用户名: 密码: 验证码:
玛多—甘德断裂活动性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期的地球科学研究表明,地球的表层部分(地壳和上地幔)是不断运动的。这些运动的历史就是地球构造格局形成和演化的历史。一直以来,对各种构造活动的研究被列为地质学研究的主题之一,并取得了诸多成果。目前,大多数学者将晚更新世(10万~12万年)以来有过活动,以后一段时间内仍然会活动的各种构造称为活动构造,并形成了一个独立的研究方向。由于活动构造与人类生存与发展的关系极为密切,随着经济的发展和社会的进步,活动构造的研究日益受到国内外地学界和工程学界的高度重视,因为它不仅为研究现代地壳运动及地球动力学特征提供了基础资料,更在现代城市规划、地震预测与灾害预防、工程稳定性与地震安全性评价等方面起着十分重要的作用。
     我国的活动构造分布广泛,呈现出十分复杂的构造样式和形态。不少学者认为我国的活动构造具有明显的分区性(邓起东,1996,2002)。其中,青藏高原地区是现代地壳运动和各种构造活动最强烈的地区之一,它的内部和周围分布着大量的活动断裂,这些活动断裂控制着青藏高原地区的强震活动。据统计,青藏高原内部发生过8.0级以上地震10次,7.0~7.9级地震78次,6.0~6.9级地震250余次,无论震级大小还是地震数量都远远超过我国的其他地区。此外,青藏高原内部的活动构造对其周边地区的地震孕育和发生也起着十分重要的作用。2008年汶川MS8.0级地震的成因就与青藏高原内部巴颜喀拉块体的SE向运动有着密切的关系。
     巴颜喀拉块体是青藏高原中东部的长条状活动地块,它的南、北边界分别被甘孜—玉树—鲜水河断裂系和东昆仑断裂系所围控,东部边界由龙门山断裂带中—南段和近南北向岷江断裂组成。这些边界断裂在历史上曾发生多次7.0级以上破坏性地震。例如,近十年来分别在南、北、东边界带发生了多次MS7.0级以上强震(2010年玉树MS7.1级地震、2001昆仑山口西MS8.1级地震和2008年汶川MS8.0级地震等)。前人对巴颜喀拉块体周边的主控边界断裂:东昆仑断裂、玉树—甘孜—鲜水河断裂以及包括龙门山断裂和岷江断裂在内的大多数活动断裂的活动性以及青藏高原东缘地区的快速隆升过程做过比较详细研究和讨论。
     除了块体边界的活动断裂以外,在巴颜喀拉块体内部也存在着一些活动断裂,然而它们的研究程度相对较低。例如块体东部新发现的龙日坝断裂、东昆仑断裂系东延的塔藏断裂、块体中部的昆仑山口西—达日断裂以及本文研究的玛多—甘德断裂。这些断裂所在的周边区域历史上都发生过较强的地震,其中震级最大的是1947年达日附近的MS7.8级地震。
     结合现有地质学、地球物理学、构造地貌学等资料和相关研究成果认为,这些块体内部的断裂晚第四纪以来可能有过强烈的活动并至今活跃,应当给予足够的重视和关注并逐步开展定量的研究工作。本文选择玛多—甘德断裂为研究对象,在遥感解译的基础上,结合野外调查,以活动断裂的定量研究为核心,综合运用遥感地质学、地震地质学、地貌学、数学物理学等方法,结合探槽开挖和地质测年,开展对断裂活动性的综合研究。
     本文的主要研究内容和取得成果如下:
     1.运用遥感地质学的方法对断裂整体进行初步研究。利用RSI ENVI 4.3遥感图像处理软件以及Global Mapper v8.03专业绘图软件,对研究区内TM、ETM+、SRTM等卫星遥感数据和图像进行了处理和综合解译,并结合1:10万地形图和1:6万航片等测绘资料,初步分析了研究区断裂构造的几何展布特征和区域地形地貌特征,对断裂的性质有了初步的认识。玛多—甘德断裂全长约650km,整体走向NW-NWW,在甘德境内由三条近似平行的断裂组成。
     2.在遥感解译的基础上进行了详细的野外调查工作,在玛多—甘德断裂的甘德段新发现了地震地表破裂带,通过野外连续追踪,获得了地表破裂带的展布特征和位移分布特征。野外考察获得的地表破裂带长度约50km,最新一次活动的最大左旋水平位移7.6m,最大垂直位移4m左右。沿破裂带发现了大量的地震活动遗迹。断裂活动形成一系列呈线状排列的垭口地貌,各类断错现象也十分丰富,沿断裂带发育有整齐的断层三角面、山脊(梁)扭错、冲沟水系位错、断层陡坎、断层泉、地震鼓包、断层槽地、断头(尾)沟、断塞塘等地貌现象。通过对各类地质地貌现象的观察和分析认为,玛多—甘德断裂具有明显的左旋走滑性质,并兼有逆冲运动特征。
     3.运用TOPCON Hiper Ga/Gb型差分GPS对断裂带上的各种微地貌现象进行了精确的测量,获得了大量的GPS数据。并通过室内GPS数据的处理和计算,最终得出了近百个点的位移量数据。主要包括冲沟的水平错动量和断层陡坎的垂直位移量及其形态特征。沿断裂带各类冲沟普遍被错动,水平位移量从最小的2m左右到最大的850m左右;新老洪积扇上保留的断层陡坎高度最小的1m左右,最大的可达10m左右。
     4.通过野外调查及探槽的开挖获取了断层的产状等基本要素。通过断层剖面的观察和绘制,对断层的运动性质有了直观的了解。在开挖的探槽剖面及其他地质体内取得了20余个光释光(OSL)测年样品。测年结果显示断层活动年代分布从晚更新世中期(Q23)至全新世(Q4),与野外的初步判断比较相符。
     5.结合室内和野外两方面的研究工作,利用常规的断错地貌方法和建立的理论模型,最终从不同时间尺度给出了玛多—甘德断裂甘德段的活动速率。
     (1)水平活动速率
     ①利用F2-2段目日哇麻西岸山前全新世洪积扇上冲沟位错及地貌面年龄求得全新世(Q4)以来断层水平活动速率约为3.38±0.08mm/a。
     ②利用F2-1段索合洛盆地西侧山前老洪积扇上冲沟位错结合地貌年龄求得晚更新世末期(Q33)以来断层水平活动速率为8.39±0.09mm/a。利用F2-2、F3段目日哇麻至安北东吾六条大冲沟同步累计位错量和冲沟形成时代求得断裂晚更新世中期(Q23)以来的水平滑动速率约为8.13±0.15mm/a~8.41±0.06mm/a。借助冲沟溯源侵蚀原理建立起的断裂活动与冲沟位错关系模型最终求得晚更新世中期(Q23)以来断层水平活动速率约为7.2mm/a。
     ③利用F1段断裂两盘基岩的滑动总量与地层年代求得甘德段第四纪以来的活动速率约为3.48mm/a~5.23mm/a。利用走滑断裂带中断裂错距(D)与破裂带宽度(t)的理论与统计关系,得到的断裂第四纪以来的活动速率为4mm/a~6mm/a。取二者均值,求得第四纪以来断裂平均水平滑动速率约为4.68mm/a。
     (2)垂直活动速率
     ①对F2-1段目日休麻和安母长亚生两处冲沟阶地高度及其形成时代的测定,估算出全新世中期(Q24)和早期(Q14)以来区域性垂直平均运动速率分别约为0.39±0.1mm/a和0.37±0.05mm/a。
     ②利用差分GPS对F2、F3断裂带内不同地貌面上保留的断层陡坎的测量,利用断层陡坎演化的扩散方程求得晚更新世末期(Q33)以来断层的平均垂直活动速率约为0.33mm/a,全新世(Q4)以来的平均垂直活动速率约为0.78mm/a。
     ③利用DEM数据分析跨越断层的多条地形剖面,得出断裂F2两盘的累计垂直位移量并结合地层年代,可求得玛多—甘德断裂第四纪以来的平均垂直差异运动速率约为0.15mm/a~0.23mm/a。考虑到盆地的沉积,其速率可能更大。
Long term of research on the earth science shows that the surface of the Earth (crust and upper mantle) is constantly moving. The history of these movements is the history of the formation and evolution of Earth’s tectonic pattern. The research of various tectonic activities has been listed as one of the themes of geology research and a lot of results are achieved. Currently, most of scholars consider the active tectonics as the tectonics which active since Late Pleistocene (about 100 to 120 thousand years ago) and will still be active within a period of time in the future, and, an independent direction of research has been developed gradually. As there is a very close relationship between the active tectonics and human survival and development, the research of active tectonics has been increasingly given attention by scholars in earth science and engineering study area home and abroad with the economic development and social progress. Because it’s not only provide the basic data for the study of modern crustal movement and geodynamical characteristics, even play an important role in modern urban planning, earthquake prediction and disaster prevention, project stability and seismic safety evaluation and some other relative fields.
     Active tectonics is widely distributed in China, showing a very complex status and with the obvious regional characteristics (Deng Qidong, 1996). Qinghai-Tibet Plateau is one of the most intense areas of modern crustal movement and tectonic activities. Within and around the plateau, there are distributed a large number of active faults which control the activities of the strong earthquake of these area. According to statistics, within Qinghai-Tibet Plateau, above MS8.0 earthquake occurred 10 times, MS7.0~MS7.9 magnitude earthquake 78 times, from MS6.0 to MS6.9 earthquake more than 250 times. No matter the magnitude or the number size of earthquake is far more than other areas of our country. In addition, tectonic activities within the Qinghai-Tibet Plateau also play an important role in the formation and occurrence of earthquake in their surrounding areas. It is believed that the cause of 2008 Wenchuan MS8.0 earthquake is closely related to the SE movement of Bayan Har block which lies in the Qinghai-Tibet Plateau.
     Bayan Har block is a strip terrane in the middle-eastern part of Qinghai-Tibet Plateau. Its southern and northern borders are controlled by the Ganzi-Yushu-Xianshui River fault zone and the East Kunlun fault zone, and the eastern boundary consist of the middle-southern part of the Longmen Shan fault zone and the Minjiang fault zone. These boundary faults have occurred many times of above MS7.0 destructive earthquakes in the history. For example, over the past decade at the South, North, East boundary occurred a number of strong earthquakes above MS7.0 (2010 Yushu MS7.1 earthquake, 2001 Kunlun Mountain MS8.1 earthquake and 2008 Wenchuan MS8.0 earthquake et al.). Predecessors have done some detailed research and discussion on the activities of these main controlling boundary faults and on the rapid uplift process of the eastern Qinghai-Tibet Plateau.
     Except the active faults in the boundary of Bayan Har block, there are still some active faults inside the block which are not thoroughly researched. For example, the newly discovered Longriba fault which lies in the eastern of the block, the east extension of the East Kunlun fault zone-Tazang fault, the Kunlunshankouxi-Dari fault and Maduo-Gande fault (studied in this paper)which are lies in the central of Bayan Har block. There used to be some strong earthquake occurred around these fault zones in the history, in which the biggest one is the 1947 MS7.8 earthquake near Dari.
     Based on the considerations above and combined with available materials and relevant research results that the faults within the block probably had strong activities since the late Quaternary and may still active nowadays. So, these active faults should be given adequate attention and concern, and a gradual development of quantitative research should be given too. This paper chose the Maduo-Gande fault as the aim of study, based on the interpretation of remote sensing, combined the field investigation, considered the quantitative study of active faults as the core, integrated use of remote sensing geology, seismogeology, geomorphology, geometry, mathematical physics and so on, combined with trench excavation and geological dating, carried out on a comprehensive study of fault activity.
     The main research contents and results of this paper are as follows:
     1. Using the remote sensing geological methods to have a preliminary study about the faults overall. Processed and gave integrated interpretation of the TM/ETM/SRTM remote sensing data in the study area with the RSI ENVI 4.3 remote sensing image processing software, and Global Mapper v8.03 professional graphics software. Combined with 1:100 thousand topographic maps and 1:60 thousand aerial photographs and other mapping information, we gave a preliminary analysis of the topographic and geomorphologic features and the distribution characteristics of the faults in the study area, and had an initial understanding about the nature of the faults.
     2. A detailed field survey work was given and an earthquake surface rupture zone was found in Gande segment on the basis of remote sensing interpretation. A large number of earthquake traces were found and also the distribution characterics of rupture zone and its displacement via continuous tracking through the field. According to the field investigation, the rupture zone has the lenth of about 50km. We got a maximum horizontal displacement of 7.6m and a maximum vertical displacement of 4m. Due to the fault activities, a series of linear arranged pass landforms formed. And the phenomena of various types of dislocation are also very rich, along the fault zone, there are neat fault triangles, ridges (beam) twisted, gullies dislocation, fault scarps, fault springs, pressure ridges, fault troughs, head/tail missing gullies, sag-ponds, et al. Through the observation and analysis of various types of geological and geomorphological features along the fault, we believe that the Maduo-Gande fault has obvious sinistral strike-slip feature, and both thrust characteristic.
     3. We measured a variety of micro-geomorphic phenomena by TOPCON Hiper Ga/Gb differential GPS accurately along the fault. After indoor processing and calculating of GPS data, we obtained the displacement of about 100 points. Include the horizontal displacement of gullies and vertical displacement of fault scarps. All kinds of gullies along the fault zone generally dislocated, and the displacement from the smallest of 2m or so to the largest of 850m or so; new and old alluvial fan to retain a high degree of fault scarps around the minimum 1m, maximum up to 10m or so.
     4. Through field investigation and trench excavation to obtain faults occurrence and other basic elements. And through the observing and drawing section of the faults, we obtained its characteristic of activity with intuitive understanding. More than 20 OSL dating samples are made in the trench and other geological body. The dating results show that from the mid-Late Pleistocene (Q23) to the Holocene (Q4), which is correspond to the preliminary judge while field investigation. Combines both indoor and field work, using conventional methods of displacement of geomorphology unit, and the establishment of theoretical model, we figured out the active rates of Gande segment in different time scales.
     5. Horizontal active rates
     (1) In F2-2 segment, using the gully dislocation on the Holocene alluvial fan in Muriwama west and the dating data, we got a slip rate of 3.38±0.08mm/a since Holocene (Q4).
     (2) In F2-1 segment, using the gully dislocation on the old alluvial fan in front of Suoheluo basin west piedmont and the dating data, we got a slip rate of 8.39±0.09mm/a since the late period of late Pleistocene(Q33). In F2-2 segment, using the synchronous dislocation of 6 big gully between Muriwama and Anbeidongwu, combined with the date of the gully, we got a slip rate of 8.13±0.15mm/a~8.41±0.06mm/a since the middle period of late Pleistocene(Q23). On the principles of gully headward erosion, we established the relationship model between the gully displacement and the fault activities. Then, figure out the slip rate of 7.2mm/a since the middle period of late Pleistocene(Q23).
     (3) In F1 segment, using the total displacement of the rock between each side of the fault and the age of strata, we got a slip rate of 3.48mm/a~5.23mm/a since Quaternary. Using the theoretical and statistical relationships of strike-slip faults between its displacement and its rupture width, we got a slip rate of 4mm/a~6mm/a since Quaternary. Then, take the average, we got the mean slip rate about 4.68 mm/a.
     6. Vertical active rates
     (1) In F2-1 segment, using the height of two gullies’terrace in Murixiuma and Anmuchangyasheng, combined with the dating results, we got a respectively regional uplift rate of 0.39±0.1mm/a and 0.37±0.05mm/a since mid-Holocene(Q24) and early-Holocene (Q14).
     (2) In F2 and F3 segment, using the differential GPS to measure the scarps exist on the different topography in fault zone, then, we got the average vertical active rates of about 0.33mm/a since the late period of late Pleistocene(Q33) and about 0.78mm/a since Holocene (Q4).by using the diffusion equation of scarp evolution.
     (3) Using DEM data to analysis the terrain profiles across the faults, we obtained the cumulative vertical displacement between each side of fault F2. Then, combined with strata age, we got a vertical active rate of 0.15mm/a~0.22mm/a since Quaternary.
引文
邓起东.1982.中国的活动断裂[A].中国活动断裂[M].北京:地震出版社.
    邓起东,于贵华,叶文华.1992.地震地表破裂参数与震级关系的研究[A].活动断裂研究[M].北京:地震出版社,247~264.
    邓起东.1996.中国活动构造研究[J].地质评论,42(4):295~299.
    邓起东,张培震,冉勇康,等.2002.中国活动构造基本特征[J].中国科学(D辑),32(12):1020~1030.
    邓起东,张培震,冉勇康,等.2003.中国活动构造与地震活动[J].地学前缘,10(特)66~73.
    邓起东,陈立春,冉勇康.2004.活动构造定量研究与应用[J].地学前缘,11(4):383~392.
    邓起东,闻学泽.2008.活动构造研究—历史、进展与建议[J].地震地质,30(1):1~30.
    邓起东,高翔,杨虎.2009.断块构造、活动断块构造与地震活动[J].地质科学,44(4):1083~1093.
    丁国瑜.1992.有关活断层分段的一些问题[J].中国地震,8(2):1~10.
    丁国瑜,田勤俭,孔凡臣,等.1993.活断层分段原则、方法及应用[M].北京:地震出版社,39~76.
    丁周瑜.1986.活动构造[A].21世纪初科学发展趋势[C].北京:科学出版社,267~270.
    丁国瑜.1991.活动亚板块、构造块体相对运动[A].中国岩石圈动力学概论[M].北京:地震出版社,142~153.
    路新景,张文怀,李金都,等.2003.南水北调西线工程几个特殊的工程地质和岩石力学问题[J].岩石力学与工程学报,22(5):829~833.
    冉勇康,李建彪,闵伟,等.2005.南水北调西线工程区及邻域的活动构造[J].岩石力学与工程学报,24(20):3664~3672.
    彭建兵.2006.中国活动构造与环境灾害研究中的若干重大问题.工程地质学报,14(01):5~12.
    冉勇康,汪一鹏.1995.对活动断层分段性研究的初浅认识和建议[A].现代地壳运动研究[M].北京:地震出版社,216~224.
    张培震,邓起东.1995.活动断裂分段研究的原则和方法[A].现代地壳运动研究[M].北京:地震出版社,208~215.
    陈颙,陈棋福,李娟.2001.活动构造研究的一些进展[J].中国地震,l7(2):103~109.
    马杏垣.1989.中国岩石圈动力学图集[M].北京:地图出版社.
    邓起东.1980.中国新生代断块构造的主要特征[A].国际交流地质学术论文集[C].北京:地质出版社,101~108.
    马瑾.1999.从断层中心论向块体中心论转变[J].地学前缘,6(4):363~370.
    汪一鹏.1998.青藏高原活动构造基本特征[A].活动断裂研究[M].北京:地震出版社,135~144.
    朱志澄.1990.构造地质学[M].北京:中国地质大学出版社.
    青海省地震局,中国地震局地壳应力研究所.1999.东昆仑活动断裂带[M].北京:地震出版社,89~126.
    青海省地质矿产局,1988.达日县幅1:25区域调查报告[M].
    任金卫,汪一鹏,吴章明,等.1993.青藏高原北部库玛断裂东、西大滩段全新世地震形变带及其位移特征和水平滑动速率[J].地震地质,15(3):285~288.
    任金卫,汪一鹏,吴章明,等.1999.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率[A].活动断裂研究[M].北京:地震出版社,147~163.
    任金卫,沈军,曹忠权,等.2000.西藏东南部嘉黎断裂新知[J].地震地质,22(4):344~350.
    任金卫.1994.则木河断裂晚第四纪位移及滑动速率[J].地震地质,16(2):146.
    徐锡伟,闻学泽,于贵华,等.2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J].中国科学(D辑),38(5):529~542.
    闻学泽.1990.鲜水河断裂带未来三十年地震复发的条件概率[J].中国地震,6:8~16.
    闻学泽.1995.活动断裂地震潜势的定量评估[M].北京:地震出版社.
    闻学泽,徐锡伟,郑荣章,等.2003.甘孜—玉树断裂的平均滑动速率与近代大地震破裂.中国科学(D辑),33(z):199~208.
    徐锡伟,闻学泽,郑荣章,等.2003.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D辑),33(z):151~16.
    张国民,田勤俭,王辉.2003.可可西里—东昆仑活动构造带强震活动研究[J].地学前缘,10(1):39~46.
    田勤俭,张立人,郝平,等.2005.昆仑山口西8.1级地震地表破裂参数相互关系的新认识[J].地震地质,27(1):20~30.
    田勤俭,丁国瑜,2006,青藏高原北部第四纪早期断裂活动的新生性变化初步研究[J].第四纪研究,26(1):32~39.
    田勤俭,丁国瑜,郝平.2006.南天山及塔里木北缘构造带西段地震构造研究[J].地震地质,28(2):212~223.
    田勤俭,丁国瑜,申旭辉,等.2001.拉分盆地与海原断裂带新生代水平位移规模[J].中国地震,17(2):167~175.
    田勤俭,申旭辉,韦开波,等.2001.中卫一同心断裂带构造演化阶段初步研究,新构造与环境[M].北京:地震出版社,399~402.
    申旭辉,陈正位,许任德,等.2000.凉山活动构造带晚新生代变形特征与位移规模.地震地质22(3):232~238.
    申旭辉,汪一鹏.1994.太白维山山前断裂活动特征的初步研究[J].华北地震科学:12(3):17~26.
    申旭辉,田勤俭,丁国瑜,等,2001,宁夏贺家口子地区晚新生代地层序列及其构造意义,中国地震,17(2):156~166.
    陈杰,陈宇坤,丁国瑜,等.2003.2001年昆仑山口西8.1级地震地表破裂带[J].第四纪研究,23(6):629~639.
    曾秋生,刘光勋.1999.前言[A].东昆仑活动断裂带[M].地震出版社,5~7.
    陈立春,陈杰,刘进峰,等.2008.龙门山前山断裂北段晚第四纪活动性研究[J].地震地质,30(3):710~722.
    周荣军,李勇,Alexander L Densmore,等.2006.青藏高原东缘活动构造[J].矿物岩石26(2):40~51.
    徐锡伟,于贵华,陈桂华,等.2007.青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J].地震地质,29(2):201~217.
    袁道阳.2003.青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D].北京:中国地震局地质研究所.
    袁道阳,刘百篪,才树华,等,2002.兰州马衔山北缘断裂带的新活动特征研究[J].地震地质,21(1):15~23.
    袁道阳,石玉成,刘百篪.1999.青藏高原东北缘地区晚第四纪水系沉积物年代标尺的初步研究[J].地震地质,21(1):l~8.
    李传友.2005.青藏高原东北部几条主要断裂带的定量研究[D].北京:中国地震局地质研究所.
    江在森,马宗晋,张希,等.2001.青藏块体东北缘近期水平运动与变形[J].地球物理学报,44(5):636~644.
    张裕明,李闽峰,孟勇琦,等.1996.巴颜喀拉山地区断层活动性研究及其地震地质意义[A].活动断裂研究[M].北京:地震出版社,154~170.
    李闽峰,邢成起,蔡长星,等.1995.玉树断裂活动性研究[J].地震地质,17(3):218~224.
    李传友,宋方敏,冉勇康.2004.龙门山断裂带晚第四纪活动性讨论[J].地震地质,26(2):248~258.
    安其美,丁立丰,王海忠,等.2004.龙门山断裂带的性质与活动性研究[J].大地测量与地球动力学,24(2):115~119.
    杨晓平,蒋溥,宋方敏,等.1999.龙门山断裂带南段断错晚更新世以来地层的证据[J].地震地质,21(4):341~345.
    马保起,苏刚,侯治华,等.2005.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,27(2):234~242.
    陈国星,郑传贝,任利生.1994.京西黄庄—高丽营断层西段晚更新世末的一次粘滑性活动[J].地震,3:23~28.
    张培震,邓起东,张国民,等.2003.中国大陆的强震活动与活动地块[J].中国科学(D辑),33(z):12~20.
    张国民,张培震.2000.“大陆强震机理与预测”中期学术进展[J].中国基础科学,(10):4~l0.
    常承法,郑锡澜.1973.中国西藏南部珠穆朗玛地区地质构造特征及其青藏高原东西向诸山系形成的探讨[J].中国科学,2:l90~201.
    潘裕生.1994.青藏高原第五缝合带的发现与论证[J].地球物理学报,37(2):184~192.
    国家地震局地质研究所,云南省地震局.1990.滇西北地区活动断裂[M].北京:地震出版社.
    国家地震局地质研究所.1992.西藏中部活动断层[M].北京:地震出版社,105~115.
    李坪.1993.鲜水河、小江断裂带[M].北京:地震出版社,121~138.
    昌斯骅.1981.遥感物理基础[M].北京:商务印书馆.
    张樵英,闻立峰.1986.遥感图象目视地质解译方法[M].北京:地质出版社.
    赵英时.1998.遥感地学分析[M].北京:科学出版.
    谢广林.2000.中国活动断裂遥感信息分析[M].北京:地震出版社.
    宁书年,吕松堂,杨小勤,等.1995.遥感图像处理与应用.北京:地震出版社.
    程飞.2004.浅谈断裂构造的遥感解译标志[J].中国高教论丛,26(2):28~31.
    戴昌达,雷莉萍.1989.TM图像的光谱信息特征与最佳波段组合[J].环境遥感,4(4):282~291.
    王金辉,王纪存,刘福魁.2007.遥感在活动断裂研究中的应用[J].西部探矿工程,(3)117~119.
    郑文俊,郭华,袁道阳,等.2002.遥感影像信息在活动断裂研究中的应用[J].14(2):15~21.
    谢广林.2000.中国活动断裂遥感信息分析[M].北京:地震出版社.
    朱亮璞.1994.遥感地质学[M].北京:地质出版社.
    叶世强,张启福.1992.1947年青海达日7 3/4级地震构造的遥感影像特征[J].高原地震,4(2):35~43.
    戴华光.1983.1947年青海达日7 3/4级地震[J].西北地震学报,5(3):71~77.
    李吉均,方小敏,马海洲,等.1996.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑),26(4):316~322.
    崔黎明,王萍,潘祖寿,等.1990.贺兰山东麓冲沟裂点溯源迁移速率及其形成年龄的讨论[J].地震地质,12(1):87~95.
    何宏林,方仲景,李玶.1993.小江断裂带西支断裂南段新活动初探[J].地震研究,16(3):291~298.
    何宏林,宋方敏,杨晓平,等.2004.郯庐断裂带莒县胡家孟晏地震破裂带的发现[J].地震地质,26(4):630~637.
    何宏林,池田安隆,何玉林,等.2008.新生的大凉山断裂带——鲜水河—小江断裂系中段的裁弯取直[J].中国科学(D辑),38(5):564~574.
    何宏林,方仲景.1995.断块运动与断层分段[J].地震地质,17(1):1~6.
    何宏林,孙昭民,王世元,等.2008.汶川MS8.0地震地表破裂带[J].地震地质,30(2):359~362.
    何宏林,孙昭民,魏占玉,等.2008.汶川MS8.0地震地表破裂带白沙河段破裂及其位移特征[J].地震地质,30(3):658~673.
    叶长青,甘淑,李运刚,等.2008.红河流域降水量的时空变异特征[J],云南大学学报(自然科学版),30(1):54~60.
    向宏发,虢顺民,张晚霞,等.2007.红河断裂带南段中新世以来大型右旋位错量的定量研究[J.地震地质.29(1):34~50.
    向宏发,韩竹军,虢顺民,等.2004.红河断裂带大型右旋走滑运动与伴生构造地貌变形[J].地震地质,26(4):598~610.
    虢顺民,计凤桔,向宏发,等.2001.红河活动断裂带[M].北京:海洋出版社.
    虢顺民,汪洋,计凤桔.1999.云南思茅—昔洱地区中强震群发生的构造机制[J].地震研究,22(2):105~115.
    虢顺民,计凤桔,董兴权,等.1995.云南红河断裂带大水塘—南沙段第四纪断错水系初步研究[J].活动断裂研究,北京:地震出版社,28~37.
    虢顺民,向宏发,计凤桔,等著.1992.云南小湾坝区断裂活动性与位移量研究[M].北京:地震出版社.
    皇甫岗.1988.断层泥的厚度、粒度与断层错距的关系[J].四川地震,(1):50~56.
    皇甫岗,马瑾.1990.非粘土断层泥带厚度与断层错距关系的实验研究[J].中国地震,6(3):62~69.
    皇甫岗,王晋南.1993.滇西北地区断层破碎带宽度与断层错距的统计关系[J].地震研究,16(4):384~390.
    皇甫岗,王晋南.1993.滇西北地区最大断层错距、破碎带宽度与断层长度的关系[J].西北地震学报,15(2):71~75.
    邓起东,汪一鹏,廖玉华,等.1984.断层崖崩积楔及贺山山前断裂全新世活动历史[J].科学通报,29(9):557~560.
    邓起东,尤惠川.1985.断层崖研究与地震危险性估计:以贺兰山东麓断层崖为例[J].西北地震学报,7(1):30~37.
    邓起东,张培震.2000.逆断层崩积楔[J].科学通报,45:650~655.
    陈国星,高维明.1987.阿尔金断裂东段第四纪活动的时空特征[J].中国地震,3:35~51.
    程绍平,杨桂枝,杨占占.1994.延庆盆地北缘断裂带蚕房营段晚更新世晚期断层作用.地震地质,l6(4):346~355.
    汪一鹏,宋方敏,李志义,等.1990.宁夏香山—天景山断裂带晚第四纪地震重复间隔的研究[J].中国地震,6(2):15~25.
    冉勇康,李志义,尤惠川,等.1988.河西走廊黑河口断层的古地震及年代研究[J].地震地质,10(4):118~126.
    冉勇康,段瑞涛,邓起东,等.1997.海原断裂高湾子地点三维探槽的开挖与古地震研究[J].地震地质,19(2):97~108.
    黄昭.1987.贺兰山东麓断层崖的形态与年代测定方法[A].现代地壳运动研究[M].北京:地震出版社,63~82.
    张裕明.1988.可可托海—二台断层陡坎的坡度变化、年龄和大震重复时间问题.中国地震,2(1);61~68.
    崔黎明.1994.微地貌方法在宁夏活动断裂研究中的应用,中国活动断层研究,北京:地震出版社,296~302.
    侯康明,韩有珍,张守杰.1995.断层崖形成年代的数学模拟计算[J].西北地震学报,17(2):68~76.
    尤惠川,邓起东,冉勇康.2004.断层崖演化与古地震研究[J].地震地质,26(1):33~45.
    中屠炳明,宋方敏,曹忠权,等.1991.秦岭北麓晚第四纪断层陡坎的初步研究[J].地震地质,13(1):15~25.
    石树中,柏美祥.1997.用地震断层陡坎的形态方程确定古地震事件的年代.内陆地震,11(2):148~153.
    Armijo R.,Tapponnier P.,Mercier J.L.,et a1.,1986.Quaternary extension in southern Tibet:Field observations and tectonic implications[J].Journal of Geophysical Research,91:13803~13872.
    Eric Kirby,Nathan Harkins,Erqi Wang,et al.,2007.Slip rate gradients along the eastern Kunlun fault[J].Tectonics,26 (2):TC2010.1~TC2010.16.
    Phinney R.A.,Silver P.,Lerner-Lam A .1993.A National programe for Research in Contionatal Dynamics[M].(CD/2020).
    J. Van der Woerd,Ryerson F.J,Tapponnier P.et a1.,1998.Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun Fault(Qinghai,China) [J].Geology,26(8):695~698.
    J. Van der Woerd,Ryerson F J,Tapponnier~P et al.,2000.Uniform slip-rate along the Kunlun Fault : Implications for seismic behavior and large-scale tectonics[J].Geophysical Research Letters,27(16):2353~2356.
    Molnar P.,Tapponnier P.1975.Cenozoic tectonics of Asia:Effects of a continental collision.Science,189:419~426.
    He Wengui,Xiong Zhen,Yuan Daoyang,et al.,2006.A Preliminary Study of Palaeo-earthquakes on the Maqu Fault of East Kunlun Fault Zone[J].Earthquake Research in China,20(4):361~370.
    He Honglin,Yasutaka Ikeda,Song Fangmin,et al.,2002.Late Quaternary Slip Rate of the Xiaojiang Fault And Its Implication.Seismology and Geology,24(1):14~26.
    Alexander L.Densmore,Michael A.Ellis,Yong Li,et al.,2007.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J].Tectonics,26 (4):TC4005.1~TC4005.17.
    McCalpin J.P.1996.Trench technology[A].The Workshop of Paleoseismology on 30th IGC,Beijing[C].86~111.
    Hans Rudolf Bork,Yong Li,Yongtao Zhao,et al.,2001.Land Use Changes and Gully Development in the Upper Yangtze River Basin,SW-China[J].Journal of Mountain Science,19(2):97~103.
    Engelder J.T.1974.Cataclasis and the generation of fault gouge[J].Geol Soci Am Bull,85(10):1515~1522.
    Wallace R.E.,Morris H.T.1979.Characteristic of faults and shear zone as seen in mine at depths as much as 2.5km below the surface[A],U.S. Geological Survey open-file Report[C],79~100.
    Teufel,L.W.1981.Pore volume changes during frictional sliding of simulated faults[A],Mechanical Behavior of Crustal Rocks[M].Geophysical Monography 24:135~146.
    Robertson E.C.1982.Continuous formation of gouge and breccia during fault displacement[A] . In : Goodman R E et al . (eds) . Issues in rock mechanics.Proceedings of the 23 d Symposium on Rock Mechanics.
    Robertson E.C.1983.Relationship of fault displacement to gouge and breccia thickness[J].Miner Engr,35:1426~1432.
    Wallace R.E.,Morris H.T.1986.Characteristics of faults and shear zones in deep mines[J].Pageoph,24(1):107~125.
    Andrews D.J.,Hanks T.C.1985.Scarp degraded by linear diffusion:Inverse solution for age(J].Journal Geophysical Research,90(B12):10193~10208.
    Bucknam R.G.,Anderson R.E.1979.Ages of fault scarp from a scarp height-slope-angle relationship[J].Geology,7(1):11~14.
    Garson M.A.,Kirby M J.1972.Hillslope Form and Process[M].Cambridge University Press.475pp.
    Culling W.E.H.1960.An alytical theory of erosion[J].Jour Geol,68:336-344.
    Culling W.E.H.1965.Theory of erosion on soil-covered slopes [J].Jour Geol,73:230~254.
    Hanks T.C.,Bucknam R.C.,Lajoie K.R.,et a1.,1984.Modification of wave-out and faulting-controlled landforms[J].Journal Geophysical Res,89(Bl7):5771~5791.
    Schwartz D.P.1982.Implications to fault behavior of paleo-seismological investigations along the Southern Wasatch Fault gone,Utah[J].AGU.63(18). Wa11ace R.E.1977.Profi1es and ages of young fault scarps,north-central Nevada[J].Bull Geol Soc Am,88:1267~1278.
    Wa11ace R.E.1978.Geometry and rates of change of fault-generated range fronts,north-central Nevada[J].U S Geol Surv Jour of Res.6:637~649.
    Wa11ace R.E.1980.Degradation of the Hebgen lake fault scarps of 1959[J].Geology,8(5):225~229.
    Zhang Buchun,Liao Yuhua,Guo Shunmin,et a1.,1986.Fault scarp related to the 1739 earthquake and seismicity of Yinchuan graben,Ninxia Huizu Ziziqu,China[J].Bull Seis Soc Am,76(5):1253~1284.
    Jackson R.E.,Dunn D.E.1974.Experiment sliding friction and cataclasis of foliated rocks[J].Int J Rock Mech Min Sci Geomech Abstr,11:235~249.
    Hurford A.J., Green P. F.1983.The Zeta age calibration of fission track dating[J].Isot Geosci,(1):285~317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700