27: 1719-1722.
    [59] D. J. Bergman and Y. Imry, "Critical behavior of the complex dielectric constant near the percolation threshold of a heterogeneous materials", Phys. Rev. Lett., (1977), 39: 1222-1225.
    [60] C. Pecharroman and J Moya, "Experimental Evidence of a Giant Capacitance in Insulator±Conductor Composites at the Percolation Threshold", Adv. Mater., (2000), 12: 294-197.
    [61] N. Ikeda, H. O'hsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe and H. Kito, "Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe_2O_4", Nature, (2005), 436: 1136-1138.
    [62] A. Subramanian, Tao He, Jiazhong Chen, Nyrissa S, Rogado, Thomas G. Calvarese, "Giant Room-Temperature Magnetodielectric Response in the Electronic Ferroelectric LuFe_2O_4", Adv. Mater., (2006), 18: 1737-1739.
    [63] Yamada, Y., Nohdo, S. & Ikeda, N., "Incommensurate charge ordering in charge-frustrated LuFe_2O_4 system", J. Phys. Soc. Jpn., (1997), 66: 3733-3736.
    [64] Ikeda, N., Kohn, K., Kito, H., Akimitsu, J. & Siratori, K., "Dielectric relaxation an hopping of electrons in ErFe_2O_4", J. Phys. Soc. Jpn., (1994), 63: 4556-4564.
    [65] Ji Yong Park, Jung Hwan Park, Young Jeong,and Hyun M. Jang, "Dynamic magnetoelectric coupling in 'electronic ferroelectric 'LuFe_2O_4", Appl. Phys. Lett., (2007), 91: 152903.
    [66] C. Pecharroman and J Moya, "Experimental Evidence of a Giant Capacitance in Insulator±Conductor Composites at the Percolation Threshold", Adv. Mater., (2000), 12: 294-197.
    [67] M.S. Vijaya Kumar, K. Nagashio, T. Hibiya, and K. Kuribayashi, "Formation of Hexagonal Metastable Phases from an Undercooled LuFeO_3 Melt in an Atmosphere with Low Oxygen Partial Pressure," J. Am. Ceram. Soc., (2008), 91[3]: 806-812.
    [68] Qi, B. I. Lee, S. Chen, W. D. Samuels, and G. J. Exarhos, "High-Dielectric-Contant Silver-Epoxy Composites as Embedded Dielectrics", Adv. Mater., (2005), 17: 1777-1799.
    [69] Z. M. Dang, Y. Shen, and C. W. Nan, "Dielectric behavior of three-phase percolative Ni-BaTiO_3/polyvinylidene fluoride composites",Appl.Phys.Lett.,(2002),81:4814-4817.
    [70]Y.Bai,Z.Y.Cheng,V.Bharti,H.S.Xu,and Q.M.Zhang,"High-dielectric-constant ceramic-powder polymer composites",Appl.Phys.Lett.,(2000),76:3804-3807.
    [71]Ermete Antolini,"Li_xNi_(1-x)O(O<x≤0.3)solid solutions:formation,structure and transport properties",Materials Chemistry and Physics,(2003),82:937-948.
    [72]Shigenao Koide,Kavasaki,"Electrical Properties of Li_xNi_(1-x)O Single Crystals",J.Phys.Soc.Jpn.,(1965),20:123-133.
    [73]A.S.Barker,Jr.and M.Tinkham,"Far-Infrared Ferroelectric Vibration Mode in SrTiO_3",Phys.Rev.,(1962),76:1221-1228.
    [74]M.E.Lines and A.M.Glass,"Principle and Application of Ferroelectrics and Related Materials",oxford University Press,Cambridge,1977.
    [75]K.A.Muller and H.Burkhard,"SrTiO_3:An intrinsic quantum paraelectric below 4K",Phys,Rev.B,(1979),19:3593-3602.
    [76]G.A.Samara,"Glasslike Behavior and Novel Pressure Effects in KTa_(1-x)NbxO_3",Phys.Rev.Lett.(1984),53:298-301.
    [77]J.Toulouse,P.Diantonio,B.E.Vugmeister,X.M.Wang,and L.A Knauss."Precursor effects and ferroelectric macroregions in KTa_(1-x)Nb_xO_3 and K_(1-y)Li_yTaO_3",Phys.Rev.Lett.,(1992),68:232-235.
    [78]U.T.Hoechli,H.E.Weibel,and L.A.Boatner."Extrinsic Peak in the Susceptibility of Incipient Ferroelectric KTaO_3:Li",Phys.Rev.Lett.,(1978),41:1410-1413.
    [79]J.J.van der Klink,D.Rytz,F.Borsa,and U.T.Hochli."Collective effects in a random-site electric dipole system:KTaO_3:Li",Phys.Rev.B,(1983),27:89-101.
    [80]J.G Bednorz and K.A.Muller." Sr_(1-x)Ca_xTiO_3:An XY Quantum Ferroelectric with Transition to Randomness",Phys.Rev.Lett.,(1984),52:2289-2292.
    [81]T.Y.Tien and L.E.Cross."Dielectric Relaxation in Strontium Titanate Solid Solutions Containing Lanthania",Jpn.J.Appl.Phys.,(1967),6:459-468.
    [82]J.Bouwma,K.J.De Vries,and A.J.Burggraaf,"Non-stoichiometry,defect structure,and dielectric relaxation in lanthana-substituted SrTiO_3",Phys Status Solidi A,(1976),35:281-290.
    [83]C.Ang and Z.Yu,"Dielectric properties and defect structure in lanthanum doped SrTiO_3 ceramics",J.Appl.Phys.,(1992),71:6025-6028.
    [84]D.W.Johnson,L.E.Cross,and F.A.Hummel,"Dielectric Relaxation in Strontium Titanates Containing Rare-Earth Ions".J.Appl.Phys.,(1970),41:2828-2831.
    [85]Chen Ang,Zhi Yu,L.E.Cross,"Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO_3",Phys,Rev.B,(2000),62:228-236.
    [86]K.Terakura,A.R.Williams,T.Oguchi,and J.Kubler,"Transition-Metal Monoxides:Band or Mott Insulators",Phys.Rev.Lett.,(1984),52:1830-1833.
    [87]D.P.Snowden and H.Saltsburg,"Hopping Conduction in NiO",Phys.Rev.Lett.,(1965),14:497-501.
    [88]Yoshinobu Nakamura,Hiroshi Ogawa,Tetsuya Nakashima,Akira Kishimoto,and Hiroaki Yanagida,"Strain-Dependent Electrical Conduction in the System NiO-CaO",J.Am.Ceram.Soc.,(1997),80:1609-1611.
    [89]S.F.Shao,J.Z.Zhang,P.Zheng,W.L.Zhong,and C.L.Wang,"Microstructure and electrical properties of CaCu_3Ti_4O_12 ceramics",J.Appl.Phys.,(2006),99:084106.
    [90]Y.J.Wu,Y.Gao,and X.M.Chen,"Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range",Appl.Phys.Lett.,(2007),91:092912.
    [91]T.Portengen,Th.Ostreich,and L.J.Sham,"Theory of electronic ferroelectricity",Phys.Rev.B,(1996),54:17452-17463.
    [92]Jyoti Ranjan Sahu,Claudy Rayan Serrao,Nirat Ray,"Rare earth chromites:a new family ofmultiferroics",J.Mater.Chem.,(2007),17:42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700