用户名: 密码: 验证码:
M型钡铁氧体及其复合材料的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
M型钡铁氧体因其具有较大的矫顽力和磁能积、单轴磁晶各向异性、优良的旋磁特性等特点,被广泛用在永磁、吸波、高密度垂直磁记录和微波毫米波器件等各个领域中。由于其烧结温度一般都要超过1000℃,作为高频材料应用时,无法与现有的片式元器件制造技术——低温共烧陶瓷与铁氧体(LTCC)工艺相适应;同时,随着高新技术的飞速发展,对材料的功能特性提出了更高、更严格的要求,M型钡铁氧体的性能多样性尤其是在与高分子材料复合后所具有的特殊电磁性能及其应用基础更是有待深入的研究。为此如何实现M型钡铁氧体的低温共烧、改性及解决材料的多功能性问题成为了制约此类材料及相关元器件向小型化、高频化、多功能化及高可靠性方向发展的技术瓶颈。本文的研究工作正是围绕M型钡铁氧体及其聚合物复合材料这一主体中的材料制备理论、复合方法、工艺及应用而展开的。旨在通过理论分析、材料研制以及器件应用验证三位一体的研究模式,实现从材料微观、宏观性能的分析到材料研制途径和工艺的优化的综合调控,重点探索M型钡铁氧体材料及其复合材料的高频与微波性能及其在LTCC高频片式器件等领域的应用基础技术,为开发高性能的M型钡铁氧体材料、复合材料及实现其在高频叠层片式元器件中的应用奠定理论和实践基础。
     在理论研究方面,首先根据sol-gel法的基本原理从成胶的动力学与热力学角度分析了决定合成低温烧结M型钡铁氧体材料的关键影响因素,然后又从物质迁移的角度探讨了促进M型钡铁氧体低温烧结和致密化的有效途径。此外,为实现M型钡铁氧体的多功能化,从分子设计的思路出发,通过复合手段来赋予材料导电及光敏特性,并结合理论推导和数值拟合的方法得到了相关复合材料的热动力学方程,为提高复合材料的热稳定性及加工性能提供了理论依据。
     在材料实验研究方面,本文采用了溶胶-凝胶法,通过加入阴离子表面活性剂及配合超声分散的方式,制备了粒径范围在60~80nm的M型钡铁氧体超细粉体。在此基础上,利用原位聚合法将棒状聚苯胺与M型钡铁氧体粉体进行复合,首次得到了棒状导电磁性复合材料,并对复合材料的磁电性能进行了深入的探索,为研制多功能化的铁氧体材料建立了一种新的实现途径。研究发现萘磺酸(NSA)在该方法中起到了反应控制剂及模板的作用,使得所形成的胶束能够沿某一方向生长,最终形成棒状结构和壳-核包覆结构。复合材料的电性能随着BaFe_(12)O_(19)含量的增加呈先上升后下降趋势,这是由于铁氧体的绝缘特性以及部分导电通道被铁氧体堵塞所造成。聚苯胺-钡铁氧体复合材料的M_s和H_c值均随BaFe_(12)O_(19)含量的增加明显下降。TG-DTG测试曲线表明:棒状PANI/BaFe_(12)O_(19)复合材料的热分解所需要的能量要远远高于PANI,具有优越的热稳定性,并通过建模及计算确定了其分解机理是三维扩散反应。
     根据有机光化学原理,通过有机功能材料的分子设计,设计了具有肉桂酰基团新型结构的光敏性二胺。从有机合成的角度出发,成功地采用羟醛缩合技术与氨基保护技术,制备了此类光敏性二胺并通过溶液聚合法得到了相应的光敏聚酰胺酸,其紫外可见最大吸收波长在365nm处,重均分子量为3319,耐热温度超过400℃,分辨率可达4um,初步探索了纳米铁氧体微粉与光敏聚酰亚胺复合材料在构筑磁性阵列方面的应用。
     在M型钡铁氧体低温烧结材料的研制过程中,根据M型钡铁氧体配方设计的基本原则,在sol-gel法制备的超细粉体的基础上,通过加入助熔剂BBSZ来实现材料在900℃的烧结。并详细研究了配方中BBSZ含量对材料烧结特性、微观形貌及电磁性能的影响,确定了当配方中BBSZ含量为2 wt%时能较好的兼顾材料低温烧结和高电磁性能的目标要求。此后通过对比实验详细研究了Co/Ti掺杂的低温烧结Ba(CoTi)_xFe_(12-2x)O_(19)钡铁氧体,明确了获得综合磁电性能较佳的掺杂模式为:x=1+3wt%BBSZ,材料的磁导率为13.5,截止频率可达800MHz以上。
     为实现低温烧结的M型钡铁氧体在高频片式器件中的应用,本文首先在分析了各种添加剂对流延浆料性能影响规律的基础上,采用自制的分散剂、黏合剂、增塑剂及有机溶剂,得到了较佳流延的配方为:每100.0g铁氧体选用溶剂甲苯30.0g、乙醇20.0g、磷酸酯与脂肪醇聚氧乙烯醚分散剂5.5g、邻苯二甲酸丁酯增塑剂0.7g、聚乙烯醇缩丁醛粘结剂33.0g,粘度为2000cPs较佳。并通过流延膜片法从浆料配方角度解决了M型钡铁氧体与陶瓷两相材料的匹配共烧问题。然后基于电磁场仿真的思想,借助HFSS软件进行片式电感、滤波器结构与性能的优化设计。明确了于2.52uH、截止频率560MHz的0805型高频片式电感,采取银浆导体宽度200um,通孔半径100um,铁氧体膜片厚度27μm,保护层厚度130μm,有效图形层23层;对于截止频率为120MHz的0805型片式低通滤波器,电感采取银浆导体宽度200um,通孔半径100um,铁氧体膜片厚度20μm,保护层厚度40μm,有效图形层11层,电容采用7层极板,保护层厚度200μm、陶瓷膜片的厚度20μm。最后,采用自制的低温烧结Co/Ti掺杂钡铁氧体材料,按照优化的片式元器件结构,采用LTCC工艺进行了器件的研制工作。经验证,实际制备的高频片式电感,截止频率为548.3MHz,电感值为2.45μH;实际制备的低通滤波器,截止频率为130MHz,带外抑制在360MHz时大于20dB,实测结果均与仿真结果非常吻合,为电子元器件的高频化、小型化及器件参数的准确提取与建模仿真奠定了材料基础。
Due to the stronge uniaxial anisotropy, high coericitivity, (BH)_(max) value andexcellent gyromagnetic performances, M-type barium ferrite (BaFe_(12)O_(19)) has beenfound extensive applications in the fields of permanent magnets, wave-adsorbing,high-density magnetic recording and microwave devices. As the sintering temperaturefor the material is always higher than 1000℃and could not be satisfied with chipcomponents manufacturing technology, low-temperature co-fired ceramics and ferrites(LTCC) process, the problems of how to realize the low-temperature firing andmultifunctions of barium ferrite are becoming the key technologies for the adaption tothe developments of electronic components to the directions of sub-miniaturization,greater multifunctionality and excellent reliability. In this dissertation, the investigationswere focus on the theories, composition technics, processes and applications of theabove mentioned subjects. The research mode that combined theoretical analysis,materials preparation and components application was adopted to develop highperformance low-fired barium ferrite and multilayer chip components.
     In the part of theoretical analysis, the key factors to determine the formation of thelow-fired barium ferrite were investigated firstly from the point of view of the kineticsand thermodynamics for the sol-gel method, which were very helpful to optimize theparameters of preparation process during experiments. Then the sintering kinetics of theferrite was analyzed to give directions to densify the ferrite under low sinteringtemperature. And in order to realize the multifuctions of the ferrite, after moleculardesign, the ferrte was endowed with conductivity and photosensitivity. Combined withthe deduce and data fitness means, the thermal kinetics equations for the compositeswere successfully got, which could direct the thermal stability of high temperatureperformances and the processing routes available for consolidating the composites.
     In the part of experiments investigations, the sol-gel method was adopted toproduce the barium ferrite. After adding anionic surface active agent and by the meansof ultrasonic dispersing, the ultra-fine ferrites powders could be obtained with diametersof 60~80nm. On the basis of the results for the M-type barium ferrite, the rod-shaped polyaniline (PANI)-barium ferrite nanocomposites possessing the conductive andmagnetic performances were obtained by in situ polymerization method for the firsttime. The structure, morphology and properties of the composite were measured by allkinds of testing techniques, which indicated that it is a new and easy way to involve themultifuctions of ferrites. It is also found that the NSA plays a very important role as thereaction controlling agent and the template, which will guarantee the directional growthof micelle, the encapsulation of ferrite particles in the polymer chains and formation ofa "core-shell" structural mixture. The conductivity of the composites varied withdifferent BaFe_(12)O_(19) content with the trend of earlier increasement and later decrease. Itis believed that this is caused by the insulting behavior of the ferrite and partialblockage of conductive path by BaFe_(12)O_(19) in the core of the nanoparticles. The Ms andHc values were both obviously decreased with the increasement of the content ofBaFe_(12)O_(19). TG-DTG testing results showed that the apparent activation energies of thecomposites were higher than that of the pure PANI in a great degree with high thermalstability and the degradation mechanism is three-dimensional diffusion. According tothe principles of photochemistry and through the molecular design for organicfunctional materials, novel photosensitive diamines with the structure of cinnamoylgroup were designed and synthesized by the technology of the Aldol Condensation andprotection for amino group. And corresponding photosensitive PAA were prepared bythe means of solution polymerization with maximal absorption wavelength of UVspectrum at 365nm and weight-average molar mass of 3319. The heat-resistanttemperature of PI is over 400℃and the resolution can reach 4um. The magnetic arrayswere fabricated by the nano ferrites and the above photosensitive polyimide, whichsupply another method to involve the barium ferrites new multifuntions.
     In order to realize the low-temperature sintered ferrites, by the references offomula of the materials designing, the BBSZ was adopted to the system. And theinfluences of compositions on the sintering behaviors, microstructures and magneticproperties of the ferrite were investigated. It was confirmed that 2wt% BBSZ contentwas appropriate to give attention to both low-fired characteristic and good magneticproperties. Then the low temperature sintered Co/Ti doped barium ferrite Ba(CoTi)_xFe_(12-2x)O_(19) were carefully researched after the comparing experiments and theoptimal doping mode was x=1+3wt% BBSZ. The permeability of the materials was 13.5 and the cut-off frequency could reach 800MHz.
     In the part of LTCC application research, a research of the additives influences onthe slurry performances was carried out and the dispersant, binder, plasticizer andorganic solvent were added to adjust the slurry formula. The formula is as following.The amount of toluene is 30.0g, the alcohol is 20.0g, the dispersant is 5.5g, theplasticizer is 0.7g and the binder is 33.0g for 100.0g ferrites. The slurry viscosity is2000cPs. The co-firing behavior of different multilayer ceramic and ferrite sampleprepared by tape casting method was carried out and an improvement on the co-firingmatch between barium ferrite and the ceramic was established through the method ofadjusting the composition of the slurry for the first time. The HFSS software was usedto design, stimulate and optimize the multilayer chip components. It was confirmed thatfor the 0805-type multilayer chip inductor with the cut-off frequency at 560MHz andinductance of 2.52uH, the width of the silver was 200um, the radius of via holes was100um and the thickness of ferrite layer and protective layer was 27um, 130um withtwenty three figure layers. For the low-pass filter with the cut-off frequency at 120MHz,the inductor was constructed by eleven figure layer under the conditions of 200umsilver width, 100um via hole radius and 20um protective layer thickness and thecapacitor was constructed by seven figure layer under the conditions of 200um silverwidth, 20um layer thickness and 200um protective layer thickness. Then the preparedbarium ferfite was chosen to produce the multilayer chip inductors and low-pass filtersby LTCC technical line. The cut-off frequency and the inductance of the as-preparedinductors were 548.3 MHz and 5.45 uH respectively. And the cut-off frequency of thelow-pass filters and the attenuation were 130MHz and beyond 20dB. The performancesof the inductors and the low pass filter were in good agreements with that of the forecast,which benefits for the high-frequency, miniaturization of electronic components and theaccuate stimulation.
引文
[1] Menzel, W. Interconnects and packaging of millimeter wave circuits. IEEE Topical Symp.Millimeter Waves, Kanagawa, Japan, 1997: 55-58
    [2] Kaustav Banerjee, Shukri J. Souri, Pawan Kapur, et al. 3-D ICs: a novel chip design for improving deep-submicrometer interconnects performance and systems-on-chip integration. Proceedings of IEEE, 2000, 89(5): 602-633
    [3] Cocker, Vanrietvelde, Nicotra, et al. Microwave and mm-wave applications: a new challenge for ceramic thick film technology, Proceedings of the IMAPS Conference, 2002, 35-38
    [4] Midford, T. A., Wooldridge, J. J., et al. The evolution of packages for monolithic microwave and millimeter wave circuits. IEEE Trans. Antennas and Propagation, 1995, 43: 983-991
    [5] Gektin, V., Bar-Cohen, Witzman, et al. Coffin-Manson based fatigue analysis of underfilled DCAS. IEEE Trand. Components, Packaging, and Manufacturing Technology-Part A, 1998,21:577-584
    [6] Calina Kniajer, Kentor Dechant, Drasad Apte. Low loss, low temperature co-fired ceramics with higher dielectric constants for multichip modules (MCM). IEEE. Trans. Magn, 1997,33:121-125
    [7] R. L. Brown, P. W. Polinski. The integration of passive components into MCM's using advanced low-temperature co-fired ceramics. Int. J.Microcirc. Electron. Packag, 1993: 328-338
    [8] A. Fathy. Design of embedded passive components in low temperature co-fired ceramic on metal (LTCC-M) technology. Proc. IEEE Int. Microwave Symp., 1998: 1281-1284
    [9] Charles Q.Scrantom. LTCC technology: where we are and where we're going- Ⅱ. Proc. IEEE Int. Microwave Symp., 1998: 193-199
    [10] M.R.Gongora-Rubio, P.Espinoza-Vallejos, R. L. Sarama, et al. Overview of Low Temperature Co-fired Ceramic tape technology for meso-system technology (MsST). Sensors and Actuators A, 2001(89): 222-226
    [11] K.Delaney, J.Barton, P. Holld, et al. Characterisation of the electrical performance of buried capacitors and resistors in low temperature co-fired (LTCC) ceramic. IEEE Electronic omponents and Technology Conference, 1998(6): 900-910
    [12] Micheal Richtarsic, Jack Thomron. Characterization and Optimization of LTCC for High Density Large Area MCM's. IEEE 1998: 92-96.
    [13] Lih-Shan Chen, Shen-LiFu, Yu He, et al.Capacitors enbeded in the low temperature Cofired Ceramic. IEEE 1998 IEMT/IMC Proceedings: 59-65
    [14] Wing-Yan Leung, Kwok-Keung M. Cheng, et al. Design and implementation of LTCC filters with enchanced stop-band characteristics for bluetooth applications. IEEE 2001:1008-1013
    [15] Calina Kniajer, Kentor Dechant, Drasad Apte. Low loss, low temperature cofired ceramics with higher dielectric constants for multichip modules (MCM). IEEE. Trans. Microwave. 1997:121-128
    [16] Yu Ron, Kawthar A.Zaki. Low-Temperature Cofired Ceramic (LTCC) Ridge Waveguide Bandpass Chip Filters. IEEE Trans.Microwave. 1999: 2317-2322
    [17] Nakano. The study of low temperature sintering NiCuZn ferrites for multilayer ferrite chip, International Conference on Ferrite, 2005, 25-27
    [18] Jau-Ho JEAN, Cheng-Horng LEE, Low-Fire NiO-CuO-ZnO Ferrite with Bi_2O_3, Jpn. J. Appl. Phys, 1999,38:3508-3512
    [19] J Jeong, B.C Moon, Y. H Han. Effects of Bi_2O_3 addition on the microstructure and electromagnetic properties of NiCuZn ferrites. Magnetics Conference. IEEE International, 2002,28 Apri-12 May
    [20] Zhong Hui, Zhang Huaiwu. Effects of different sintering temperature and Mn content on magnetic properties of NiZn ferrites. J. Magn. Magn. Mater, 2004, 283: 247-250
    [21] Tetsuya Osaka, Junichi Sayama. A challenge of new materials for next generation's magnetic recording. Electrochimica Acta, 2007, 52:2884-2890
    [22] Ugur Topal. Factors influencing the remanent properties of hard magnetic barium ferrite:Impurity phases and grain sizes. Jounal of Magnetism and Magnetic Materials, 2008,320:331-335
    [23] David Berman, Robert Biskeborn, N. Bui, et al. 6.7 GB/in~2 recording areal density on barium ferrite tape. IEEE Transactions on Magnetics, 2007,43(8): 3502-3508
    [24] A.Ghasemi, A.Hossienpour, A.Morisako, et al. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. Jounal of Magnetism and Magnetic Materials, 2006, 302:439-435
    [25] V.G.Harris, Zhaohui Chen, Yajie Chen, et al. Ba-hexaferrite films for next generation microwave devices. Journal of Applied Physics, 2006, 99: 08M911
    [26] Yajie Chen, Anton L.Geiler, Tomokazu Sakai, et al. Microwave and magnetic properties of self-biased barium hexaferrite screen printed thick films. Journal of Applied Physics, 2006, 99:08M904
    [27] Chung-Kook Lee, Robert F. Speyer. Synthesis of nano-sized barium ferrite particles using an inorganic dispersing phase. Journal of Applied Physics, 1993, 73(10): 6266-6268
    [28] X. Batlle, M. Garcia del muro, J. Tejada. Magnetic study of M-type doped barium ferrite nanocrystalline powders. Journal of Applied physics, 1993, 74(5): 3333-3340
    [29] L. Rezlescu, E. Rezlescu, P.D. Popa, et al. Fine Barium hexaferrite powder by the crystallization of glass. Journal of Magnetism and Magnetic Materials, 1999, 193: 288-290
    [30] 曹健,谢嘉宁,张业凤.熔盐法合成BaFe_(11)Co_(0.5)Ti(0.5)O_(19)磁性粉体.功能材料,1996, 27(5): 446-448
    [31] W. A. Kaczmarek, B. W. Ninham. Magnetic properties of Ba-ferrite powders prepared by surfactant assisted ball milling. IEEE Transactions on Magnetics, 1994, 30(2): 717-719
    [32] G. Benito, M.P. Morales, J. Requena, et al. Barium hexaferrite monodispersed nanoparticles prepared by the ceramic method. Journal of Magnetism and Magnetic Materials, 2001, 234:65-72
    [33] H.C. Fang, Z. Yang, C.K. Ong, et al.. Preparation and magnetic properties of (Zn-Sn) substituted barium hexaferrite nanoparticles for magnetic recording. Journal of Magnetism and Magnetic Materials, 1998, 187: 129-135
    [34] H.C. Fang, C.K. Ong, Z. Yang, et al. Low temperature characterization of nano-sized BaFe_(12-2x)Zn_xSn_xO_19 particles. Journal of Magnetism and Magnetic Materials, 1999, 191:277-281
    [35] Suzilene R. Janasi, Daniel Rodrigues, Fernando J.G. Landgraf, et al. Magnetic properties of coprecipitated barium ferrite powders as a function of synthesis conditions. IEEE Transactions on Magnetics, 2000, 36(5): 3327-3329
    [36] Suzilene R. Janasi, M. Emura, F.J.G. Landgraf, et al. The effects synthesis variables on the magnetic properties of coprecipitated barium ferrite powders. Journal of Magnetism and Magnetic Materials, 2002, 228: 168-172
    [37] J. Matutes-Aquino, S. Diaz-Castanon, M. Mirabal-Garcia, et al. Synthesis by coprecipitation and study of barium hexaferrite powders. Scripta Mater, 2000, 42: 295-299
    [38] Suzilene R. Janasi, Daniel Rodrigues, Fernando J.G. Landgraf, et al. Magnetic properties of coprecipitated barium ferrite poweders as a function of synthesis conditions. IEEE Transactions on Magnetics, 2000, 36(5): 3327-3329
    [39] M. Radwan, M.M. Rashad, M.M. Hessien. Synthesis and characterization of barium hexaferrite nanoparticles. Journal of Materials Processing Technology, 2007, 181: 106-109
    [40] Soon-Gil Kim, Wei-Ning Wang, Toru Iwaki, et al. Low temperature crystallization of barium ferrite nanoparticles by a sodium citrate-aided synthetic process. Journal of Physical Chemistry,2007,111: 10175-10180
    [41] Philip Shepherd, Kajal K. Mallick, et al. Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation. Journal of Magnetism and Magnetic Materials, 2007,311:683-692
    [42] W. Y. Zhao, P. Wei, X. Y. Wu, et al. Lattic vibration characterization and magnetic properties of M-type Barium hexaferrite with excessive iron. Journal of Applied Physics, 2008, 103:063092
    [43] Satoshi Sugimoto, Kazuaki Haga, Toshio Kagotani, et al. Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. Journal of Magnetism and Magnetic Materials, 2005, 290: 1188-1191
    [44] K. Sheikhi Moghaddam, A. Ataie. Role of intermediate milling in the processing of nano-size particles of barium hexaferrite via co-precipitation method. Journal of Alloys and Compounds,2006,426:415-419
    [45] M.M. Rashad, M. Radwan, M.M. Hessien. Effect of Fe/Ba mole ratios and surface-active agents on the formation and magnetic properties of co-precipitated barium hexaferrite. Journal of Alloys and Compounds, 2008,453: 304-308
    [46] Kajal K. Mallick, Philip Shepherd, Roger J. Green. Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation. Journal of Magnetism and Magnetic Materials, 2007, 312: 418-429
    [47] C.K. Ong, H.C. Fang, Z. Yang, et al. Magnetic relaxation in Zn-Sn-doped barium ferrite nanoparticles for recording. Journal of Magnetism and Magnetic Materials, 2000,213:413-417
    [48] G. Mendoza-Suarez, L.P. Rivas-Vazquez, A.F. Fuentes, et al. Preparation and magnetic properties of Zi-Ti substituted Ba-ferrite powders. Materials Letters, 2002, 57: 868-872
    [49] G. Mendoza-Suarez, L.P. Rivas-Vazquez, J.C. Corral-Huacuz. Magnetic properties and microstructure of BaFe_(11.6_2x)Ti_xM_xO_(19) (M=Co, Zn, Sn) compounds. Physica B, 2003, 339:110-118
    [50] Muhammad Javed Iqbal, Muhammad Naeem Ashiq. Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles Synthesized by co-precipitation method.Chemical Engineering Journal, 2008, 136:383-389
    [51] H. Yamamoto, M. Isono, T. Kobayashi. Magnetic properties of BaoNd-Co system M-type ferrite fine particles prepared by controlling the chemical coprecipitation method. Journal of Magnetism and Magnetic Materials, 2005, 295:51-56
    [52] Wen-Yu Zhao, Qing-Jie Zhang, Lei-Chun Li, et al. Microstucture and magnetic properties of non-stoichiometric M-type hexaferrite with barium surplus. Journal of Magnetism and Magnetic Materials, 2005, 295:21-27
    [53] Yadong Li, Renmao Liu, Zude Zhang, et al. Synthesis and characterization of nanocrystalline BaFe_(9.6)Co_(0.8)M_(0.8)O_(19) particles. Materials Chemistry and Physics, 2000, 64:256-259
    [54] Pallai V, Kumar P. Magnetic properties of barium ferrite synthesized using a microemulsion mediated process. Journal of Material Science Letter, 1992, 116(3):L299-304
    [55] Xiangyuan Liu, John Wang, Leong-Ming Gan, et al. An ultrafine barium ferrite powder of high coercivity from water-in oil microemulsion. Journal of Magnetism and Magnetic Materials,1998, 184:344-354
    [56] 王常生,李龙土,齐西伟,等.Bi_2O_3对低烧Co-Ti替代钡铁氧体显微结构与高频磁性的影响.功能材料,2003,34(2):153-155
    [57] 白洋,周济,桂治轮,等.甚高频片式电感用低温烧结平面六角软磁铁氧体的电磁性能.黑龙江科技学院学报,2003,13(4):1-4
    [58] 周济,王晓慧,岳振星,等.用软化学过程制备高性能片式电感材料.材料研究学报,2001,15(1):23-28
    [59] 白洋,周济,桂治轮,等.低温烧结Cu、zn掺杂Co_2-Y平面六角铁氧体及其频率特性.功能材料,2002,33(5):487-489
    [60] 王常生,李龙土,齐西伟,等.CoZn-X型钡铁氧体的结构与高频磁性.功能材料,2003,34(3):299-303
    [61] 岳振星,高性能低烧片式电感材料及相关基础问题研究,清华大学博士后论文,1999
    [62] 罗俊,陈世衩,贾利军,等.低温烧结Ba_2Co_((1.2-x))Zn_xCu_(0.8)Fe_(12)O_(22)Y型六角铁氧体研究.磁性材料与器件,2008,39(3):42-47
    [63] 贾利军,张怀武,刘颖力,等.Nb_2O_5掺杂CO_2Z六角铁氧体的烧结行为和电磁特性.硅酸盐学报,2006,34(4):398-402
    [64] 贾利军,张怀武,陆清芳,等.(Ba_(1-x)Sr_x)_3Co_2Fe_(24)O_(41)材料的磁化处理与烧结特性.硅酸盐学报,2004,32(12):1505-1510
    [65] 李颉,刘颖力,龙发明,等.Sol-Gel法制备M型钡铁氧体.实验科学与技术,2008,6(2):3-5
    [66] C. Surig, K. A. Hempel, D. Bonnenberg. Formation and microwave absorption of barium and strontium ferrite prepared by sol-gel technique. Applied Physics Letters, 1993, 63(20):2836-2838
    [67] Xiaohui Wang, Dan Li, Lude Lu, et al. Synthesis of substituted M- and W-type barium ferdte nanostructured powders by stearic acid gel method. Journal of Alloys and Compounds, 1996,237:45-48
    [68] R.C. Pullar, S.G. Appleton, A.K. Bhattacharya. The manufacture, characterization and microwave properties of aligned M ferrite fibres. Journal of Magnetism and Magnetic Materials,1998, 186:326-332
    [69] R.C. Pullar, M.H. Stacey, M.D. Taylor, et al. Decomposition, shrinkage and evolution with temperature of aligned hexagonal ferrite fibres. Acta Materialia, 2001, 49:4241-4250
    [70] R.C. Pullar, A.K. Bhattacharya. The magnetic properties of aligned M hexa-ferrite fibres.Journal of Magnetism and Magnetic Materials, 2006, 300:490-499
    [71] R. Martinez Garcia, E. Reguera Ruiz, E. Estevez Rams, et al. Effect of precursor milling on magnetic and structural properties of BaFe_(12)O_(19) M-ferrite. Journal of Magnetism and Magnetic Materials, 2001, 223:133-137
    [72] Hsuan-Fu Yu, Kao-Chao Huang. Effects of pH and citric acid contents on characteristics of ester-derived BaFe_(12)O_(19) powder. Journal of Magnetism and Magnetic Materials, 2003, 260:455-461
    [73] Chul Sung Kim, Sung Yong An, Ji Hee Son, et al. Magnetic properties of Cr~(3+) substituted BaFe_(12)O_(19) powers grown by a sol-gel Method. IEEE Transactions on Magnetics, 1999, 35(5):3160-3162
    [74] Geok B. Teh, David A. Jefferson. High-resolution transmission electron microscopy studies of sol-gel-derived cobalt-substituted barium ferrite. Journal of Solid State Chemistry, 2002, 167:254-257
    [75] G. Mendoza-Suarez, J.C. Corral-Huacuz, M.E. Coreras-Garcia, et al. Magnetic properties of BaFe_(11.6-2x)Co_xTi_xO(19) particles produced by sol-gel and spray-drying. Journal of Magnetism and Magnetic Materials, 2001, 234: 73-79
    [76] Sung Yong An, In-Bo Shim, Chul Sung Kim. Mossbauer and magnetic properties of Co-Ti substituted barium hexaferrite nanoparticles. Journal of Applied physics, 2002, 91(10):8465-8467
    [77] Y.S. Hong, CM. Ho, H.Y. Hsu, et al. Synthesis of nanocrystalline Ba(MnTi)_xFe_(12-2x)O_(19) powders by the sol-gel combustion method in citrate acid-metal nitrates system (x=0, 0.5, 1.0,1.5, 2.0). Journal of Magnetism and Magnetic Materials, 2004, 279: 401-410
    [78] Jiong Zhou, Hongliang Ma, Minjian Zhong, et al. Influence of Co-Zr substitution on coercivity in Ba ferrites. Journal of Magnetism and Magnetic Materials, 2006, 305: 467-469
    [79] Neil J. Shirtcliffe, Simon Thompson, Eoin S. O'Keefe, et al. Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Materials Research Bulletin, 2007,42: 281-287
    [80] Ali Ghasemi, Akimitsu Morisako. Static and high frequency magnetic properties of Mn-Co-Zr substituted Ba-ferrite. Journal of Alloys and Compounds, 2008,456: 485-491
    [81] Doug-Youn Lee, Young-Il Oh, Dong-Hyun Kim, et al. Synthesis and performance of magnetic composite comprising barium ferrite and biopolymer, IEEE Transactions on Magnetics, 2004,40(4): 2961-2963
    [82] Seung-Woo Lee, Jack Drwiega, Chang-Yu Wu, et al. Anatase TiO_2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst. Chemistry of Materials, 2004, 16(6): 1160-1164
    [83] Makled M. H., Matsui T., Tsuda H., et al. Magnetic and dynamic mechanical properties of barium ferrite-narural rubber composites, Journal of Materials Processing Technology, 2005,160(2): 229-233
    [84] Guohong Mu, Na Chen, Xifeng Peng, et al. Microwave absorption properties of hollow microsphere/titania/M-type Ba ferrite nanocomposites. Applied Physics Letters, 2007, 91:043110
    [85] Guohong Mu, Xifeng Pan, Haigen Sen, et al. Preparation and magnetic properties of composite powders of hollow microspheres coated with barium ferrite. Materials Science and Engineering.A, 2007,445:563-566
    [86] Xin Tang, Ke-ao HuPreparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites, Materials Science and Engineering. B, 2007,139(2): 119-123
    [87] 肖红梅,朱路平,张卫东,等.M型钡铁氧体-聚吡咯纳米复合材料的制备及其微波吸收性能的研究.功能材料信息,2007,4(5):53-56
    [88] 伊翠云.聚苯胺/纳米钡铁氧体复合吸波材料性能的研究.武汉理工大学硕士论文2007
    [89] 郭亚平,郭亚军,吕君英.聚苯胺/铁氧体复合颗粒的合成与表征.材料科学与工艺,2005,13(2):189-192
    [90] 张晏清,张雄.包覆钡铁氧体的多孔玻璃微珠吸波材料制备与性能.无机材料学报,2006,21(4):861-866
    [91] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002
    [92] 李懋强.湿化学法合成陶瓷粉料的原理和方法.硅酸盐学报,1994,22(1):85-91
    [93] Sugimoto T. Preparation of monodispersed colloidal particles. Advance in Colloid and Interface Science, 1987, 28:65-108
    [94] 王光信,赵长贵,陈宗淇,等.均分散胶体的研究.Ⅰ.钇化合物均分散胶体的形成.物理化学学报,1991,7(6):655-661
    [95] Dynys F. W, Halloran J. W. Influence of aggregates on sintering. Journal of American Ceramic Society, 1984, 67(9): 596-601
    [96] Rhodes W. H. Agglomerate and particle size effects on sintering yttria-stabilized zirconia.Journal of American Ceramic Society, 1981, 64(1): 19-22
    [97] Alok Maskra, Douglas M. Smith. Agglomeration during the drying of fine silica powders, part Ⅱ: The role of particle solubility. Journal of American Ceramic Society, 1997, 80(7): 1715-1722
    [98] Scherer G. W. Drying gels.1. General theory. Journal of Non-Crystal Solids, 1986, 87(1-2):199-225
    [99] Jones S. L., Norman C. J. Dehydration of hydrous zirconia. Journal of American Ceramic Society, 1988, 71(4): C190-C191
    [100] Coble R. L. Sintering crystalline solids. I. Intermediate and final state diffusion models.Journal of Applied Physics, 1961, 32(5): 787-792
    [101] Matijevic E. Colloid science of ceramic powders. Pure and Applied Chemistry, 1988,60(10):1479-1491
    [102] 杨熙珍.金属腐蚀电化学热力学:电位-PH图及应用.北京:化学工业出版社,1991
    [103] 张承中.金属的腐蚀与保护.北京:冶金工业出版社,1985
    [104] Arne. E. Nielsen. Kinetics of precipitation. Oxford: Pergamon Press, 1964
    [105] Carside. J. Industrial crystallization from solution. Chemical Engineering Science, 1985,40(l):3-26
    [106] Terry. A. King. Nucleation growth and agglomeration during precipitation of powders.Proceeding of second world congress: Particle Technology, September, 1990: 19
    [107] Randolph A .D, Larson M. A. Theory of particulate process. New York: Alademic Press, 1971
    [108] Hartel R. W., Gottung B. E, Randolph A. D. Mechanisms and kinetic modeling of calcium oxalate crystal aggregation in a urinelike liquor. Part 1: Mechanism. Aiche, 1986,32(7): 1176-1185
    [109] Friedlander S. K, Wang C. S. The self-preserving particle size distribution for coagulation by brownian motion. Journal of Colloid and Interface Science, 1966, 22(2):126-132
    [110] V.K. Sankaranarayanan, D.C. Khan. Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. Journal of Magnetism and Magnetic Materials, 1996,153:338-346
    [111] Saita H, Yi Fang, Nakano A, et al., Microwave sintering study of NiCuZn ferrite ceramics and devices, Japanese Journal of Applied Physics, 2002, 41: 86-92
    [112] Wu K.H, Huang W.C, Wang G.P, et al. Effect of pH on the magnetic and dielectric properties of SiO_2/NiZn ferrite nanocomposites, Material Research Bulletin, 2005,40:1822-1831
    [113] Uskokovi(?) Vuk, Drofenik Miha, A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method, Colloids & Surfaces A, 2005, 266:168-174
    [114] Verma Seema, Pradhan S. D, Pasricha Renu. A novel low-temperature synthesis of nanosized NiZn Ferrite, Journal of American Ceramic Society, 2005, 88:2597-2599
    [115] Yuh-Ruey Wang, Sea-Fue Wang. Liquid phase sintering of NiCuZn ferrite and its magnetic properties, Inter. J. Inorg. Mater, 2001,3: 1189-1192
    [116] M. Pal, P. Brahma, D. Chakravorty. Magnetic and electrical properties of nickel-zinc ferrites doped with bismuth oxide, Journal of Magnetism and Magnetic Materials, 1996, 152: 370-374
    [117] Sea-Fue Wang, Yuh-Ruey Wang, Thomas C.K.Yang, et al. Densification and Properties of fluxed sintered NiCuZn ferrites, Journal of Magnetism and Magnetic Materials, 2000, 217:35-43
    [118] S.H.Seo, J.H.Oh. Effect of MoO_3 addition on sintering behaviors and magnetic properties of NiCuZn ferrite for multilayer chip inductor, IEEE. Trans. Magn, 1999, 35(5):3412-3414
    [119] Jen-Yan Hsu, Wen-Song Ko, Chi-Jen Chen. The effects of V_2O_5 on sintering of NiCuZn ferrite, IEEE. Trans. Magn, 1995, 31 (6):3994-3996
    [120] Jau-Ho Jean, Cheng-Horng Lee. Low-fire NiO-CuO-ZnO ferrite with Bi_2O_3, Japanese Journal of Applied Physics, 1999, 38:3508-3512
    [121] 苏桦.低温烧结NiCuzn铁氧体(LTCF)材料及叠层片式电感应用研究.电子科技大学博士论文,2007
    [122] S. H. Hong, J. H. Park, Y. H. Choa, et al. Magnetic properties and sintering characteristics of NiZn (Ag, Cu) ferrite for LTCC applications, Journal of Magnetism and Magnetic Materials, 2005, 290:1559-1562
    [123] Z. Simsa, S. Lego, R. Gerber, et al. Cation distribution in Co-Ti-substituted barium hexaferrites. Journal of Magnetism and Magnetic Materials, 1995.140:2103-2104
    [124] J.Williams, J.Adetunji, M.Gregori. Mossbauer spectroscopic determination of magnetic moments of Fe~(3+) and Co~(2+) in substituted barium hexaferrite Ba (CoTi)_xFe_(12-2x)O_(19). [J]. Journal of Magnetism and Magnetic Materials, 2000, 220:124-128
    [125] Zhang Haijun, Liu Zhichao, Ma Chenliang, et al. Preparation and microwave properties of Co-and Ti-doped barium ferrite by sol-gel process, Materials Chemistry and Physics, 2003, 80:129-134
    [126] C. Wang, L. Li, J. Zhou, et al. Microwave and high-frequency magnetic properties of low-temperature sintered Co-Ti substituted barium ferrites, Journal of Magnetism and Magnetic Materials, 2003,257:100-106
    [127] R. Gangopadhyay, A. De. Conducting polymer nanocomposites: A brief overview.Chem.Mater, 2000(12):608-622
    [128] B.Z.Tang, Y.H. Geng. Processible nanostructured materials with electrical conductivity and magnetic susceptibility: Preparation and properties of maghemite/polyaniline nanocomposite films. Chem. Mater., 1999(11): 1581-1589
    [129] R.P. Pant, S. K. Dhawan, N. D. Kataria, et al. Investigations on ferrofluid-conducting polymer composite and its application. Journal of Magnetism and Magnetic Materials, 2002(252): 16-19
    [130] Z. M. Zhang, J. Y. Deng, J. Y. Shen, et al. Chemical one step method to prepare polyaniline nanofibers with electromagnetic function. Macromol. Rapid. Commun, 2007(28): 585-590
    [131] G. H. Qiu, Q. wang, M. Nie. Polypyrrole-Fe_3O_4 magnetic nanocomposite prepared by ultrasonic irradiation. Macromol. Mater. Eng, 2006(291):68-74
    [132] D. H. Park, Y. B. Lee, M. Y. Cho, et al. Fabrication and magnetic characteristics of hybrid double walled nanotube of ferromagnetic nickel encapsulated conducting polypyrrole. Applied Physics Letter, 2007(90):093122
    [133] M. Mallouki, F. Tran-Van, C. Sarrazin, et al. Polypyrrole-Fe_2O_3 nanohybrid materials for electrochemical storage. Journal of Solid State Elelectrochem, 2007, (11): 398-406
    [134] K. Suri, S. Annapoorni, A.K. Sarkar, et al. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sensors and Actuators B: Chemical, 2002 (81): 277-282
    [135] L. N. Geng, S. R. Wang, Y.Q. Zhao, et al. Study of the primary sensitivity of polypyrrole/r-Fe_2O_3 to toxic gases. Mater. Chem. Phys, 2006(99): 15-19
    [136] R.Faez, I.M.Martin, M.-A.De Paoli, et al, Microwave properties of EPDM/PAni-DBSA blends, Synth.Met, 2001, 119(3): 71-76
    [137] C.K. Jeong, J.H. Jung, B.H. Kim, et al. Electrical, magnetic, and structural properties of lithium salt doped polyaniline. Synth.Met, 2001, 117: 99-105
    [138] C.A. Amarnath, S. Palaniappan, Amrit Puzari, et al. Solution processible and conductive polyaniline via protonation with 4,4-bis(4-hydroxy phenyl)-valeric acid: Preparation and characterization. Materials Letters, 2007, 61:4204-4208
    [139] J. Joo, C. Y. Lee. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers, Journal of Applied Physics. 2000, 88(7):513-517
    [140] Zhiming Zhang, Meixiang Wan. Nanostructures of polyaniline composites containing nano-magnet. Synth. Met, 2003, 132: 205-210
    [141] Q.M. Jia, J.B. Li, L.F. Wang, et al. Electrically conductive epoxy resin composites containing polyaniline with different morphologies. Materials Science and Engineering: A, 2007,448:356-361
    [142] Jiangguo Deng, ChuanLan He, Yuxing Peng, et al. Magentci and conductive Fe_3O_4-polyaniline nanoparticles with core-shell structure. Synth.Met. 2003, 139: 295-301
    [143] Jing Jiang, Liangchao Li, Feng Xu. In situ synthesis and characterization of LiNi_(0.5)La_(0.08)Fe_(1.92.)O_4-polyanileine core-shell nanocomposites, Journal of Physics and Chemistry of Solids. 2007, doi: 10.1016/j.jpcs. 2007.04.007
    [144] Guo Fangfang, Xu Jinfeng, Xu Zheng. Study of the Crystallization Properties of Hexagonal Ba-ferrite Nanocrystal Microwave-absorbing Agents. Journal of Materials Science and Engineering. 2004, 22(6): 872-875
    [145] C. R. Vestal, Q. Song, Z. J. Zhang, Effects of interparticle interactions upon the magnetic properties of CoFe_2O-4 and MnFe_2O-4 nanocrystals, J. Phys. Chem. B. 2004,108(4):18222-18225
    [146] Jie Huang, Meixiang Wan.Polyaniline doped with different sulfonic acids by in situ doping polymerization. J.Polym.Sci, Part A: Polym Chem. 1999, 37(3):151-158
    [147] T. Jeevananda, Siddaramaish. Thermal and morphological studies on ethylene-vinyl acetate copolymer-polyaniline blends. Thermochimica Acta, 2001(376):51-61
    [148] C.D. Doyle. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Analytical Chemistry, 1961(33): 77-79
    [149] J.H.Sharp, G.W. Brindley, and B.N. Narahari Achar. Numerical data for some commonly used solid state reaction equations. Journal of American Ceramic Society, 1966(49): 379-382
    [150] A. W. Coats and J. P. Redfern. Kinetic parameters from thermogravimetric data. Nature,1964(201): 68-69
    [151] Aleksandrova E L, Nosava G I, Nomashkova K A, et al. New photosensitive polyimide composites for optical technologies. Journal of Optical Technology, 2002, 9(10): 706-710
    [152] Watanabe Y, Shibasaki Y, Ando S, Ueda M. A new positive-type photosensitive alkaline-developable alicyclic polyimidebased on poly(amic acid silylester) as a polyimide precursor and diazonaphthoquinone as aphotosensitive compound. Chemistry of Materials,2002, 14(4): 1762-1766
    [153] Ryoji Okuda, Kazuto Miyoshi, Nana Arai, et al. Low-temperature-curing type positive-tone photosensitive polyimide coatings for insulating layer in LED displays. Journal of Photopolymer Science and Technology, 2002, 15(2): 205-208
    [154] Eun Sil Jung, Shigemasa Segawa, Taro Itatani, et al. Lithographic properties of positive photosensitive polyimide insulator by block copolymerization. Journal of Photopolymer Science and Technology, 2001, 14(1): 61 -66
    [155] Myong Hoon Lee, Jink Yu Kim, Yoonsang Cheong. Photoinduced refractive index modulation of photosensitive polyimides and their application in passive wave-guide fabrication. Molecular Crystals and Liquid Crystals Science and Technology, Section A, 2001, 371: 419-422
    [156] Tajima Y, Takeuchi E, Takeuchi K, et al. New photosensitive polyimide system for sealing high-density semiconductor chip. Japanese Journal of Applied Physics, 2001, 40(10):6124-6128
    [157] 俞庆森,朱龙观编著.分子设计导论.北京:高等教育出版社 1998
    [158] 唐先忠,王正义,杨邦朝等.MCM用光敏聚酰亚胺材料的研究.混合微电子技术,2000,11(1):10-17
    [159] 唐先忠,杨邦朝,何为.光敏性二胺的合成.电子科技火学学报,2000,29(6):256-259
    [160] 李元勋,唐先忠,何为.1-(3-氨基苯基)-3-(4-氨基苯基)-2-丙烯-1-酮的合成.精细化工,2003,20(12):5-7
    [161] 伍越寰编.有机结构分析.北京:中国科学技术大学出版社,1993
    [162] Hsiao-Miin Sung, Chi-Jen Chen, Lih-Jiun Wang, et al. The Characteristics of low temperature Co-Fired Multilayer Chip LC Filters, IEEE. Trans. Magn, 1998, 34(4): 1363-1365
    [163] Yu-Ting Huang, Chi-Jen Chen, Hsiao-Miin Sung. The study of magnetic circuit design for multilayer ferrite chip inductors, IEEE. Trans. Magn, 1995, 31(6): 4071-4073
    [164] Goran Stojanovic, Mirjana Damnjanovic, Vladan Desnica. High-performance zig-zag and meander inductors embedded in ferrite material, J. Magn. Magn. Mater, 2006, 297:76-83
    [165] Axelsson, Anna-Karin, Alford, et al. Bismuth titanates candidates for high permittivity LTCC,J. Euro. Ceram. Soc., 2006, 26(10): 1933-1936
    [166] Birol. H, Maeder.T, Jacq. C. Investigation of interactions between co-fired LTCC components,J. Euro. Ceram. Soc., 2005, 25(12): 2065-2069
    [167] Bian Jian-jiang, Kim Dong-Wan, Hong Kug Sun. Glass-free LTCC microwave dielectric ceramics, Mater. Res. Bull., 2005, 40(12): 2120-2129
    [168] Hagym(?),(?)si Marcel, Roosen Andreas, Karmazin Roman. Constrained sintering of dielectric and ferrite LTCC tape composites, J. Euro. Ceram. Soc., 2005, 25(12): 2061-2064
    [169] Mori Naoya, Sugimoto Yasutaka, Harada Jun. Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies, J. Euro. Ceram. Soc., 2006,26(10): 1925-1928
    [170] Jian Liu, Jian-Ming Jin, Edward K, et al. A fast, higher order three-dimensional finite-element analysis of microwave waveguide devices, Microwave. Optic. Tech. Letters, 2002, 32:344-352
    [171] T. S. Horng, K. C. Peng, J. K. Jau. S-parameter formulation of quality factor for a spiral Inductor in generalized two-port configuration. IEEE Radio Frequency Integrated Circuits Symposium. 1999, 255-258
    [172] 姚义俊,丘泰.氮化铝陶瓷浆料流变性能的研究.材料工程,2006(9):10-13
    [173] 梁建超,肖建中,罗志安,等.分散剂对ZrO_2料浆及陶瓷性能的影响.硅酸盐通报,2005(2):45-48
    [174] 李冬云,季冠军,金志浩.流延法制备陶瓷薄片的研究进展.硅酸盐通报,2004(2):44-47
    [175] F. Gao, C. Zhang, X. Liu. The interface and grain growth in co-fired ferroelectric/ferrite multilayer composites. Materials Science Forum, 2005, 476:1185-1188
    [176] Xiao-hui Wang, Long-tu Li, Zheng-xing Yue, et al. Effect of SiO_2 additive on the high-frequency properties of low-temperature fired Co_2Z. Journal of Magnetism and Magnetic Materials, 2004, 271:301-306
    [177] Mao Wang, Ji Zhou, Zhenxing Yue, et al. Co-firing behavior of ZnTiO_3-TiO_2 dielectrics/hexagonal ferrite composites for multi-layer LC filters. Materials Science and Engineering B, 2003, 99(1-3): 262-265
    [178] Peng Te-Ming Hsu, Rung-Tsung, Jean Jau-Ho. Low-fire processing and properties of ferrite/ dielectric ceramic composite. Journal of the American Ceramic Society, 2006, 89(9):2822-2827
    [179] Cui Xue-Min, Zhou Ji, Li Bo, et al. Co-firing behavior and interfacial structure of BaO-TiO_2-B_2O_3-SiO_2 glass-ceramics/NiCuZn ferrite composites. Materials and Manufacturing Processes, 2007, 22(2): 251-255
    [180] Wang Mao, Yue Zhenxing, Zhou Ji, et al. Co-firing behavior and interfacial structure of dielectric/ferrite composites for multi-layer LC filters. Key Engineering Materials, 2002,225:151-154
    [181] 杨立群.低温共烧陶瓷嵌入式电感与电容元件之设计模型化.台湾国立中山大学硕士学位论文,2003
    [182] 森荣二著,薛培鼎译.LC滤波器设计与制作.北京:科学出版社,2006
    [183] S. Albert, J. Lasker., W. R. Smith. Design of miniature multilayer on-package integrated image-reject filters. IEEE Transactions on Microwave Theory and Techniques, 2003,51(1):156-162
    [184] C. T. Chiu, T. S. Horng, H. L. Ma, et al. Super broadband lumped models for embedded passives. Electronic Components and Technology Conference, 2004:1104-1107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700