用户名: 密码: 验证码:
复合双性LTCC材料基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子技术在自动化、工业控制、医学、航天航空和日常生活等领域的广泛应用,高密度、宽温域、小尺寸、多功能、高品质等特性日益成为其发展的必然趋势,同时这些特性给传统封装技术及工艺带来了巨大的挑战。在众多的封装技术中,低温共烧陶瓷LTCC(Low Temperature Co-fired Ceramic)技术成为了国际研究的焦点,因为利用LTCC技术制备的产品不仅能具备高电流密度、小体积,而且还具备高可靠性和优良的电性能、传输特性及密封性。
     LTCC技术是一种先进的混合电路封装技术。它将四大无源器件,即变压器(T)、电容器(C)、电感器(L)、电阻器(R)集成,配置于多层布线基板中,与有源器件(如:功率MOS、晶体管、IC电路模块等)共同集成为一完整的电路系统。因此LTCC技术又称为混合集成技术,它能有效地提高电路的封装密度及系统的可靠性。
     本文围绕LTCC技术中的低温共烧铁氧体LTCF(Low Temperature Co-fired Ferrite)材料采用理论、实验及应用三位一体的研究模式,开发了一种新型LTCC复合介质材料,不但对该材料的复合机理进行了理论模拟而且对其在LTCC滤波器中的应用展开了研究。本论文在理论模型、材料制备和器件设计上做了一些探索性和创新性的工作,具体内容如下:
     一、探索性地建立了针对LTCC陶瓷的低温烧结模型:模型基于液相烧结理论,以液相在晶粒边界引起的毛细管压力及溶解-淀析过程中化学势能的变化为烧结驱动力,将烧结温度、时间与烧结后的最终晶粒大小、相对密度联系起来,模拟出低温烧结动态过程中相对密度的变化趋势。
     二、首次提出铁电—铁磁复合材料的复合理论并给予了系统的分析:讨论了复合材料中两相成分的化学结构及电磁性能在理论上对复合可能性的影响,根据材料的微观结构建立了复合模型,模型中假设铁电相均匀分布于铁磁相晶粒表面,并和气孔一起形成非磁性薄层将铁磁晶粒之间隔断,使铁磁颗粒孤立。通过对复合结构中铁磁晶粒内场变化的分析,推导出复合材料铁电/铁磁成分比与复合磁导率的关系方程;另外,利用微观结构中电流流通的等效电路,推导得到不同铁电/铁磁成分比时复合材料复数介电常数与频率的关系表达式。
     三、研究了工艺条件对材料电磁性能的影响:按照工艺流程改变工艺参数预烧温度、二次球磨时间、烧结曲线中升温降温速度、烧结温度和保温时间,通过电镜扫描SEM、X射线衍射等分析手段了解改变工艺参数对铁氧体材料微观结构的影响规律,通过对材料介电常数频谱、磁导率频谱及品质因数的测量得知工艺参数对材料电磁性能的影响规律,根据实验数据结果得到最佳铁氧体烧结工艺参数。
     四、研究了不同掺杂离子及助熔剂的加入对低温烧结铁氧体LTCF材料的微观结构及电磁性能影响:首先研究了不同MnCO_3和CuO含量对NiZn铁氧体烧结特性、微观结构及电磁性能的影响,首次发现了掺杂Mn离子的NiZn铁氧体其电磁性能对烧结温度具有敏感性。其次研究了不同助熔剂Bi_2O_3、WO_3和Nb_2O_5对NiCuZn铁氧体烧结特性、微观结构及电磁性能的影响,实验揭示W~(6+)离子对材料微观结构的改善;最后对低温NiCuZn铁氧体进行改性掺杂,研究稀土氧化物CeO_2对其微观结构及电磁性能的影响,并给出NiCuZn铁氧体掺杂稀土元素时的磁频谱及介频谱。
     五、开发了一新型的基于不同低温烧结NiCuZn铁氧体与高介电常数(BaTiO_k+X)钙钛矿的具有电感、电容双性的铁电—铁磁复合材料,研究了不同铁电—铁磁含量对各组复合材料微观结构及电容电感双性的影响。并研究了不同助熔剂Bi_2O_3、WO_3和Nb_2O_5对其烧结特性、微观结构及电容电感双性的影响。最后对复合材料进行稀土掺杂改性,研究稀土氧化物CeO_2对其微观结构及电容电感双性的影响。
     六、设计并制作出两种使用第六章LTCC复合双性材料的3G通讯设备用带通滤波器,采用Ansoft HFSS电磁仿真软件对所建立的滤波器模型进行模拟仿真,通过调节滤波器结构参数使滤波器各性能指标达到目标要求,并实现生产制备。制得带通中心频率3.5GHz,插损<2.8dB,带宽>400MHz,阻带衰减大于35dB的微带式带通滤波器和带通中心频率1.4GHz,插损<3dB,带宽>160MHz,阻带衰减大于30dB的LC式带通滤波器。
New electronic systems fo automotive/industrial/medical/aerospace will continue to challenge both packaging engineers and technology due to the increased performance requirements, higher densities, higher temperatives and limited space available. This challenge mandates the use of unique packaging techniques such as Low Temperature Co-fired Ceramic (LTCC) technology that must not only provide the increase circuit density but also the reliability, electrical and medical performance, thermal management, and hermeticity.
     Low Temperature Co-fired Ceramic (LTCC) technology is a new packaging technology for integrate circuit, which consists of buried passive devices such as transformer, conductors, resistors, and capacitors in the multilayer of module and can easily integrate with active devices such as power MOS, transistors, and IC module. Recently, this technology was widely focused and researched for its wonderful properties.
     Focused on the LTCC materials, we carried through some researches as follows:
     1. A low temperature sintering model was established based on the liquid sintering theories. The sintering temperature and sintering time dependence of relative density for the sintered ceramics were simulated.
     2. With the systemically analyses of the synthesis of ferroelectric-ferromagnetic composite materials, the low temperature sintered NiCuZn ferrites and perovskite BaTiO_k+X was chosen as the main components. A model was given by assuming the isolation of magnetic grains by surrounding non-magnetic layer to evaluate the internal field and the complex permeability of whole material as a function of the ratio of perovskite content to ferrite content.
     3. We researched the effects of preparation process on the microstructure and electromagnetic properties of ceramics. The pre-sintering temperature, milling time, firing rate, sintering temperature, and holding time are changed regularly to investigate the variation of the phase formation by X-ray diffraction studies, the micrographs of the sintered ceramics by SEM, and the bulk density by Archimedes method. The frequency dependence of complex permeability, quality factor, and dielectric constant are studied.
     4. The effects of sintering temperature and Mn ions contents on the microstructure and electromagnetic properties of NiZn ferrites are studied. To decreased the sintering temperature, CuO was introduced in NiZn ferrites first, and then the flux oxides such as Bi_2O_3, WO_3, and Nb_2O_5 are introduced in NiCuZn ferrites.
     The variation of microstructure and electromagnetic properties with these reducing-sintering-temperature oxides' content are investigated. Finally, we researched the influence of rare earth ions Ce~(4+) on low temperature sintered NiCuZn ferrites.
     5. A new ferroelectric-ferromagnetic composite material is synthesized by usual ceramic technology with NiCuZn ferrites and perovskite BaTiO_k+X as the main components. The microstructure and electromagnetic properties of the composite with different composition of NiCuZn ferrites and different perovskite contents are investigated. After that, the influences of flux oxide Bi_2O_3, WO_3, and Nb_2O_5 and the Ca~(2+), Ce~(4+) ions on this composite material are also studied.
     6. A LTCC band pass filter is designed with this composite material using the Ansoft HFSS software. This filter has insertion loss in the pass band < -2.8dB, the attenuation losses in the stopband were more than 40 dB, the centre frequency of the pass band is 1.9GHz and the 3 dB band width is more than 200MHz.
引文
[1] Charles Q.Scrantom. LTCC technology: where we are and where we're going- Ⅱ. IEEE, 1999,0-7803-5152-5: p. 193
    [2] M.R.Gongora-Rubio, P.Espinoza-Vallejos, et al. Overview of Low Temperature Co-fired Ceramic tape technology for meso-system technology (MsST). Sensors and Actuators A, 2001(89): p.222
    [3] K.Delaney, LBarton, et al. Characterisation of the electrical performance of buried capacitors and resistors in low temperature co-fired (LTCC) ceramic. IEEE Electronic Components and Technology Conference, 1998(6): p.900
    [4] Micheal Richtarsic, Jack Thornron. Characterization and Optimization of LTCC for High Density Large Area MCM's. IEEE 1998:p.92
    [5] Lib-Shah Chen,Shen-LiFu,et aI.Capacitors enbeded in the low temperature Cofired Ceramic. IEEE 1998 IEMT/IMC Proceedings: p.59
    [6] Wing-Yah Leung, Kwok-Keung M. Cheng, et al. Design and implementation of LTCC filters with enchanted stop-band characteristics for bluetooth applications. IEEE 2001:p.1008
    [7] Calina Kniajer, Kentor Dechant, Drasad Apte. Low loss, low temperature cofired ceramics with higher dielectric constants for multichip modules(MCM). IEEE 1997: p.121
    [8] Yu Ron, Kawthar A.Zaki. Low-Temperature Cofired Ceramic (LTCC) Ridge Waveguide Bandpass Chip Filters. IEEE TRANS.MICROW. 1999:p.2317
    [9] 张药西.低温烧结铁氧体粉料的最新进展.电子元器件及应用.2001,No.1:p.25
    [10] 徐忠华,马生等.低温共烧陶瓷发展进程及研究热点.材料导报.2000,No.4:p.30
    [11] Tummala R R.J Am Ceram Soc,1991,174(5): p.895
    [12] Tummala R R.et al. Microelectronic Packing Handbook, Van Nostrand-Rein hold, N Y, p.285
    [13] Shimada Y, Utsumi K,e t al. IEEE Trans Compon, Hybrids,Manuf Technol. CHMT-6[4], 1983, p.382
    [14] 杨邦朝,蒋明等.LTCC组件技术及术来发展趋势.混和微电子技术.Vol.13,No.1:p.1
    [15] A.Fathy, F.McGinty, et al. Low Temperature Co-fired Ceramic on MetaI(LTCC-M) Packaging Technology. IEEE 0-7803-6450-3,2000:p.261
    [16] S.Consolazio,K Nguyen,et al. Low Temperature Cofired Ceramic (LTCC) for Wireless Applications. 1EEE 0-7803-5152-5,1999:p.201
    [17] 郭道杰等.片式电感器现状、技术与市场.山东电子.2000(4):p.36
    [18] 张药西.迭层片式电感器MLCI(上).电子元器件应用,1999,NO.4:p.24
    [19] 王长振,谭维等.片式电感和材料的研究现状及应用前景.金属功能材料.2002(9):p.9
    [20] H.Nishikawa, et al. proceedings of the Japan International Electronic Manufacturing Technology Symposium. 1993, p.238
    [21] 张药西.迭层片式电感器MLCI(下).电子元器件应用,2000,NO.1:p.13
    [22] 张药西.电磁兼容(EMC)与片式元件(SMC).通用元器件,1998,NO.12:p.43
    [23] 钟慧,张怀武,低温共烧陶瓷(LTCC):特点、应用及问题,磁性材料与器件,2003, 34(4): 33-35
    
    [24] G. C. Kuczynski, Trans. AJME, 1949, 185: p.169
    [25] F. Thummler et al., Metall. Rev., 1967, 115: p.69
    [26] D. Uskokovic et al., Sci. Sintering, 1977, 9(3): p.265
    [27] J. Smit, H.P.J. Wijn, Ferrites, Philips' Technical Libarary, Eindhoven, Netherlands, 1959
    
    [28] A.M. Abdeen, J. Magn. Magn. Mater. 1999, 192: p. 121
    [29] Luding, S., K. Manetsberger, and J. Mullers, A discrete model for long time sintering. Journal of the Mechanics and Physics of Solids, 2005. 53(2): p. 455.
    [30] Dong, W., H. Jain, and M.P. Harmer, Liquid phase sintering of alumina, II. Penetration of liquid phase into model microstructures. Journal of the American Ceramic Society, 2005. 88(7): p. 1708.
    [31] Luque, A., et al., Simulation of the microstructural evolution during liquid phase sintering using a geometrical Monte Carlo model. Modelling and Simulation in Materials Science and Engineering, 2005. 13(7): p. 1057.
    [32] Kraft, T. and H. Riedel, Numerical simulation of solid state sintering; model and application. Journal of the European Ceramic Society, 2004. 24(2): p. 345.
    [33] Kang, S.-J.L. and Y.-I. Jung, Sintering kinetics at final stage sintering: Model calculation and map construction. Acta Materialia, 2004. 52(15): p. 4573.
    [34] Xu, X., P. Lu, and R.M. German, Densification and strength evolution in solid-state sintering. Part II. Strength model. Journal of Materials Science, 2002. 37(1): p. 117.
    [35] Gupta, S.S. and R. Venkataramana, Mathematical model of air flow during iron ore sintering process. Iron and Steelmaker (I and SM), 2000. 27(12): p. 35.
    [36] Ye, S., Y. He, and Smith J.E, Jr., Application of shrinking core model to microgravity liquid phase sintered Co-Cu samples. Microgravity Science and Technology, 1999. 12(3-4): p. 128.
    [37] Shinagawa, K. and Y. Hirashima, Constitutive model for sintering of mixed powder compacts. Materials Science Forum, 1999. 308-311: p. 1041.
    [38] German, R.M. and E.A. Olevsky, Modeling grain growth dependence on the liquid content in liquid-phase-sintered materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998. 29A(12): p. 3057.
    [39] Tikare, V. and J.D. Cawley, Numerical simulation of grain growth in liquid phase sintered materials -I. Model. Acta Materialia, 1998. 46(4): p. 1333.
    [40] Svoboda, J., H. Riedel, and R. Gaebel, Model for liquid phase sintering. Acta Materialia, 1996. 44(8): p. 3215.
    [41] Skorokhod, V.V., E.A. Olevskij, and M.B. Shtern, Continual theory of sintering. I. Phenomenological model analysis of the effect of external power actions on the sintering kinetics. Poroshkovaya Metallurgiya, 1993(1): p. 22.
    [42] Johnson, D.L., R.P. Rusin, and J.D. Hansen. Application of a new sintering model. 1992. San Francisco, CA, USA: Publ by Metal Powder Industries Federation, Princeton, NJ, USA.
    [43] Cias, A., J. Frydrych, and T. Pieczonka, Liquid phase sintering of iron-phosphorus model system. Powder Metallurgy International, 1989. 21(3): p. 13.
    [44] Miller, G.R. and O.W. Johnson, Sintering of conductive rutile: a model system for sintering electronic ceramics. 1978. 11: p. 181.
    
    [45] Young, R.W., Dynamic mathematical model of sintering process. 1977. 4(5): p. 328.
    [46] Kuczynski, G.C. and O.P. Gupta, Model experiments of sintering in the presence of liquid phase. 1973. 5(2): p. 187.
    [47] Nikolic, Z.S., R.M. Spriggs, and M.M. Ristic, New model system for simulation of liquid phase sintering. Zeitschrift fuer Metallkunde, 1992. 83(10): p. 769.
    [48] Nikolic, Z.S., A model for 3-D study of rearrangement in liquid phase sintering. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2004. 95(11): p. 993.
    [49] Belhadjhamida, A. and R.M. German. Model calculation of the shrinkage dependance on rearrangement during liquid phase sintering. Metal Powder Industries Federation, 1993.
    [50] Lapshin, O. and A. Savitskii, Mathematical model of compact changes in volume during liquid-phase sintering. II. Journal of Materials Synthesis and Processing, 2001. 9(2): p. 83.
    [51] Lapshin, O., A. Savitskii, and V. Ovcharenko, Mathematical model of compact changes in volume during liquid-phase sintering. I. Journal of Materials Synthesis and Processing, 2001. 9(1): p.25.
    [52] McHugh, P.E. and H. Riedel, Liquid phase sintering model: Application to Si3N4 and WC-Co. Acta Materialia, 1997. 45(7): p. 2995.
    [53] Huppmann, W.J. and H. Riegger, Modelling of rearrangment processes in liquid phase sintering. 1975. 23(8): p. 971.
    [54] Liu, Y., R. Tandon, and R.M. German, Modeling of supersolidus liquid phase sintering: I. Capillary force. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995. 26A(9): p. 2415.
    [55] Liu, Y., R. Tandon, and R.M. German, Modeling of supersolidus liquid phase sintering: II. Densification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995. 26A(9): p. 2423.
    
    [56] Nikloic, Z.S. and M.M. Ristic, Modeling of the liquid phase sintering. 1981. 13(2): p. 91.
    [57] Liu, P.-L. and S.-T. Lin, Three-dimensional modeling of the grain growth by coalescence in the initial stage of liquid phase sintering. Materials Transactions, 2003. 44(5): p. 924.
    [58] Coble, R.L., Effects of particle-size distribution in initial-stage sintering. 1973. 56(9): p. 466.
    [59] Hsueh, C. H.; Evans, A. G.; Coble, R. L., Microstructure development during final - intermediate stage sintering - 1. pore/grain boundary separation, Acta Metallurgica, 1982, 30(7): p 1269
    [60] H.Rikukawa, et al. Relationship between microstructures and magnetic properties of ferrites containing closed pores. IEEE TRANS. MAGN. 1982(18): p.1535
    [61] Johnson, M.T. and E.G. Visser, A coherent model for the complex permeability in polycrystalline ferrites. IEEE Transactions on Magnetics, 1990. 26(5): p. 1987.
    [62] Choi, H.D., et al., Frequency dispersion model of the complex permeability of the epoxy-ferrite composite. Journal of Applied Polymer Science, 1997. 66(3): p. 477.
    [63] Slama, J., et al., Modeling of complex permeability in cores. Journal De Physique. IV: JP, 1998. 8(2): p. 623.
    [64] Van den Broeck, T., et al. Parametric modelling of complex permittivity and permeability. San Franscisco, CA, USA: IEEE, 1996.
    [65] Myers, M.T. Pore combination modeling. A technique for modeling the permeability and resistivity properties of complex pore systems. Soc of Petroleum Engineers of AIME, 1991.
    [66] Slezak, A., et al., Permeability coefficient model equations of the complex: Membrane concentration boundary layers for ternary nonelectrolyte solutions. Journal of Membrane Science, 2005. 267(1-2): p. 50.
    [67] Hollaus, K. and O. Biro, Derivation of a complex permeability from the Preisach model. IEEE Transactions on Magnetics, 2002. 38(2 I): p. 905.
    [68] Corcoran, J. and N. Pope, Transmission line model for magnetic heads including complex permeability. Journal of Magnetism and Magnetic Materials, 1985. 54-57: p. 1591.
    [69] Bhise, B.V., et al., Conduction in Mn substituted Ni-Zn ferrites. Bulletin of Materials Science, 1996. 19(3): p. 527.
    [70] Bhise, B.V., et al., Electrical properties of Mn_2Ti_4 substituted Ni-Zn ferrites. Indian Journal of Pure & Applied Physics, 1995. 33(8): p. 459.
    [71] Krieble, K., et al., Mossbauer spectroscopy investigation of Mn-substituted Co-ferrite (CoMn_xFe_2.xO_4). Journal of Applied Physics, 2005. 97(10): p. 1.
    [72] Kundaliya, D.C., V.R. Palkar, and S.K. Malik, Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system. Journal of Applied Physics, 2003. 93(7): p. 4337.
    [73] Yue, Z., et al., Magnetic and electrical properties of low-temperature sintered Mn-doped NiCuZn ferrites. Journal of Magnetism and Magnetic Materials, 2003. 264(2-3): p. 258.
    [74] Murase, T. and T. Nomura, Absorption characteristics of NiCuZn ferrite substituted by Mn_2O_3. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000. 47(2): p. 179.
    [75] Nam, J.H., W.G. Hur, and J.H. Oh, Effect of Mn substitution on the properties of NiCuZn ferrites. Journal of Applied Physics, 1997. 81(8 pt 2B): p. 4794.
    [76] Patil, M.G, et al., Conduction phenomenon in Mn-substituted Ni-Cd ferrites. Physica Status Solidi (A) Applied Research, 1994. 144(2): p. 415.
    [77] Patil, S.A., et al., Electrical conduction in Mn-substituted Ni-Cd ferrites. Phase Transitions, 1996. 56(1): p. 21.
    [78] Qi, X., et al., Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. Journal of Magnetism and Magnetic Materials, 2002. 251(3): p. 316.
    [79] Rezlescu, E., N. Rezlescu, and P.D. Popa, Microstructure and humidity sensitive properties of MgFe_2O_4 ferrite with Ni and Mn substitutions. Physica Status Solidi C: Conferences, 2004. 1(12): p. 3636.
    [80] Singh, A.K., et al., Magnetic properties of Mn-substituted Ni-Zn ferrites. Journal of Applied Physics, 2002. 92(7): p. 3872.
    [81] Singh, A.K., et al., Dielectric properties of Mn-substituted Ni-Zn ferrites. Journal of Applied Physics, 2002. 91(10 I): p. 6626.
    [82] Gonzalez Arias, A. and I. Guerasimenko, Effect of CuO microamounts in NiZnCo ferrites. Physica Status Solidi (A) Applied Research, 1985. 92(2): p. 131-134.
    [83] Mahloojchi, F. and F.R. Sale, Effect of CuO on the sintering of MgO-based soft ferrites. Ceramics International, 1989. 15(1): p. 51.
    [84] Shrotri, J.J., et al., Effect of Cu substitution on the magnetic and electrical properties of Ni-Zn feirrite synthesized by soft chemical method. Materials Chemistry and Physics, 1999. 59(1): p. 1.
    [85] Rana, M.U., 1. Misbah Ul, and T. Abbas, The effect of Cu substitution on the microstructure and magnetic properties of MnFe_2O_4 ferrite. Journal of Materials Science, 2003. 38(9): p. 2037.
    [86] Ata-Allah, S.S. and M. Kaiser, Semiconductor-to-metallic transition in Cu-substituted Ni-Mn ferrite. Physica Status Solidi (A) Applied Research, 2004. 201(14): p. 3157.
    [87] Rahman, I.Z. and T.T. Ahmed, A report on structural and MFM analysis of Cu substituted Ni-Zn-Cu ferrite powders. Physica Status Solidi C: Conferences, 2004. 1(12): p. 3656.
    [88] Nam, J.H., et al., Effect of Cu substitution on the electrical and magnetic properties of NiZn ferrites. IEEE Transactions on Magnetics, 1995. 31(6 pt 2): p. 3985.
    [89] Rahman, I.Z. and T.T. Ahmed, A study on Cu substituted chemically processed Ni-Zn-Cu ferrites. Journal of Magnetism and Magnetic Materials, 2005. 290-291 PART 2: p. 1576.
    [90] Rana, M.U., T. Abbas, and I. Misbah ul, Magnetic interactions in Cu-substituted manganese ferrites. Solid State Communications, 2003. 126(3): p. 129.
    [91] Rana, M.U., I. Misbah ul, and T. Abbas, Cation distribution in Cu-substituted manganese ferrites. Materials Letters, 1999. 41(2): p. 52.
    [92] Wang, C.-S., et al., Effects of Bi_2O_5 doping on the microstructure and high-frequency magnetic properties of low-temperature sintered Co-Ti substituted barium ferrites. Gongneng Cailiao/Journal of Functional Materials, 2003. 34(2): p. 153.
    [93] Pal, M., P. Brahma, and D. Chakravorty, Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide. Journal of Magnetism and Magnetic Materials, 1996. 152(3): p. 370.
    [94] Nakano, A., T. Sato, and T. Nomura, Effect of milling condition on the electromagnetic properties of low temperature sintered NiCuZn ferrite. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1994. 41(6): p. 681.
    [95] Murthy, S., Low temperature sintering of NiCuZn ferrite and its electrical, magnetic and elastic properties. Journal of Materials Science Letters, 2002. 21(8): p. 657.
    [96] Oi, A., A. Nakano, and T. Nomura, Enhancement initial permeability of low temperature sintered NiCuZn ferrites. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2000. 47(7): p. 779.
    [97] Nakano, A., T. Suzuki, and H. Momoi, Development of low temperature NiCuZn ferrites and study of high performance for multilayer chip ferrites. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2002. 49(2): p. 77.
    [98] H. Takei, H. Tokumasu, and I. Sasaki, in Mechanical properites of NiCuZn ferrite add with WO_3-Li_2O, American Ceramic Soc, Columbus, OH, USA, 1985, p. 379.
    
    [99] Jen-Yan Hsu,Wen-Song Ko,et al. Low Temperature Fired NiCuZn Ferrite. IEEE Transactions on Magnetics, 1994, 30(6): p.4875
    [100] 陆明岳,周波.迭层片式电感用低温烧结Ni-Cu-Zn铁氧体材料研制.磁性材料及器件.1996,No.4:p.25
    [101] 郭文宇,岳振星等.Bi_2O_3对自燃烧法合成NiCuZn铁氧体的显微结构与性能的影响.压电与声光.2001,No.5:p.391
    [102] 何新华,熊茂仁等.多层片式电感器用NiCuZn铁氧体的低温烧结.磁性材料及器件.1998,No.4:p.23
    [103] 张洪国,周济等.高性能叠层片式电感(MLCI)材料研究进展.高技术通讯.2000,10:p.100
    [104] 马振伟,张洪国,周济等.低烧超高磁导率NiCuZn铁氧体研究.功能材料.2000,31(4):p.396
    [105] 何新华,熊茂仁,李剑华,李仁翠.预烧温度对NiCuZn铁氧体陶瓷材料烧结和显微结构的影响.中国陶瓷.2000.36(3):p.1
    [106] 李勃,齐西伟,岳振星等.高Mn含量对NiCuZn铁氧体性能的影响.无机材料学报.2001,16(6):p.1225
    [107] Jen-Yan Hsn, Wen-Song Ko, Hon-Dar Shen, Chi-Jen Chen. The Effect of V_2O_5 on the sintering of NiCuZn Ferrite. IEEE Trans Magn. 1995, 31 (6): p.3994
    [108] Ovidiu F.Caltun, Leonard Spinu, et al. Magnetic Properties of High Frequency Ni-Zn Ferrites Doped with CuO. IEEE Yrans Magn.2001, 37(4): p.2353
    [109] J.J.Shrotri, S.D.Kulkarni, C.E.Deshpande, et al. Effect of Cu substitution on the magnetic and electrical properties of Ni-Zn ferrite synthesised by soft chemical method. Materials Chemistry and Physics. 1999(59): p. 1
    [110] Chul Won Kim, Jae Gui Koh. A study of synthesis of NiCuZn-ferrite sintering in low temperature by metal nitrates and its electromagnetic property. Journal of Magnetism and Magnetic Materials. 2003(257): p.355
    [111] Yuh-Ruey Wang, Sea-Fue Wang. Liquid phase sintering of NiCuZn ferrite and its magnetic properties. International Journal of Inorganic Materials. 2001 (3): p. 1189
    [112] S.R.Murthy. low temperature sintering of NiCuZn ferrite and its electrical magnetic and eleastic properties. Journal of Materials Science Letters. 2002(21): p.657
    [113] O.F.Caltun, L.Spinu, AI.Stancu, et al. Study of the microstructure and of the permeability spectra of Ni-Zn-Cu ferrites. Journal of Magnetism and Magnetic Materials. 2002(242~245): p.160
    [114] T.Nakamura. Low-temperature sintering ofNi-Zn-Cu ferrite and its permeability spectra. Journal of Magnetism and Magnetic Materials. 1997(168): p.285
    [115] R.Valenzuela,J,T,S.Ivine Domain wall relaxation frequency and magnetocrystalline anisotropy constant in Ni-Zn ferrites, Journal of Magnetism and Magnetic Materials 1996,160: p.386
    [116] Zhang Huai-Wu, Shi Yu, Zhong Zhi-Yong.Electric and Magnetic Properties of a new Ferrite-Ceramic Composite Material. CHIN.PHYS.LETT, 2002, Vol. 19, NO. 2: 269~272
    [117] J.D. Rhodes, Theory of Electrical Filters. New York: Willey, 1976.
    [118] 张怀武,周海涛,刘颖力.抗电磁干扰材料及器件工艺.成都:电子科技大学出版社,2001
    [119] 宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994
    [120] 黄永杰,兰中文等.磁性材料.成都:电子科技大学出版社,1993
    [121] 周东祥.半导体陶瓷及应用.武汉:华中理工大学出版社,1991
    [122] 游文南,余昌奎,全锡葛等.电子陶瓷讲义.成都:电子科技大学出版社,1991
    [123] 吴人洁.复合材料.天津:天津大学出版社,2002
    [124] Mahmoud, M.H. and A.A. Sattar, Mossbauer study of Cu-Zn ferrite substituted with rare earth ions. Journal of Magnetism and Magnetic Materials, 2004.277(1-2): p. 101.
    [125] Sattar, A. A., et al., Effect of rare earth substitution on magnetic and electrical properties of Mn-Zn ferrites. Physica Status Solidi (A)Applied Research, 2002. 193(1): p. 86.
    [126] Blanco, J.C.T., et al., Rare Earth Substitutions in M-Type Ferrites. IEEE Transactions on Magnetics, 2003.39(5 Ⅱ): p. 2911.
    [127] Grossinger, R., et al. Magnetic properties of a new family of rare-earth substituted ferrites. 2003. Ha Long Bay, Viet Nam: Elsevier Science B.V.
    [128] Lyubutin, I.S. and Y.S. Vishnyakov, Moessbauer study of substitution rare EM dash earth orthc,-ferrites. 1972. 12(1): p. 52.
    [129] Kumar, B.R. and D. Ravinder, A study on elastic behaviour of rare earth substituted Mn-Zn ferrites. Materials Letters, 2003.57(28): p. 4471.
    [130] Rahman, S.A. and A.A. Sattar, Dielectric Properties of Rare Earth Substituted Cu-Zn Ferrites. Physica Status Solidi (A)Applied Research, 2003. 200(2): p. 415.
    [131] Liu, X., et al., Influences of Rare Earth La3+ Substitution on Structure and Magnetic Properties of M-Type Strontium Ferrites. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2002.31(5): p. 388.
    [132] Liu, X., et al., Influences of rare earth La~(3+) substitution on structure and magnetic properties of M-type strontium ferrites. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2002.31(5): p. 385.
    [133] Kondratyev, V., M. Lahti, and T. Jaakola. LTCC band-pass filter for transmitter/receiver modules. 2004. London, United Kingdom: Horizon House Publishing Ltd., London, SWlV IHH, United Kingdom.
    [134] Kassner, J. and W. Menzel, Drop-on band-pass filter for millimeter-wave multichip modules on LTCC. IEEE Microwave and Guided Wave Letters, 1999.9(11): p. 456.
    [135] Simon, W., et al. Efficient band pass filter design for a 25 GHz LTCC multichip module using hybrid optimization. 2001. Baltimore, MD, United States: The International Society for Optical Engineering.
    [136] Lahti, M. and V. Lantto, Passive RF band-pass filters in an LTCC module made by fine-line thick-film pastes. Journal of the European Ceramic Society, 2001. 21(10-11): p. 1997.
    [137] Ohwada, T., et al. A Ku-band low-loss stripline low-pass filter for LTCC modules with low-impedance lines to obtain plural transmission zeros. 2002. Seattle, WA: Institute of Electrical and Electronics Engineers Inc.
    [138] Lira, O.-K. and Y.-J. Kim, Compact integrated combline band-pass filter with interdigital capacitive loads using LTCC technology. Microwave and Optical Technology Letters, 2004. 42(5): p. 377.
    [139] Wei-Shin, T., C. Yi-Chyun, and C. Jui-Ching, A new compact LTCC bandpass filter using negative coupling. Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], 2005. 15(10): p. 641.
    [140] Chun-Fu, C. and C. Shyh-Jong, Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology. Microwave Theory and Techniques, IEEE Transactions on, 2005. 53(7): p. 2383.
    [141] Yu, R., et al., LTCC wide-band ridge-waveguide bandpass filters. Microwave Theory and Techniques, IEEE Transactions on, 1999. 47(9): p. 1836.
    [142] Wing-Yan, L., K.K.M. Cheng, and W. Ke-Li, Multilayer LTCC bandpass filter design with enhanced stopband characteristics. Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], 2002. 12(7): p. 240.
    [143] Choi, B.G., M.G. Stubbs, and C.S. Park, A Ka-band narrow bandpass filter using LTCC technology. Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], 2003. 13(9): p. 388.
    [144] Lap Kun, Y. and W. Ke-Li, A compact second-order LTCC bandpass filter with two finite transmission zeros. Microwave Theory and Techniques, IEEE Transactions on, 2003. 51(2): p. 337.
    [145] Gangqiang, W., et al., An interdigital bandpass filter embedded in LTCC for 5-GHz wireless LAN applications. Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], 2005. 15(5): p. 357.
    [146] Cheng-Chung, C, Dual-band bandpass filter using coupled resonator pairs. Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters], 2005. 15(4): p. 259.
    [147] Jianhua Deng; Bing-Zhong Wang; Gan, T., A compact narrow bandpass filter using LTCC technology, Antennas and Propagation Society International Symposium, 2005(1B): p. 602
    [148] Al-Ahmad, M.; Maenner, R.; Matz, R.; Russer, P., Wide piezoelectric tuning of ltcc bandpass filters, Microwave Symposium Digest, 2005(12-17): p. 1275
    [149] Yong-Xin Guo; Ong, L.C.; Chia, M.Y.W.; Luo, B., Dual-band bandpass filter in LTCC, Microwave Symposium Digest, 2005(12-17):p. 2219
    [150] Ferrand, P.; Baillargeat, D.; Verdeyme, S.; Puech, J.; Lahti, M.; Jaakola, T., LTCC reduced-size bandpass filters based on capacitively loaded cavities for Q band application, Microwave Symposium Digest, 2005(12-17):p. 2083

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700