用户名: 密码: 验证码:
基于半定规划的多项式非线性系统镇定控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多项式非线性系统在实际应用中广泛存在。尤其在运动控制系统、机电系统、过程控制、生物系统、电子电路等系统中,很多控制问题均可建模,转化或近似成多项式非线性系统。因此,如何分析及综合多项式非线性系统对非线性理论发展以及工程应用是件非常有意义的工作。近年来,通过数值计算的方法对多项式非线性系统进行研究取得了相当多的关注,尤其在半定规划方法和平方和分解方法上,并取得了一系列成果。尽管这些方法在多项式非线性系统稳定性分析上取得重大进展,控制器综合依然是个难题,需要进一步研究和探索。
     本论文研究了时不变多项式非线性系统控制器综合的数值求解方法。论文主要研究工作和成果包括以下几个方面:
     1.研究了多项式正定性验证的数值求解方法。我们给出三种多项式分解算法用于正定多项式验证问题和正定约束下多项式构造问题。在多项式分解算法基础上,我们开发了软件包(命名为PolyDecomp),采用矩阵不等式求解器求解所转化的问题。PolyDecomp用于解决多项式正定性验证问题,在Matlab环境下运行。许多多项式优化问题可以转化成多项式正定验证问题,可由PolyDecomp有效求解。
     2.提出基于Lyapunov稳定定理的时不变多项式非线性系统镇定控制器设计方法。我们通过构造Lyapunov候选函数(CLF)并将之转成能被PolyDecomp求解的正定多项式验证问题来实现状态反馈的镇定控制器综合。由多项式全基构造的控制器在相对高阶系统中具有很多项单项式,阻碍了其实际应用性。为解决这一问题,我们提出简约控制器结构设计方法。在控制性能优化方面,我们考虑了最速控制和最小方差控制。对局部镇定控制,我们提出多Lyapunov径向膨胀控制器设计方法,在保证性能的前提下扩大闭环系统的吸引域。
     3.拓展了时不变多项式非线性系统控制器设计方法。我们提出基于消去法的控制器设计方法,能用于较复杂的多项式非线性系统。消去法关键在于构造合适的CLF,以保证在控制器作用为0的子空间中闭环系统仍能稳定。我们还给出了基于特征根负定配置的二维多项式非线性系统镇定控制,给后推法控制器设计带来潜在价值。此外,我们还给出了Chua's系统和Chen系统混沌同步控制器设计。
     4.提出空间刚体全局姿态控制方法。从控制角度综评方向余弦、欧拉角、四元数和Rodrigues/修正Rodrigues参数几种常用姿态描述动态方程,指出各种方法的优缺点,及相互转化。给出基于Rodrigues/修正Rodrigues模型的姿态镇定控制器设计,并取得全局收敛。我们将姿态角调整控制转化为镇定控制问题,并能实现任何姿态角的调整。在仿真中给出SAPPHIRE卫星的姿态镇定控制及姿态调整控制,取得良好效果。
Polynomial nonlinear systems appear widely in practical applications. In particular, many control problems in motion control systems, mechatronic systems, process control, biological systems, electric circuits and so on, can be modeled as, transformed into, or approximated by polynomial nonlinear systems. Therefore, how to analyze and synthesize polynomial nonlinear systems is a promising work for nonlinear control theory development and engineering applications. In recent years, considerable attention has been devoted to the study of polynomial nonlinear systems in numerical approach, especially by using semidefinite programming and the sum of squares decomposition. Significant progress has been made in the stability analysis of polynomial nonlinear systems by those numerical approaches; however, control synthesis still remains a stubborn problem and needs further development.
     This thesis explores numerical solution for control synthesis of time-invariant polynomial nonlinear systems. The main research content and achievements are showed as follows:
     1. Numerical solution for polynomial positivity validation (PPV) is explored. Three algorithms for polynomial decomposition are proposed to check PPV problem of a given polynomial or to construct a polynomial with positive constraints. Furthermore, the software named PolyDecomp is developed based on polynomial decomposition algorithms and matrix inequalities solvers. PolyDecomp is applied for PPV and implemented in Matlab environment. Many polynomial optimization problems can be formulated into PPV problems and can be further solved by PolyDecomp.
     2. Stabilizing control scheme for time-invariant polynomial nonlinear systems based on Lyapunov theorem is studied. State-feedback stabilizing control of polynomial nonlinear systems is presented by constructing control Lyapunov functions (CLF) and transforming corresponding problems into the PPV type which can be solved by PolyDecomp. Controller constructed by full monomial base will be in numerous terms for relatively high-order systems and obstruct its application in practice. To overcome this problem, reduced-form controller is introduced. Control performance optimization is considered in terms of maximum convergence rate control and minimum variance control. Local stabilizing control is given in terms of designing controller to expand the domain of attraction with guaranteed performance.
     3. Control scheme for polynomial nonlinear systems is expanded. A nonlinearity-cancelling control scheme is proposed, which is adaptable for more complex polynomial nonlinear systems. The key technique in this scheme is to construct an appropriate CLF to guarantee stability of the closed loop systems in some subspaces with zero control inputs. Stabilizing control scheme for 2-D polynomial nonlinear systems is considered based on negative eigenvalue placement, which has potential value for back-stepping control development. Chaos synchronization control is also developed and demonstrated in Chua's system and Lorenz system.
     4. Global attitude control for space rigid body is addressed. Several common description methods for rotational kinematics are discussed in control point, such as direction cosine matrix, Euler angles, quaternions and Rodrigues/Modified-Rodrigues parameters. Transformation relationships, advantages and disadvantages among those methods are discussed. Attitude control based on Rodrigues/Modified-Rodrigues parameters description is given and achieves global convergence. Attitude regulator is established by converting the corresponding problem to stabilizing control problem in Rodrigues/Modified-Rodrigues parameters. The proposed global attitude control scheme achieves effective performance as illustrated in simulation of the SAPPHIRE satellite.
引文
[1]Kokotovic P,Arcak M.Constructive nonlinear control:a historical perspective[J].Automatica,2001,37(5):637-662.
    [2]Jiang Z P.Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback[J].IEEE Transactions on Automatic Control,2000,45(11):2122-2128.
    [3]Fukao T,Nakagawa H,Adachi N.Adaptive tracking control of a nonholonomic mobile robot[J].IEEE Transactions on Robotics and Automation,2000,16(5):609-615.
    [4]Ahmed J,Coppola V T,Bernstein D S.Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification[J].Journal of Guidance Control and Dynamics,1998,21(5):684-691.
    [5]Pan Z G,Basar T.Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems[J].IEEE Transactions on Automatic Control,1998,43(8):1066-1083.
    [6]Polycarpou M M,Mears M J.Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators[J].International Journal of Control 1998,70(3):363-384.
    [7]Marino R,Tomei P.Robust adaptive state-feedback tracking for nonlinear systems[J].IEEE Transactions on Automatic Control 1998,43(1):84-89.
    [8]Yao B,AlMajed M,Tomizuka M.High-performance robust motion control of machine tools:An adaptive robust control approach and comparative experiments[J].IEEE-Asme Transactions on Mechatronics,1997,2(2):63-76.
    [9]Bodson M,Groszkiewicz J E.Multivariable adaptive algorithms for reconfigurable flight control[J].IEEE Transactions on Control Systems Technology,1997,5(2):217-229.
    [10]孙优贤,褚健.工业过程控制技术:方法篇[M].化学工业出版社,2006.
    [11]Seshagiri S,Khalil H K.Output feedback control of nonlinear systems using RBF neural networks[J].IEEE Transactions on Neural Networks,2000,11(1):69-79.
    [12]Ge S S,Hang C C,Zhang T.Adaptive neural network control of nonlinear systems by state and output feedback[J].IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics,1999,29(6):818-828.
    [13]Poznyak A S,Yu W,Sanchez E N,et al.Nonlinear adaptive trajectory tracking using dynamic neural networks[J].IEEE Transactions on Neural Networks,1999,10(6):1402-1411.
    [14]Kim B S,Calise A J.Nonlinear flight control using neural networks[J].Journal of Guidance Control and Dynamics,1997,20(1):26-33.
    [15]Tseng C S,Chen B S,Uang H J.Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model[J].IEEE Transactions on Fuzzy Systems,2001,9(3):381-392.
    [16]Chang Y C.Adaptive fuzzy-based tracking control for nonlinear SISO systems via VSS and H-infinity approaches[J].IEEE Transactions on Fuzzy Systems,2001,9(2):278-292.
    [17]Doyle J C.Guaranteed margins for LQG regulators[J].IEEE Transactions on Automatic Control 1978,23:756-757.
    [18]Soroka E,Shaked U.On the robustness of LQ regulator[J].IEEE Transactions on Automatic Control,1984,29:664-665.
    [19]褚健,俞立,苏宏业.鲁棒控制理论及应用[M].浙江大学出版社,2000.
    [20]Wiener N.Cybernetics,or Control and Communication in the Animal and the Machine [M].MIT Press,1948.
    [21]Astrom K J,Hagglund T.PID Controllers:Theory,Design,and Tuning[M].International Society for Measurement and Con,1995.
    [22]Doyle J C,Francis B A,Tannenbaum A R.Feedback Control Theory[M].Macmillan Coll Div,1992.
    [23]周克敏,Doyle J C,Glover K,et al.鲁棒与最优控制[M].国防工业出版社,2002.
    [24]Laub A J,Wette M.Algorithms and Software for Pole Assignment and Observers[M].UCRL-15646 Rev.1,EE Dept.,Univ.of Calif.,Santa Barbara,CA,1984.
    [25]Doyle J C,Glover K,Khargonekor P P,et al.State-space solutions to standard H_2 and H _∞ control problems[J].IEEE Transactions on Automatic Control,1989,34:831-847.
    [26]曹永岩,孙优贤.具有多状态滞后的不确定时变时滞系统的鲁棒镇定[J].自动化学报,1998,24(3):377-381.
    [27]Boyd S,Ghaoui L E,Feron E,et al.Linear matrix inequalities in system and control theory[M].Philadelphia:SIAM,1994.
    [28]俞立.鲁棒控制—线性矩阵不等式处理方法[M].清华大学出版社,2002.
    [29]Kothare M V,Balakrishnan V,Morari M.Robust Constrained Model Predictive Control Using Linear Matrix Inequalities[J].A utomatica,1996,32(10):1361-1379.
    [30]Feng L,Wang J L,Poh E K.Improved robust model predictive control with structured uncertainty[J].Journal of Process Control,2007,17(8):683-688.
    [31]Zou Y Y,Li S Y.Robust model predictive control for piecewise affine systems[J].Circuits Systems and Signal Processing,2007,26(3):393-406.
    [32]Jia D,Krogh B H,Stursberg O.LMI approach to robust model predictive control[J].Journal of Optimization Theory and Applications,2005,127(2):347-365.
    [33]Wan Z Y,Kothare M V.Robust output feedback model predictive control using off-line linear matrix inequalities[J].Journal of Process Control,2002,12(7):763-774.
    [34]Malkin I G.The theory ofstab.ility of motion[M].Moscow:Gostekhizdat,1952.
    [35]Chetaev N G.Stability of motion[M].Moscow:GITTL,1955.
    [36]Zubov V I.The methods of A.M.Lyapunov and their application[M].Leningrad:Leningrad University.
    [37]Krasovskii N N.Some problems of the stability theory[M].1959.
    [38]Razumikhin B S.On the stability of systems with a delay[J].[Russian]Prikl.Mat.Meh.,1956,20:500-512.
    [39]Razumikhin B S.Application of Liapunov's method to problems in the stability of systems with a delay[J].[Russian]Automat.i Telemeh.,1960,21:740-749.
    [40]Gu K,Kharitonov V L,Chen J.Stability of Time-Delay Systems[M].Birkhauser Boston,2003.
    [41]LaSalle J,Lefschetz S.Stability by Liapunov's direct method with applications[M].Academic Press,1961.
    [42]Kalman R,Bertram J.Control system analysis and design via the second method of Lyapunov,Part Ⅰ,continuous-time systems[J].Transcations of the ASME,Series D,Journal of Basic Engineering,1960,82:371-393.
    [43]Richard J P.Time-delay systems:an overview of some recent advances and open problems[J].Automatica,2003,39:1667-1694.
    [44]Khalil H K.Nonlinear Systems[M].Second Edition.Prentice Hall,1996.
    [45]Ebenbauer C,Allgower F.Analysis and design of polynomial control systems using dissipation inequalities and sum of squares[J].Computers and Chemical Engineering,2006,30(10-12):1590-1602.
    [46]Sepulchre R,Jankovic M,Kokotovic P V.Constructive Nonlinear Control[M].Springer Verlag,1997.
    [47]Isidori A.Nonlinear control systems(3rd ed.)[M].Berlin:Springer,1995.
    [48]Nijmeijer H,Schaft A J.Nonlinear dynamical control systems[M].New York:Springer,1990.
    [49]Marino R,Tomei P.Nonlinear control design:Geometric,adaptive and robust[M].London:Prentice-Hall,1995.
    [50]Artstein Z.Stabilization with relaxed controls[J].Nonlinear Analysis 1983,7(11):1163-1173.
    [51]Sontag E D.A 'universal' construction of Artstein's theorem on nonlinear stabilization[J].Systems & ControI Letters,1989,13:117-123.
    [52]Lin Y,Sontag E D.A universal formula for stabilization with bounded controls[J].Systems & Control Letters,1991,16(6):393-397.
    [53]Sontag E D.A Lyapunov-like characterization of asymptotic controllability[J].SIAM Journal of Control and Optimization,1983,21:462-471.
    [54]Byrnes C I,Isidori A.New results and examples in nonlinear feedback stabilization[J].Systems & Control Letters,1989,12(5):437-442.
    [55]Kokotovic P V,Sussmann H J.A positive real condition for global stabilization of nonlinear systems[J].Systems & Control Letters,1989,19:177-185.
    [56]Tsinias J.Existence of Control Lyapunov Functions and Applications to State Feedback Stabilizability of Nonlinear Systems[J].SlAM Journal on Control and Optimization,1991,29(2):457-473.
    [57]张端.三角形式非线性系统:等价,稳定和能观测性[D].浙江大学.2005.
    [58]Kanellakopoulos I,Kokotovic P V,Morse A S.Systematic design of adaptive controllers for feedback linearizable systems[J].IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [59]Freeman R A,Kokotovic P V.Backstepping design of robust controllers for a class of nonlinear systems[A].Preprints of 2nd IFAC Nonlinear Control Systems Design
    Symposium[C].Bordeaux,France,1992:307-312.
    [60]Freeman R A,Kokotovic P V.Design of 'softer' robust nonlinear control laws[J].Automatica,1993,29(6):1425-1437.
    [61]Freeman R A,Kokotovic P V.Backstepping design of robust controllers for a class of nonlinear systems[J].Control Engineering Practice,1993,1(5):903-904.
    [62]Ikhouane F,Rabeh A,Giri F.Transient performance analysis in robust nonlinear adaptive control[J].Systems & Control Letters,1997,31(1):21-31.
    [63]Freeman R A,Krstic M,Kokotovic P V.Robustness of Adaptive Nonlinear Control to Bounded Uncertainties[J].A utomatica,1998,34(10):1227-1230.
    [64]Marino R,Peresada S,Tomei P.Adaptive Output Feedback Control of Current-Fed Induction Motors with Uncertain Rotor Resistance and Load Torque[J].Automatica,1998,34(5):617-624.
    [65]Guo Y,Jiang Z-P,Hill D J.Decentralized robust disturbance attenuation for a class of large-scale nonlinear systems[J].Systems & Control Letters,1999,37(2):71-85.
    [66]Alvarez-Ramirez J,Suarez R,Morales A.Cascade control for a class of uncertain nonlinear systems:a backstepping approach[J].Chemical Engineering Science,2000,55(16):3209-3221.
    [67]Hsu F-Y,Fu L-C.A novel adaptive fuzzy variable structure control for a class of nonlinear uncertain systems via backstepping[J].Fuzzy Sets and Systems,2001,122(1):83-106.
    [68]Ge S S,Wang Z,Lee T H.Adaptive stabilization of uncertain nonholonomic systems by state and output feedback[J].Automatica,2003,39(8):1451-1460.
    [69]Zhou S,Feng G,Feng C-B.Robust control for a class of uncertain nonlinear systems:adaptive fuzzy approach based on backstepping[J].Fuzzy Sets and Systems,2005,151(1):1-20.
    [70]Liu X,Gu G,Zhou K.Robust stabilization of MIMO nonlinear systems by backstepping [J].Automatica,1999,35(5):987-992.
    [71]Hua C,Feng G,Guan X.Robust controller design of a class of nonlinear time delay systems via backstepping method[J].Automatica,2008,44(2):567-573.
    [72]Marino R,Peresada S,Tomei R Nonlinear adaptive control of permanent magnet step motors[J].Automatica,1995,31(11):1595-1604.
    [73]Li Z-H,Krstic M.Optimal design of adaptive tracking controllers for non-linear systems [J].Automatica,1997,33(8):1459-1473.
    [74]Giri F,Rabeh A,Ikhouane F.Backstepping adaptive control of time-varying plants[J].Systems & Control Letters,1999,36(4):245-252.
    [75]Jiang Z-P.A combined backstepping and small-gain approach to adaptive output feedback control[J].Automatica,1999,35(6):1131-1139.
    [76]Wen C,Zhang Y,Soh Y C.Robustness of an adaptive backstepping controller without modification[J].Systems & Control Letters,1999,36(2):87-100.
    [77]Marino R,Tomei P.Adaptive output feedback tracking with almost disturbance decoupling for a class of nonlinear systems[J].Automatica,2000,36(12):1871-1877.
    [78]Nikiforov V O,Voronov K V.Adaptive backstepping with a high-order tuner[J].Automatica,2001,37(12):1953-1960.
    [79]Zhang Y,Wen C,Chai Soh Y.Robust adaptive control of nonlinear discrete-time systems by backstepping without overparameterization[J].Automatica,2001,37(4):551-558.
    [80]Zhou J,Wang Y.Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor[J].Control Engineering Practice,2005,13(10):1259-1269.
    [81]Wu Z-J,Xie X-J,Zhang S-Y.Adaptive backstepping controller design using stochastic small-gain theorem[J].Automatica,2007,43(4):608-620.
    [82]Freeman R,Praly L.Integrator backstepping for bounded controls and control rates[J].IEEE Transactions on Automatic Control,1998,43(2):258-262.
    [83]Liu W-J,Krstic M.Backstepping boundary Control of Burgers' equation with actuator dynamics[J].Systems & Control Letters,2000,41(4):291-303.
    [84]Mazenc F,Iggidr A.Backstepping with bounded feedbacks[J].Systems & Control Letters,2004,51(3-4):235-245.
    [85]Mazenc F,Bowong S.Backstepping with bounded feedbacks for time-varying systems [J].SIAM Journal of Control and Optimization,2005,43(3):856-871.
    [86]Teel A R.Using saturation to stabilize a class of single-input partially linear composite systems[A].Preprints of the second IFAC nonlinear control systems design symposium[C].Bordeaux,France,1992:224-229.
    [87]Mazenc F,Praly L.Adding integrations,saturated controls,and stabilization for feedforward forms[J].IEEE Transactions on Automatic Control,1996,41:1559-1578.
    [88]Jankovic M,Sepulchre R,Kokotovic P V.Constructive Lyapunov stabilization of nonlinear cascade systems[J].IEEE Transactions on Automatic Control,1996,41:1723-1735.
    [89]Arcak M,Teel A R,Kokotovic P V.Global stabilization of feedforward systems with exponentially unstable Jacobian linearization[J].Systems & Control Letters,2001,37:265-272.
    [90]Kaliora G,Astolfi A.On the stabilization of feedforward systems with bounded control [J].Systems & Control Letters,2005,54(3):263-270.
    [91]Sontag E D.On discrete-time polynomial systems[J].Nonlinear Analysis,Theory,and Applications,1976,1:55-64.
    [92]Sontag E D.On the observability of polynomial systems[J].SIAM Journal on Control and Optimization,1979,17:139-151.
    [93]Nesic D,Mareels I M.Dead beat controllability of polynomial systems:symbolic computation approaches[J].IEEE Transactions on Automatic Control,1998,43(2):162-175.
    [94] Parrilo P A. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization [D]. California Institute of Technology. Pasadena, CA, 2000.
    [95] Lasserre J B. A sum of squares approximation of nonnegative polynomials [J]. SIAM Journal on Optimization, 2006,16(3): 751-765.
    [96] Hilbert D. Ubex die Darstellung Definiter Formen als Summe von Formenquadraten [J]. Math. Ann., 1888,32:342-350.
    [97] Atin E. Uber die Darstellung definiter Funktionen in Quadtate [J]. Humb. Abh., 1927, 5: 100-115.
    [98] Schmudgen K. The K-moment problem for compact semi-algebraic sets [J]. Mathematische Annalen, 1991,289: 203-206.
    [99] Putinar M. Positive polynomials on compace semi-algebraic sets [J]. Indiana University Mathematics Journal, 1993,42: 969-984.
    
    [100] Prestel A, Delzell C N. Positive Polynomials [M]. Berlin: Springer, 2001.
    [101] Lasserre J B. Global optimization with polynomials and the problem of moments [J]. SIAM Journal on Optimization 2001,11(3): 796-817.
    [102] Lasserre J B. Semidefinite programming vs. LP relaxations for polynomial programming [J]. Mathematics of Operations Research, 2002,27: 347-360.
    [103] Lasserre J B. Polynomials nonnegative on a grid and discrete optimization [J]. Transcations of the American Mathematical Society, 2002, 354: 631-649.
    [104] Lasserre J B. Sum of squares approximation of polynomials, nonnegative on a real algebraic set [J]. SIAM Journal on Optimization, 2006,16(2): 610-628.
    [105] Prajna S, Papachristodoulou A, Parrilo P A. Introducing SOSTOOLS: A general purpose sum of squares programming solver [A]. Proceedings of the IEEE Conference on Decision and Control[C]. Las Vegas, NV, United States, 2002:741-746.
    [106] Prajna S, Papachristodoulou A, Seiler P, et al. New developments in sum of squares optimization and SOSTOOLS [A]. Proceedings of the American Control Conference[C]. Boston, MA, United States, 2004:5606-5611.
    [107] Prajna S, Papachristodoulou A, Seiler P, et al SOSTOOLS: control applications and new developments [A]. IEEE International Symposium on Computer Aided Control Systems Design[C]. 2004:315-320.
    [108] Prajna S, Papachristodoulou A, Seiler P, et al. SOSTOOLS and Its Control Applications. In Positive Polynomials in Control: Springer-Verlag, 2005: 273-292.
    [109] Parrilo P A. Nonlinear stability via sum of squares programming [A]. Proceedings of the 2004 American Control Conference[C]. 2004:3272.
    [110] Parrilo P A. Semidefinite programming relaxations for semialgebraic problems [J]. Mathematical Programming Ser. B, 2003, 96(2): 293-320.
    [111] Papachristodoulou A, Prajna S. A tutorial on sum of squares techniques for systems analysis [A]. Proceedings of the 2005 American Control Conference[C]. 2005:2686-2700.
    [112] Schweighofer M. Optimization of polynomials on compact semialgebraic sets [J]. SIAM Journal on Optimization, 2005,15(3): 805-825.
    [113] Schweighofer M. Global optimization of polynomials using gradient tentacles and sums of squares [J]. SIAM Journal on Optimization, 2006, 17(3): 920-942.
    [114] Henrion D, Lofberg J, Kocvara M, et al. Solving polynomial static output feedback problems with PENBMI [A]. IEEE Conference on Decision and Control, 2005 [C]. 2005:7581-7586.
    [115] Henrion D, Lasserre J B. Detecting Global Optimality and Extracting Solutions in GloptiPoly. In Positive Polynomials in Control, 2005, LNCIS312: 293-310.
    [116] Henrion D, Lasserre J-B. Convergent relaxations of polynomial matrix inequalities and static output feedback[J].IEEE Transactions on Automatic Control,2006,51(2):192-202.
    [117]Henrion D,Lasserre J-B.Solving nonconvex optimization problems[J].Control Systems Magazine,IEEE,2004,24(3):72-83.
    [118]Dumitrescu B.Multidimensional stability test using sum-of-squares decomposition[A].Proceedings-IEEE International Symposium on Circuits and Systems[C].Vancouver,BC,Canada,2004:545-548.
    [119]Dumitrescu B.Least squares optimization of 2-D IIR filters[A].Proceedings of the 6th Nordic Signal Processing Symposium[C].2004:33-36.
    [120]Dumitrescu B.Sum-of-squares polynomials and the stability of discrete-time systems [A].Fourth International Workshop on Multidimensional Systems,NDS'05[C].Wuppertal,Germany,2005:223-228.
    [121]Dumitrescu B.Trigonometric Polynomials Positive on Frequency Domains and Applications to 2-D FIR Filter Design[J].IEEE Transactions on Signal Processing,2006,54(11):4282-4292.
    [122]Dumitrescu B.Stability test of multidimensional discrete-time systems via sum-of-squares decomposition[J].IEEE Transactions on Circuits and Systems I,2006,53(4):928-936.
    [123]Dumitrescu B.Design of 2-D Fir Filters Using Positive Trigonometric Polynomials[A].IEEE International Conference on Acoustics,Speech and Signal Processing,ICASSP'06[C].2006:512-515.
    [124]Dumitrescu B.Positivstellensatz for Trigonometric Polynomials and Multidimensional Stability Tests[J].IEEE Transactions on Circuits and Systems Ⅱ,2007,54(4):353-356.
    [125]Dumitrescu B,Bor-Chin C.Robust schur stability with polynomial parameters[J].IEEE Transactions on Circuits and Systems Ⅱ,2006,53(7):535-537.
    [126]Kojima M,Muramatsu M.An extension of sums of squares relaxations to polynomial optimization problems over symmetric cones[J].Mathematical Programming,2007,110(2):315-336.
    [127]Han D,Li X,Sun D,et al.Bounding Option Prices of Multi-Assets:A Semidefinite Programming Approach[J].Pacific Journal of Optimization,2006,
    [128]Kim S,Kojima M,Waki H.Generalized lagrangian duals and sums of squares relaxations of sparse polynomial optimization blems[J].SIAM Journal on Optimization,2005,15(3):697-719.
    [129]Nie J,Demmel J,Sturmfels B.Minimizing polynomials via sum of squares over the gradient ideal[J].Mathematical Programming,2006,106(3):587-606.
    [130]Nie J,Demmel J W.Minimum ellipsoid bounds for solutions of polynomial systems via sum of squares[J].Journal of Global Optimization,2005,33(4):511-525.
    [131]Chesi G.Characterizing the positive polynomials which are not SOS[A].IEEE Conference on Decision and Control,CDC-ECC '05[C].2005:1642-1647.
    [132]Chesi G.On the Gap Between Positive Polynomials and SOS of Polynomials[J].IEEE Transactions on Automatic Control,2007,52(6):1066-1072.
    [133]Chesi G.Estimating the domain of attraction:a light LMI technique for a class of polynomial systems[A].IEEE Conference on Decision and Control[C].Maui,Hawaii,USA,2003:5609-5614.
    [134]Chesi G.Estimating the domain of attraction for uncertain polynomial systems[J].Automatica,2004,40(11):1981-1986.
    [135]Chesi G.On the estimation of the domain of attraction for uncertain-polynomial systems via LMIs[A].IEEE Conference on Decision and Control,CDC'04[C].2004:881-886.
    [136]Chesi G.Establishing stability and instability of matrix hypercubes[J].Systems &Control Letters,2005,54(4):381-388.
    [137]Chesi G.Estimating the domain of attraction via union of continuous families of Lyapunov estimates[J].Systems & Control Letters,2007,56(4):326-333.
    [138]Chesi G.Establishing tightness in robust H_∞ analysis via homogeneous parameter-dependent Lyapunov functions[J].Automatica,2007,43(11):1992-1995
    [139]Chesi G,Garulli A,Tesi A,et al.Solving quadratic distance problems:an LMI-based approach[J].IEEE Transactions on Automatic Control,2003,48(2):200-212.
    [140]Chesi G,Garulli A,Tesi A,et al.Parameter-dependent homogeneous Lyapunov functions for robust stability of linear time-varying systems[A].IEEE Conference on Decision and Control[C].2004:4095-4100.
    [141]Chesi G,Garulli A,Tesi A,et al.Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems:an LMI approach[J].IEEE Transactions on Automatic Control,2005,50(3):365-370.
    [142]Chesi G,Hung Y S.On the convexity of sublevel sets of polynomial and homogeneous polynomial Lyapunov functions[A].IEEE Conference on Decision and Control[C].2006:5198-5203.
    [143]Chesi G,Tesi A,Vicino A,et al.An LMI approach to constrained optimization with homogeneous forms[J].Systems & Control Letters,2001,42(1):11-19.
    [144]Roh T,Vandenberghe L.Discrete transforms,semidefinite programming,and sum-of-squares representations of nonnegative polynomials[J].SIAM Journal on Optimization,2006,16(4):939-964.
    [145]Prajna S.Optimization-Based Methods for Nonlinear and Hybrid Systems Verification [D].California Institute of Technology.2005.
    [146]Papachristodoulou A.Scalable Analysis of Nonlinear Systems Using Convex Optimization[D].California Institute of Technology.Pasadena,California,2005.
    [147]Jarvis-Wloszek Z.Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization[D].University of California,Berkeley.2003.
    [148]Tan W.Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming [D].University of California,Berkeley.2006.
    [149]Prajna S,Papachristodoulou A,Seiler P,et al.SOSTOOLS:Sum of Squares Optimization Toolbox for MATLAB User's guide.2004
    [150]Sturm J F.http://sedumi.mcmaster.ca/.
    [151]Sturm J F.Using SeDuMi 1.02,a MATLAB toolbox for optimization over symmetric cones[J].Optimization Methods and Software,1999,11(1):625-653.
    [152]Toh K-C,Todd M J,Tutuncu R H.http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.
    [153]Toh K C,Todd M J,Tutuncu R H.SDPT3-A Matlab software package for semidefinite programming,Version 1.3[J].Optimization Methods and Software,1999,11(1):545-581.
    [154]Papachristodoulou A.Analysis of nonlinear time-delay systems using the sum of squares decomposition[A].Proceedings of the American Control Conference[C].Boston,MA,United States,2004:4153-4158.
    [155]Papachristodoulou A.Robust Stabilization of Nonlinear Time Delay Systems Using Convex Optimization[A].IEEE Conference on Decision and Control and 2005European Control Conference,CDC-ECC '05[C].2005:5788-5793.
    [156]Papachristodoulou A,Doyle J C,Low S H.Analysis of rionlinear delay differential equation models of TCP/AQM protocols using sums of squares[A].Proceedings of the IEEE Conference on Decision and Control[C].Nassau,Bahamas,2004:4684-4689.
    [157]Papachristodoulou A,Papageorgiou C.Robust stability and performance analysis of a longitudinal aircraft model using Sum of squares techniques[A].IEEE International Symposium on Intelligent Control-Proceedings[C].Limassol,Cyprus,2005:1281-1286.
    [158]Papachristodoulou A,Peet M,Lall S.Constructing Lyapunov-Krasovskii functionals for linear time delay systems [A]. Proceedings of the American Control Conference[C]. 2005:2845-2850.
    [159] Papachristodoulou A, Prajna S. On the construction of Lyapunov functions using the sum of squares decomposition [A]. Proceedings of the IEEE Conference on Decision and Control[C]. Las Vegas, NV, United States, 2002:3482-3487.
    [160] Papachristodoulou A, Prajna S. A tutorial on sum of squares techniques for systems analysis [A]. Proceedings of the American Control Conference, ACC'05[C]. Portland, OR, USA, 2005:2686-2700.
    [161] Prajna S. Barrier certificates for nonlinear model validation [J]. Automatica, 2006,42(1): 117-126.
    [162] Prajna S, Papachristodoulou A. Analysis of switched and hybrid systems - beyond piecewise quadratic methods [A]. Proceedings of the American Control Conference[C]. 2003:2779-2784.
    [163] Prajna S, Papachristodoulou A, Wu F. Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach [A]. 2004 5th Asian Control Conference[C]. Melbourne, Australia, 2004:157-165.
    [164] Prajna S, Parrilo P A, Rantzer A. Nonlinear control synthesis by convex optimization [J]. IEEE Transactions on Automatic Control, 2004,49(2): 310-314.
    [165] El-Samad H, Prajna S, Papachristodoulou A, et al. Advanced Methods and Algorithms for Biological Networks Analysis [J]. Proceedings of the IEEE, 2006, 94(4): 832-853.
    [166] El-Samad H, El-Samad H, Prajna S, et al. Model validation and robust stability analysis of the bacterial heat shock response using SOSTOOLS [A]. IEEE Conference on Decision and Control[C]. 2003:3766-3771.
    [167] Ebenbauer C, Allgower F. Stability analysis of constrained control systems: An alternative approach [J]. Systems & Control Letters, 2007, 56(2): 93-98.
    [168] Ebenbauer C, Ebenbauer C, Renz J, et al. Polynomial Feedback and Observer Design using Nonquadratic Lyapunov Functions [A]. IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05[C]. 2005:7587-7592.
    [169] Ebenbauer C, Raff T, Allgower F. A duality-based LPV approach to polynomial state feedback design [A]. Proceedings of the American Control Conference[C]. Portland, USA, 2005:703-708.
    [170] Krishnaswamy K, Papageorgiou G, Glavaski S, et al. Analysis of aircraft pitch axis stability augmentation system using sum of squares optimization [A]. Proceedings of the American Control Conference[C]. Portland, OR, United States, 2005:2701-2702.
    [171] Ahmadzadeh A, Halasz A, Prajna S, et al. Analysis of the Lactose metabolism in E. coli using sum-of-squares decomposition [A]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05[C]. Seville, Spain, 2005:879-884.
    [172] Fazel M, Chiang M. Network utility maximization with nonconcave utilities using sum-of-squares method [A]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05[C]. Seville, Spain, 2005:1867-1874.
    [173] Nauta K M, Nauta K M, Weiland S, et al. Approximation of fast dynamics in kinetic networks using non-negative polynomials [A]. IEEE International Conference on Control Applications[C]. 2007:1144-1149.
    [174] Golub G H, Loan C F V. Matrix computations [M]. 3rd edition. The Johns Hopking University Press, NY, 1996.
    [175] Tibken B. Estimation of the domain of attraction for polynomial systems via LMIs [A]. Proceedings of the IEEE Conference on Decision and Control[C]. 2000:3860-3864.
    [176] Tibken B, Dilaver K F. Computation of subsets of the domain of attraction for polynomial systems[A].Proceedings of the IEEE Conference on Decision and Control[C].2002:2651-2656.
    [177]Jarvis-Wloszek Z,Feeley R,Tan W,et al.Some Controls Applications of Sum of Squares Programming[A].Proceedings of the IEEE Conference on Decision and Control[C].Maul,HI,United States,2003:4676-4681.
    [178]Hachicho O,Tibken B.Estimating domains of attraction of a class of nonlinear dynamical systems with LMI methods based on the theory of moments[A].Proceedings of the IEEE Conference on Decision and Control[C].2002:3150-3155.
    [179]Reznick B.Some concrete aspects of Hilbert's 17th problem[J].Cont.Math.,2000,253:251-272.
    [180]Narendra K,Taylor J.Frequency Domain Criteria for Absolute Stability[M].New York:Academic,1973.
    [181]Trofino A.Parameter dependent Lyapunov functions for a class of uncertain linear systems:a LMI approach[A].Proceedings of the Conference on Decision and Control[C].Phoenix,AZ,1999:2341-2346.
    [182]Peaucelle D,Arzelier D,Bachelier O,et al.A new robust D-stability condition for real convex polytopic uncertainty[J].Systems & Control Letters,2000,40:21-30.
    [183]Ramos D C W,Peres P L D.An LMI condition for the robust stability of uncertain continuous-time linear systems[J].IEEE Transactions on Automatic Control,2002,47:675-678.
    [184]Leite V J S,Peres P L D.An improved LMI condition for robust D-stability of uncertain polytopic systems[J].IEEE Transactions on Automatic Control,2003,48(3):500-504.
    [185]Bliman P A.A convex approach to robust stability for linear systems with uncertain scalar parameters[J].SIAM Journal on Control and Optimization,2004,42(6):2016-2042.
    [186]Biswas P,Grieder P,Lofberg J,et al.A survey on stability analysis of discrete-time piecewise affine systems[A].Proceedings of the 16th IFAC World Congress[C].2005.
    [187]Johansson M,Rantzer A.Computation of piecewise quadratic Lyapunov functions for hybrid systems[J].IEEE Transactions on Automatic Control,1998,43(4):555-559.
    [188]Smith R S,Doyle J C.Model validation:A connection between robust control and identification[J].IEEE Transactions on Automatic Control,1992,37(7):942-952.
    [189]Chen J,Wang S.Validation of linear fractional uncertain models:Solutions via matrix inequalities[J].IEEE Transactions on Automatic Control,1996,41(6):844-849.
    [190]Smith R,Dullerud G E.Continuous-time control model validation using finite experimental data[J].IEEE Transactions on Automatic Control,1996,41(8):1094-1105.
    [191]Rangan S,Poolla K.Time-domain validation for sample-data uncertainty models[J].IEEE Transactions on Automatic Control,1996,41(7):980-991.
    [192]Xu D,Ren Z,Gu G,et al.LFT uncertain model validation with time- and frequency-domain measurements[J].IEEE Transactions on Automatic Control,1999,44(7):1435-1441.
    [193]Dullerud G E,Smith R.A nonlinear functional approach to LFT model validation[J].Systems & Control Letters,2002,47(1):1-11.
    [194]Sznaier M,Mazzaro M C.An LMI approach to control-oriented identification and model (In)validation of LPV systems[J].IEEE Transactions on Automatic Control,2003,48(9):1619-1624.
    [195]Seiler P,Frenklach M,Packard A,et al.Numerical approaches for collaborative data processing[J].Optimization and Engineering,2006,7(4):459-478.
    [196]Prajna S,Jadbabaie A,Pappas G J.Stochastic safety verification using barrier certificates [A].IEEE Conference on Decision and Control[C].2004:929-934.
    [197]Prempain E.An application of the sum of squares decomposition to the L_2 gain computation for a class of non linear systems [A]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05[C]. Seville, Spain, 2005:6865-6868.
    [198] Ichihara H, Nobuyama E. L_2 gain analysis and control design of linear systems with input saturation using matrix sum of squares relaxation [A]. Proceedings of the American Control Conference[C]. Minneapolis, MN, United States, 2006:3837-3842.
    [199] Salinas-Varela A A, Papachristodoulou A, Goncalves J. On L_2 error bounds between systems [A]. Proceedings of the International Symposium on Mathematical Theory of Networks and Systems[C]. 2006.
    [200] Fujisaki Y, Miyoshi E. Controller redesign via sum of squares programming [A]. 2006 SICE-ICASE International Joint Conference[C]. Busan, South Korea, 2006:4012-4015.
    [201] Rantzer A. A dual to Lyapunov's stability theorem [J]. Systems & Control Letters, 2001, 42(3): 161-168.
    [202] Boyd S, Vandenberghe L. SP: Software for Semidefinite Programming. Stanford University, Stanford, CA, 1994.
    [203] Boyd S, Wu S. SDPSOL: A Parser/Solver for Semidefinite Programs with Matrix Structure. Stanford University, Stanford, California, 1996.
    [204] Gahinet P, Nemirovskii A. LMI Lab: a package for manipulating and solving LMIs. Computer software, 1993.
    [205] Gahinet P, Nemirovskii A, Laub A J, et al. LMI Control Toolbox. Computer software, 1995.
    [206] Ghaoui L E, Delebecque F, Nikoukhah R. LMITOOL: Matlab front-end for semidefinite programming with matrix variables. Computer software, 1994.
    [207] Geromel J C. Optimal linear filtering under parameter uncertainty [J]. IEEE Transactions on Signal Processing, 1999,47(1): 168-175.
    [208] Geromel J C, Bernussou J, Garcia G, et al. H2 and Hinfinity robust filtering for discrete-time linear systes [J]. SIAM Journal on Control and Optimization, 2000, 38(5): 1353-1368.
    [209] Geromei J C, Oliveira M C. H2 and H_infinity robust filtering for convex bounded uncertain systems [J]. IEEE Transactions on Automatic Control, 2001,46(1): 100-107.
    [210] Cuzzola F A, Ferrante A. Explicit formulas for LMI-based H2 filtering and deconvolution [J]. Automatica, 2001, 37(9): 1443-1449.
    [211] Palhares R M, Souza C E, Peres P L D. Robust Hinfmity filter design for uncertain discrete-time stated-delayed systems: An LMI approach [J]. IEEE Transactions on Signal Processing, 2001,49(8): 1696-1703.
    [212] Oliveira M C, Bernussou J, Geromel J C. A new discrete-time robust stability condition [J]. Systems & Control Letters, 1999, 37(4): 261-265.
    [213] Palhares R M, Takahashi R H C, Peres P L D. H2 and Hinfmity guaranteed costs computation for uncertain linear systems [J]. International Journal of Systems Science, 1997,28(2): 183-188.
    [214] Zhou K, Khargonekar P P, Niemann H H. Robust performance of systems with structured uncertainties in state-space [J]. Automatica, 1995, 31(2): 249-255.
    [215] Apkarian P, Gahinet P. A convex characterization of gain-scheduled Hinfinity controllers [J]. IEEE Transactions on Automatic Control, 1995,40(5): 853-864.
    [216] Gahinet P, Nemirovski A, Laub A, et al. LMI control toolbox user's guide [M]. Natick: MathWorks, Inc., 1995.
    [217] Peres P L D, Palhares R M. Optimal Hinfinity state feedback control for discrete-time- linear systems [A]. Second Latin American seminar on advanced control[C]. Chile, 1995:73-78.
    [218] Palhares R M, Ramos D C W, Peres P L D. Alternative LMIs characterization of H2 and central H_infinity discrete-time controllers[A].Proceedings of the 35th IEEE Conference on Decision and Control[C].Kobe,Japan,1996:1459-1496.
    [219]Scherer C,Gvozdenovic N,Ghilali M.Multiobjective output-feedback control via LMI optimization[J].IEEE Transactions on Automatic Control,1997,42(7):896-911.
    [220]Masubuchi I,Ohara A,Suda N.LMI-based controller synthesis:A unified formulation and solution[J].International Journal of Robust and Nonlinear Control,1998,8(8):669-686.
    [221]Chilali M,Gahinet P,Apkarian P.Robust pole placement in LMI regions[J].IEEE Transactions on Automatic Control,1999,44(12):2257-2269.
    [222]Kose I E,Jabbari F.Control of LPV systems with partly measured parameters[J].IEEE Transactions on Automatic Control,1999,44(3):658-663.
    [223]Kose I E,Jabbari F.Robust control of linear systems with real parametric uncertainty[J].Automatica,1999,35(4):679-687.
    [224]Mahmoud M S,Xie L H.Positive real analysis and synthesis of uncertain discrete-time systems[J].IEEE Transactions on Circuits and Systems(1),2000,47(3):403-406.
    [225]Oliveira M C,Geromel J C,Bernussou J.Extended H2 and H_infinity norm characterizations and controller parametrizations for discrete-time systems[J].International Journal of Control,2002,75(9):666-679.
    [226]Tanaka K,Wang H O.Fuzzy Control Systems Design and Analysis:A Linear Matrix Inequality Approach[M].John Wiley & Sons,INC.,2001.
    [227]曹永岩,孙优贤.鲁棒严格正实控制器设计[J].控制理论与应用,1999,16(1):109-112.
    [228]曹永岩,孙优贤.离散系统输出反馈强正实控制器综合[J].自动化学报,1998,24(1):85-89.
    [229]曹永岩,孙优贤.不确定状态滞后系统时滞相关鲁棒H∞控制[J].自动化学报,1999,25(2):230-235.
    [230]Cao Y-Y,Lam J,Sun Y-X.Static Output Feedback Stabilization:An ILMI Approach[J].Automatica,1998,34(12):1641-1645.
    [231]曹永岩,孙优贤.严格正则多输入多输出对象同时镇定[J].自动化学报,1998,24(04):528-533.
    [232]Kanev S,Scherer C,Verhaegen M,et al.Robust output-feedback controller design via local BMI optimization[J].Automatica,2004,40(7):1115-1127.
    [233]Zheng F,Wang Q-G,Lee T H.On the design of multivariable PID controllers via LMI approach[J].Automatica,2002,38:517-526.
    [234]He Y,Wang Q-G.An Improved ILMI Method for Static Output Feedback Control With Application to Multivariable PID Control[J].IEEE Transactions on Automatic Control,2006,51(10):1678-1683.
    [235]Gahinet P,Apkarian P.A Linear Matrix Inequality Approach to H∞ Control[J].International Journal of Robust and Nonlinear Control,1994,4:421-448.
    [236]Iwasaki T,Skelton R E.All controllers for the general H∞ control problem:LMI existence conditions and state space formulas[J].Automatica,1994,30(8):1307-1317.
    [237]Geromel J C,Souza C C,Skelton R E.Static output feedback controllers:stability and convexity[J].IEEE Transactions on Automatic Control,1998,43:120-125.
    [238]Grigoriadis K M,Skelton R E.Low-order control design for LMI problems using alternating projection methods[J].Automatica,1996,32:1117-1125.
    [239]Iwasaki T.The dual iteration for fixed-order control[A].Proceedings of the American Control Conference[C].Albuquerque,NM,1997:62-66.
    [240]Zheng F,Wang Q-G,Lee T H.A heuristic approach to solving a class of bilinear matrix inequality problems[J].Systems & Control Letters,2002,47(2):111-119.
    [241] Hassibi A, How J, Boyd S. A path-following method for solving BMI problems in control [A]. Proceedings of the American Control Conference[C]. 1999:1385-1389.
    [242] Orsi R, Helmke U, Moore J B. A Newton-like method for solving rank constrained linear matrix inequalities [J]. Automatica, 2006, 42(11): 1875-1882.
    [243] Aida K, Futakata Y. Rank minimization approach for solving BMI problems with random search [A]. Proceedings of the American Control Conference[C]. 2001:1870-1875.
    [244] Fukuda M, Kojima M. Branch-and-Cut Algorithms for the Bilinear Matrix Inequality Eigenvalue Problem [J]. Computational Optimization and Applications, 2001, 19(1): 79-105
    [245] Goh K-C, Safonov M G, Papavassilopoulos G P. Global optimization for the biaffine matrix inequality problem [J]. Journal of Global Optimization, 1995, 7(4): 365-380.
    [246] Yamada Y, Hara S. Global optimization for the H_infinity control with constant diagonal scaling [J]. IEEE Transactions on Automatic Control, 1998,43(2): 191-203.
    [247] Goh K-C, Safonov M G, Papavassilopoulos G P. A global optimization approach for the BMI problem [A]. Proceedings of the 33rd IEEE Conference on Decision and Control[C]. 1994:2009-2014.
    [248] Goh K C, Safonov M G, Ly J H. Robust synthesis via bilinear matrix inequalities [J]. International Journal of Robust and Nonlinear Control, 1996, 6: 1079-1095.
    [249] Kawanishi M, Sugie T, Kanki H. BMI global optimization based on branch and bound method taking account of the property of local minima [A]. Proceedings of the 36th IEEE Conference on Decision and Control[C]. 1997:781-786.
    [250] Beran E, Vandenberghe L, Boyd S. A global BMI algorithm based on the generalized Benders decomposition [A]. Proceedings of the European Control Conference[C]. 1997.
    [251] Kawanishi M, Ikuyama Y. BMI optimization based on unimodal normal distribution crossover GA with relaxed LMI convex estimation [A]. Proceedings of the American Control Conference[C]. 2005:2999-3004.
    [252] Tawarmalani M, Sahinidis N V. A polyhedral branch-and-cut approach to global optimization [J]. Mathematical Programming: Series B, 2005,103(2): 225-249.
    [253] Vandenbussche D, Nemhauser G L. A branch-and-cut algorithm for nonconvex quadratic programs with box constraints [J]. Mathematical Programming: Series A, 2005, 102(3): 559-575.
    [254] Visweswaran V, Floudas C A, Ierapetritou M G, et al. A Decomposition-Based Global Optimization Approach for Solving Bilevel Linear and Quadratic Programs [M]. Kluwer Academic Publishers, 1996.
    [255] Floudas C A, Visweswaran V. A Primal-Relaxed Dual Global Optimization Approach [J]. Journal of Optimization Theory and Applications, 1993, 78(2): 187-225.
    [256] Kocvara M, Stingl M. http://www.penopt.com/.
    [257] Lofberg J. YALMIP : A Toolbox for Modeling and Optimization in MATLAB [A]. Proceedings of the CACSD Conference[C]. Taipei, Taiwan, China, 2004.
    [258] Henrion D, Lasserre J-B. Solving nonconvex optimization problems [J]. IEEE Control Systems Magazine, 2004,24(3): 72-83.
    [259] Schmid C. The Hurwitz criterion http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node40.html.
    [260] Chua L O. Chua's circuit: an overview ten years later [J]. Journal of Circuits, Systems, and Computers, 1994,4(2): 117-159.
    [261] Tong C F, Zhang H, Sun Y X. Guaranteed cost control for chaos synchronization: LMI approach [A]. Proceedings of the 6th World Congress on Intelligent Control and Automation[C]. Dalian, China, 2006:925-929.
    [262] Tong C F, Zhang H, Sun Y X. Optimal control for a class of chaos synchronization with input constraint[A].Proceedings of the American Control Conference[C].Minneapolis,MN,USA,2006:5282-5287.
    [263]Jiang G P.A new criterion for chaos synchronization using linear state feedback control [J].International Journal of Bifurcation and Chaos,2003,13(8):2343-2351.
    [264]Jiang G P,Zheng W X.An LMI criterion for linear-state-feedback based chaos synchronization of a class of chaotic systems[J].Chaos,Solitons & Fractals,2005,26:437-443.
    [265]Sparrow C.The Lorenz equations:Bifurcations,chaos,and strange attractors[M].New York:Springer-Verlag,1982.
    [266]Wie B.Space vehicle dynamics and control[M].American Institute of Aeronautics and Astronautics,Inc.,1998.
    [267]刘忠,梁晓庚,曹秉刚,et al.基于四元数的空间全方位算法研究[J].西安交通大学学报,2006,40(5):618-620.
    [268]Rodrigues O.Des lois geometriques qui regissent les deplacements d'un systeme solide dans l'espace,et de la variation des coordonnees provenant de ses deplacements consideeres independamment des causes qui peuvent les produire[French][J].Journal de Mathematiques Pures et Appliquees,1840,5:380-440.
    [269]Tsiotras P.Further passivity results for the attitude control problem[J].IEEE Transactions on Automatic Control,1998,43(11):1597-1600.
    [270]Dimarogonas D V,Tsiotras P,Kyriakopoulos K J.Laplacian Cooperative Attitude Control of Multiple Rigid Bodies[A].Proceedings of the IEEE 2006 International Symposium on Intelligent Control[C].Munich,Germany,2006:3064-3069.
    [271]Wiener T F.Theoretical Analysis of Gimballess Inertial Reference Equipment Using Delta-Modulated Instruments[D].Massachusetts Institute of Technology.1962.
    [272]Marandi S R,Modi V J.A preferred coordinate system and the associated orientation representation in attitude dynamics[J].Acta Astronautica,1987,15:833-843.
    [273]Shuster M D.A survey of attitude representations[J].Journal of the Astronautical Sciences,1993,41(4):439-517.
    [274]Tsiotras P.New control laws for the attitude stabilization of rigid bodies[A].Proceedings of the IFAC Symposium on Automatic Control in Aerospace[C].Palo,Alto,CA,1994:316-321.
    [275]Schaub H,Junkins J L.Stereographic Orientation Parameters for Attitude Dynamics:A Generalization of the Rodrigues Parameters[J].Journal of the Astronautical Sciences,1996,44(1):1-19.
    [276]郑航,胡晓军,郭海,et al.激光微推进器用于微小卫星的姿轨控仿真[J].推进技术,2007,28(5):467-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700