用户名: 密码: 验证码:
深海细菌Shewanella piezotolerans WP3中嗜冷脂肪酶的表达鉴定及体外诱变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温酶在理论研究和工业应用上的双重意义,使其成为近年来研究的热点。深海所拥有低温高压的极端环境,蕴藏有大量的低温微生物资源,它的开发对低温酶的研究具有重要意义。在生物催化剂的研究和应用中,微生物脂肪酶一直占据着非常重要的地位。而微生物低温脂肪酶由于具有反应温度低和对热敏感等特点,在食品、化妆品、皮革、饲料、废物处理等工业上有着其它脂肪酶无法比拟的优越性。
     2003年我们在西太平洋暖池区1914米的沉积物中分离到一株具有脂肪分解能力的耐压低温细菌Shewanella piezotolerans WP3,其生长温度范围是0-28℃,最适生长温度是20℃。希瓦氏菌WP3脂肪酶基因的开放阅读框由759个核苷酸组成,编码由252个氨基酸组成,分子量约为30kDa的蛋白质。希瓦氏菌WP3脂肪酶属于第V家族的细菌脂肪酶,与Haemophilus influenzae Rd KW20酯酶的氨基酸序列有最大的同源性,它的催化三联体分别是Ser82、Asp202和His231,同时存在第V家族细菌脂肪酶未知功能保守序列同源的结构。
     酶学性质分析表明,希瓦氏菌WP3脂肪酶是一个低温酶,最适反应温度是20℃,在4℃它还能保持80%的最大活性。它对热敏感,最适pH为7.0-8.0,能够分解中短链PNP底物。他的活性易受金属离子、抑制剂和去污剂及有机溶剂的影响,但是EDTA能够稍微增加其活性,说明希瓦氏菌WP3脂肪酶是一个非金属离子依赖的脂肪酶。氢键取代二硫键,成为维持脂肪酶三级结构稳定性最重要的相互作用。
     我们在希瓦氏菌WP3脂肪酶中发现了一些适应低温的结构特征。代表蛋白柔性的Gly在脂肪酶活性位点附近出现,而代表蛋白刚性的Pro数量明显减少。希瓦氏菌WP3脂肪酶和其它低温脂肪酶的Arg与Lys+Arg的比值减少,而疏水区及疏水内核的氨基酸残基数也较少。同时,它的蛋白表面含有大量带电荷的残基,特别是Asp的比例增加,缺少在中温和高温脂肪酶中保守的二硫键。
     为了进一步研究希瓦氏菌WP3脂肪酶结构与其低温活性和热稳定性的关系,我们构建了一系列氨基酸的点突变。结果表明,Leu14和Lys246是希瓦氏菌WP3脂肪酶低温活性的关键氨基酸,而Asp23和Gly97是其热稳定性的关键氨基酸。脂肪酶催化活性中心的蛋白质构象改变,一方面能够影响催化能力和底物结合能力而改变脂肪酶的低温活性,同时也能改变脂肪酶的热稳定性;另一方面也可能带来无活性产物的大量积累。此外,我们还初步研究了第V家族细菌脂肪酶的未知功能保守序列。我们推测,第V家族细菌脂肪酶未知功能保守序列与底物结合无关,其位于蛋白内部疏水区的部分与脂肪酶低温活性密切相关,而位于蛋白表面负电荷区的部分与脂肪酶的热稳定性密切相关。
     最后,我们构建了一个包含约10000个突变子的希瓦氏菌WP3脂肪酶随机突变文库。通过筛选验证,我们获得了4个脂肪酶低温活性发生显著变化的突变子,其中2个突变子的脂肪酶低温催化效率(k_(cat)/K_m)分别提高到野生型的1.8倍和1.6倍。这就为今后我们进一步改造希瓦氏菌WP3脂肪酶,并使之具有工业应用价值打下了一定的基础。
     希瓦氏菌WP3脂肪酶是第一个从希瓦氏菌中克隆表达并进行了酶学性质鉴定的脂肪酶,为进一步研究嗜冷脂肪酶的低温适应机制和稳定性提供了很好的材料。我们利用定点突变技术研究了对这个嗜冷脂肪酶低温活性和热稳定性起关键作用的氨基酸,并通过定向进化筛选到一些低温活性发生改变的突变脂肪酶,为利用蛋白质工程技术改造天然酶提供了理论依据。
Lipases are versatile tools for biotechnological applications not only their potential to catalyze the hydrolysis but also the synthesis of many useful ester compounds. Numerous lipases have already been isolated and characterized from animals, plants, and microorganisms. Most of the lipases used in industry are microbial enzymes, which have been extensively characterized biochemically. Psychrophilic lipases derived from extremophiles of deep-sea have lately attracted attention as a result of their increasing use due to their high activity at low temperatures and thermoliability, which are favorable properties for the production of fatty acids and interesterification of fats in the food, pharmaceutical, and fine-chemical industries.
     A piezotolenrant and psychrotolenrant bacteria Shewanella piezotolerans WP3, showing lipolytic activity, was previously isolated from deep-sea sediments of 1914m depth in west Pacific Warm Pool. It could grow at a temperature range of 0-28°C and the best growth temperature was around 20°C. The open reading frame of Shewanella piezotolerans WP3 lipases consisted of 759 nucleotides, encoding a protein of 252 amino acids with a predicted molecular mass of approximate 30kDa. This lipase is a member of family V lipases, and had the highest homology with the esterases of Haemophilus influenzae Rd KW20. The catalytic triad of Shewanella piezotolerans WP3 lipases is composed of Ser82, Asp202 and His231. Additionally, the unknown conserved sequence of family V lipases could be found in N-terminal part of this lipase.
     Shewanella piezotolerans WP3 lipase is a psychrophilic enzyme with a low optimum temperature of 20°C, and retains 80% activity even at 4°C. It is a thermoliable and pH neutral lipase, which is able to hydrolyze short to medium chain PNP esters. Metal ions, various reagents and organic solvents could inhibit the hydrolytic activity of Shewanella piezotolerans WP3 lipase except for EDTA, which indicate the independence of metal ions. H-bonds, rather than disulfide bridges, are the most important interactions in the stability of protein structure.
     Structural modifications involved in cold-adaptation had been detected from structure analysis. A large amount of charged residues exposed at the protein surface, and a relative smaller hydrophobic core region. The lack of disulfide bridges, which are conserved in mesophilic and thermophilic lipases. A low proportion of arginine residues as compared to lysines, a low content in proline residues and a high content in glycine residues were also observed. All these properties should confer on the lipase a more flexible structure, in accordance with its low thermostability.
     For further study of the relationship between structure and activity or stability, a series of single amino acid mutants had been constructed by site-directed mutagenesis. For Shewanella piezotolerans WP3 lipase, Leu14 and Lys246 may be the key residues of cold activity, while Asp23 and Gly97 may be the key residues of thermostability. Conformation changes of lipase active center, may affect cold activity by changes of catalytic ability and substrates affinity, but also the thermostability, and even lead to accumulation of non-active products. It is also predicted that hydrophobic region of unknown conserved sequence and cold activity are closely relative, and protein surface region of that and thermostability are closely relative, while it play no role in substrates affinity.
     A high quality random mutagenesis of Shewanella piezotolerans WP3 lipase, containing around 10000 mutants, was constructed by error-prone PCR method. After screening, 2 of them were found to be favorable mutants with 1.8-fold and 1.6-fold catalytic efficiency(k_(cat)/K_m) of wild type lipase at low temperature.
     Shewanella piezotolerans WP3 lipase is the first lipase expressed and characterized from Shewanella strains. This study on the cold-adaption of lipase may facilitate the research of relationship between enzyme structure and activity(stability), and the protein engineering of biocatalysts.
引文
[1]辛明秀,周培瑾.冷适应微生物产生的冷适应酶[J].微生物学报.2000,40(6):661-664.
    [2]孙谧,洪义国,李勃生等.海洋微生物低温酶特性及其在工业中的潜在用途[J].海洋水产研究.2002,23(3):44-49.
    [3]Margesin R,Palma N,Knauseder F et al.Proteases of psychrotrophic bacteria isolated from glaciers[J].Journal of Basic Microbiology.1991,31(5):377-383.
    [4]Feller G,Narinx E,Arpigny JL et al.Enzymes from psychrophilic organisms[J].FEMS Microbiology Reviews.1996,18(2-3):189-202.
    [5]Morita RY.Psychrophilic bacteria[J].Bacterioi Rev.1975,39(2):144-167.
    [6]Kobori H,Sullivan CW,Shizuya H.Heat-labile alkaline phosphatase from Antarctic bacteria:Rapid 5' end-labeling of nucleic acids[J].Proc Natl Acad Sci U S A.1984,81(21):6691-6695.
    [7]Galkin A,Kulakova L,Ashida H et al.Cold-adapted alanine dehydrogenases from two antarctic bacterial strains:Gene cloning,protein characterization,and comparison with mesophilic and thermophilic counterparts[J].Applied and Environmental Microbiology.1999,65(9):4014-4020.
    [8]Zecchinon L,Claverie R Collins T et al.Did psychrophilic enzymes really win the challenge?[J].Extremophiles.2001,5(5):313-321.
    [9]Irwin JA,Gudmundsson HM,Marteinsson VT et al.Characterization of alanine and malate dehydrogenases from a marine psychrophile strain PA-43[J].Extremophiles.2001,5(3):199-211.
    [10]Berchet V,Boulanger D,Gounot AM.Use of gel electrophoresis for the study of enzymatic activities of cold-adapted bacteria[J].J Microbiol Methods.2000,40(1):105-110.
    [11]Feller G,Arpigny JL,Narinx E et al.Molecular adaptations of enzymes from psychrophilic organisms[J].Comparative Biochemistry and Physiology Part A:Physiology.1997,118(3):495-499.
    [12]Bentahir M,Feller G,Aittaleb Met al.Structural,kinetic,and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp.TACII18[J].J Biol Chem.2000,275(15):11147-11153.
    [13]Cavicchioli R,Siddiqui KS,Andrews D et al.Low-temperature extremophiles and their applications[J].Curr Opin Biotecbnol.2002,13(3):253-261.
    [14]Kim SY,Hwang KY,Kim SH et al.Structural basis for cold adaptation.Sequence,biochemical properties,and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum[J].J Biol Chem.1999,274(17):11761-11767.
    [15]Feller G,Payan F,Theys F et al.Stability and structural analysis of alpha-amylase from the antarctic psychrophile Alteromonas haloplanctis A23[J].Eur J Biochem.1994,222(2):441-447.
    [16]Tang KES,Dill KA.Native protein fluctuations:The conformational-motion temperature and the inverse correlation of protein flexibility with protein stability[J].Journal of Biomolecular Structure & Dynamics.1998,16(2):397-411.
    [17] Feller G, Zekhnini Z, Lamotte-Brasseur J et al. Enzymes from cold-adapted microorganisms. The class C beta-lactamase from the antarctic psychrophile Psychrobacter immobilisA5[J]. Eur J Biochem. 1997,244(1): 186-191.
    [18] Feller G, Lonhienne T, Deroanne C et al. Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23[J]. J Biol Chem. 1992, 267(8): 5217-5221.
    [19] Narinx E, Baise E, Gerday C. Subtilisin from psychrophilic antarctic bacteria:characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold[J]. Protein Eng. 1997,10(11): 1271-1279.
    [20] Davail S, Feller G, Narinx E et al. Cold adaptation of proteins. Purification,characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41[J]. J Biol Chem. 1994, 269(26): 17448-17453.
    [21] Okubo Y, Yokoigawa K, Esaki N et al. Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus[J]. Biochem Biophys Res Commun. 1999, 256(2): 333-340.
    [22] Russell RJ, Gerike U, Danson MJ et al. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium[J]. Structure. 1998, 6(3): 351-361.
    [23] Gianese G, Argos P, Pascarella S. Structural adaptation of enzymes to low temperatures[J]. Protein Eng. 2001, 14(3): 141-148.
    [24] Feller G, d'Amico D, Gerday C. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis[J]. Biochemistry.1999, 38(14): 4613-4619.
    [25] Neidleman SL. Enzyme reactions under stress conditions[J]. Crit. Rev. Biotechnol.1990,9:273-286.
    [26] Iyo AH, Forsberg CW. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85[J]. Appl Environ Microbiol. 1999, 65(3): 995-998.
    [27] Jaeger KE, Reetz MT. Microbial lipases form versatile tools for biotechnology[J].Trends Biotechnol. 1998, 16(9): 396-403.
    [28] Jaeger KE, Eggert T. Lipases for biotechnology[J]. Curr Opin Biotechnol. 2002, 13(4):390-397.
    [29] Zuyi L, Ward OP. Synthesis of monoglyceride containing omega-3 fatty acids by microbial lipase in organic solvent[J]. Journal of Industrial Microbiology and Biotechnology. 1994, 13(1): 49-52.
    
    [30] 邬敏辰, 郑建丰, 邬显章. 各种微生物碱性脂肪栈特征的比较[J]. 食品与发酵工业.1997,23(3): 7-10.
    [31 ] Brady L, Brzozowski AM, Derewenda ZS et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase[J]. Nature. 1990, 343(6260): 767-770.
    [32] Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes: classification and properties[J].Biochem J. 1999, 343 Pt 1: 177-183.
    [33] Tan Y, Miller KJ. Cloning, expression, and nucleotide sequence of a lipase gene from Pseudomonas fluorescens B52[J]. Appl. Environ. Microbiol. 1992, 58(4): 1402-1407.
    [34] Nardini M, Dijkstra BW. alpha/beta hydrolase fold enzymes: the family keeps growing[J]. Current Opinion in Structural Biology. 1999, 9(6): 732-737.
    [35] Jaeger KE, Ransac S, Dijkstra BW et al. Bacterial lipases[J]. FEMS Microbiol Rev. 1994, 15(1): 29-63.
    [36] Kim KK, Song HK, Shin DH et al. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor[J]. Structure. 1997, 5(2): 173-185.
    [37] Lang D, Hofmann B, Haalck L et al. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution[J]. J Mol Biol. 1996, 259(4): 704-717.
    [38] Rosenau F, Jaeger K. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion[J]. Biochimie. 2000, 82(11): 1023-1032.
    [39] Ahn JH, Pan JG, Rhee JS. Homologous expression of the lipase and ABC transporter gene cluster, tliDEFA, enhances lipase secretion in Pseudomonas spp[J]. Appl Environ Microbiol. 2001, 67(12): 5506-5511.
    [40] Tjalsma H, Bolhuis A, Jongbloed JD et al. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome[J]. Microbiol Mol Biol Rev. 2000, 64(3): 515-547.
    [41] Wilhelm S, Tommassen J, Jaeger KE. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa[J]. J Bacteriol. 1999, 181(22): 6977-6986.
    [42] Gerritse G, Ure R, Bizoullier F et al. The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production[J]. J Biotechnol. 1998, 64(1): 23-38.
    [43] Amada K, Kwon HJ, Haruki M et al. Ca(2+)-induced folding of a family I.3 lipase with repetitive Ca(2+) binding motifs at the C-terminus[J]. FEBS Lett. 2001, 509(1):17-21.
    [44] El Khattabi M, Van Gelder P, Bitter W et al. Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase[J]. Journal of Molecular Catalysis B-Enzymatic. 2003, 22(5-6): 329-338.
    [45] El Khattabi M, Ockhuijsen C, Bitter W et al. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor[J]. Mol Gen Genet.1999, 261(4-5): 770-776.
    [46] Rosenau F, Tommassen J, Jaeger KE. Lipase-specific foldases[J]. Chembiochem. 2004,5(2): 152-161.
    [47] Shibata H, Kato H, Oda J. Calcium ion-dependent reactivation of a Pseudomonas lipase by its specific modulating protein, LipB[J]. J Biochem. 1998, 123(1): 136-141.
    [48] Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases[J]. Annu Rev Microbiol. 1999,53:315-351.
    [49] Neves Petersen MT, Fojan P, Petersen SB. How do lipases and esterases work: the electrostatic contribution[J]. J Biotechnol. 2001, 85(2): 115-147.
    [50] Beer HD, Wohlfahrt G, McCarthy JE et al. Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants[J]. Protein Eng. 1996,9(6): 507-517.
    [51] Okkels JS, Svendsen A, Patkar SA. Protein engineering of microbial lipase of industrial interest [J]. Applied Sciences. 1995, 317: 203-207.
    [52] Yamaguchi S, Takeuchi K, Mase T et al. The consequences of engineering an extra disulfide bond in the Penicillium camembertii mono- and diglyceride specific lipase[J].Protein Eng.1996,9(9):789-795.
    [53]van Kampen MD,Simons JW,Dekker N et al.The phospholipase activity of Staphylococcus hyicus lipase strongly depends on a single Ser to Val mutation[J].Chem Phys Lipids.1998,93(1-2):39-45.
    [54]Stemmer WPC.Molecular breeding of genes,pathways and genomes by DNA shuffling[J].Journal of Molecular Catalysis B:Enzymatic.2002,19-20:3-12.
    [55]Giver L,Gershenson A,Freskgard POet al.Directed evolution of a thermostable esterase[J].Proc Natl Acad Sci U S A.1998,95(22):12809-12813.
    [56]Liebeton K,Zonta A,Schimossek K et al.Directed evolution of an enantioselective lipase[J].Chemistry & Biology.2000,7(9):709-718.
    [57]Song JK,Chung B,Oh YH et al.Construction of DNA-shuffied and incrementally truncated libraries by a mutagenic and unidirectional reassembly method:changing from a substrate specificity ofphospholipase to that of iipase[J].Appl Environ Microbiol.2002,68(12):6146-6151.
    [58]Kim JH,Choi GS,Kim SB et al.Enhanced thermostability and tolerance of high substrate concentration of an esterase by directed evolution[J].Journal of Molecular Catalysis B:Enzymatic.2004,27(4-6).
    [59]彭立凤.有机相脂肪酶催化的有机物合成反应[J].合成化学.2000,8(4):294-300.
    [60]孟秀香,贾莉,宋振岚.微生物脂肪酶及其相关研究进展[J].大连医科大学学报.2001,23(4):292-295.
    [61]辛嘉英,李树本,徐毅等.脂肪酶产生菌的筛选及不对称水解合成S-(+)-荼普生[J].工业微生.2000,30(3):31-34.
    [62]Bendtsen JD,Nielsen H,von Heijne G et al.Improved prediction of signal peptides:SignalP 3.0[J].J Mol Biol.2004,340(4):783-795.
    [63]Zdobnov EM,Apweiler R.InterProScan-an integration platform for the signature-recognition methods in InterPro[J].Bioinformatics.2001,17(9):847-848.
    [64]Bennett-Lovsey RM,Herbert AD,Sternberg MJ et al.Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre[J].Proteins.2008,70(3):611-625.
    [65]Laskowski RA,MacArthur MW,Moss DS et al.PROCHECK:A program to check the stereochemical quality of protein structures[J].J.Appl.Cryst.1993,26:283-291
    [66]Eisenberg D,Luthy R,Bowie JU.VERIFY3D:assessment of protein models with three-dimensional profiles[J].Methods Enzymol.1997,277:396-404.
    [67]Saitou N,Nei M.The neighbor-joining method:a new method for reconstructing phylogenetic trees[J].Mol Biol Evol.1987,4(4):406-425.
    [68]Haba E,Bresco O,Fewer C et al.Isolation oflipase-secreting bacteria by deploying used frying oil as selective substrate[J].Enzyme and Microbial Technology.2000,26(1):40-44.
    [69]Hoppe HG.Significance of exoenzymatic activities in the ecology of brackish water:measurements by means of methylumbelliferyl-substrates[J].Marine Ecology Progress Series.1983,11:299-308.
    [70]Ryu HS,Kim HK,Choi WC et al.New cold-adapted lipase from Photobacterium lipolyticum sp.nov.that is closely related to filamentous fungal lipases[J].Appl Microbiol Biotechnol. 2006, 70(3): 321-326.
    [71] Choo DW, Kurihara T, Suzuki T et al. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization[J]. Appl Environ Microbiol. 1998, 64(2): 486-491.
    [72] Alquati C, De Gioia L, Santarossa G et al. The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling[J]. Eur J Biochem. 2002, 269(13): 3321-3328.
    [73] Feller G, Thiry M, Arpigny JL et al. Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144[J].Gene. 1991, 102(1): 111-115.
    [74] Johnson LA, Beacham IR, MacRae IC et al. Degradation of triglycerides by a pseudomonad isolated from milk: molecular analysis of a lipase-encoding gene and its expression in Escherichia coli[J]. Appl Environ Microbiol. 1992, 58(5): 1776-1779.
    [75] Nardini M, Lang DA, Liebeton K et al. Crystal structure of pseudomonas aeruginosa lipase in the open conformation. The prototype for family I.1 of bacterial lipases[J]. J Biol Chem. 2000, 275(40): 31219-31225.
    [76] Schrag JD, Li Y, Cygler M et al. The open conformation of a Pseudomonas lipase[J]. Structure. 1997,5(2): 187-202.
    [77] Teo JW, Zhang LH, Poh CL. Cloning and characterization of a novel lipase from Vibrio harveyi strain AP6[J]. Gene. 2003, 312: 181-188.
    [78] Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins[J]. Journal of Molecular Biology. 1978, 120(1): 97-120.
    [79] Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology. 1982, 157(1): 105-132.
    [80] Nardini M, Ridder IS, Rozeboom HJ et al. The x-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1. An enzyme to detoxify harmful epoxides[J]. J Biol Chem. 1999,274(21): 14579-14586.
    [81] Kulakova L, Galkin A, Nakayama T et al. Cold-active esterase from Psychrobacter sp Ant300: gene cloning, characterization, and the effects of Gly -> Pro substitution near the active site on its catalytic activity and stability[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics. 2004, 1696(1): 59-65.
    [82] Matthews BW, Nicholson H, Becktel WJ. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding[J]. Proc Natl Acad Sci U S A. 1987, 84(19): 6663-6667.
    [83] Watanabe K, Chishiro K, Kitamura K et al. Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006[J]. J Biol Chem. 1991, 266(36): 24287-24294.
    [84] Huston AL, Krieger-Brockett BB, Deming JW. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice[J]. Environ Microbiol. 2000, 2(4): 383-388.
    [85] Ray MK, Sitaramamma T, Ghandhi S et al. Occurrence and expression of cspA, a cold shock gene, in Antarctic psychrotrophic bacteria[J]. FEMS Microbiol Lett. 1994, 116(1):55-60.
    [86]曾胤新,蔡明宏,陈波等.一株产蛋白酶南极耐冷细菌的筛选及研究[J].生物技术.2001,11(2):17-20.
    [87]Arnold FH,Moore JC.Optimizing industrial enzymes by directed evolution[J].Adv Biochem Eng Biotechnol.1997,58:1-14.
    [88]Shoichet BK,Baase WA,Kuroki R et al.A relationship between protein stability and protein function[J].Proc Natl Acad Sci U S A.1995,92(2):452-456.
    [89]Somero GN.Temperature as a selective factor in protein evolution:the adaptational strategy of "compromise"[J].J Exp Zool.1975,194(I):175-188.
    [90]Meiering EM,Serrano L,FershtAR.Effect of active site residues in barnase on activity and stability[J].J Mol Biol.1992,225(3):585-589.
    [91]FontanaA,de Filippis V,de Laureto PP et al.Rigidity ofthermophilic enzymes.In:Bailesteros A,Plou FJ,Iborra JL et al.Instability and stabilization of biocatalysts[M].Amsterdam:Elsevier Science,1998.
    [92]Schreiber G,Buckle AM,Fersht AR.Stability and function:two constraints in the evolution of barstar and other proteins[J].Structure.1994,2(10):945-951.
    [93]Wintrode PL,Miyazaki K,Arnold FH.Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution[J].J Biol Chem.2000,275(41):31635-31640.
    [94]Tutino ML,Duilio A,Parrilli R et al.A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature[J].Extremophiles.2001,5(4):257-264.
    [95]Mujacic M,Cooper KW,Baneyx F.Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli:application to the production of a toxic and proteolytically sensitive fusion protein[J].Gene.1999,238(2):325-332.
    [96]魏云林,季秀玲,林连兵等.低温菌启动子分析及异源蛋白高效表达[J].生物工程学报.2008,24(3):415-422.
    [97]Ferrer M,Chernikova TN,Timmis KN et al.Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain[J].Appl Environ Microbiol.2004,70(8):4499-4504.
    [98]Eom GT,Song JK,Ahn JH et al.Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system[J].Appl Environ Microbiol.2005,71(7):3468-3474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700