用户名: 密码: 验证码:
青藏高原东缘、东北缘典型地区晚新生代地貌过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,高原山脉隆升机制、造山带演化模式的研究关注地壳演化过程的地表过程证据,地表过程的研究也由定性化转变到半定量-定量化阶段。研究切入点是地壳形变、气候演化等的标志性载体,即地表地形地貌。另外,造山带系统内部水系发育的模式及其对构造隆升、气候变化的响应和反馈作用一直以来是构造地貌和河流地貌研究的热点。同时,数字高程模型(DEM)空间分析技术已被广泛地应用于定量地貌研究,如基本地形分析和古地形面(Paleo-surface)恢复重建以及剥蚀量的定量化研究。
     青藏高原是印度板块与欧亚板块新生代以来的汇聚碰撞的结果,同高原主体平坦的地形相比,高原东缘、东北缘的地貌表现出强烈的陡变和突变性特征,而相对于青藏高原的南北边界而言,又具有较为弥散和不规则等特征。论文在讨论了青藏高原东缘以及东北缘现今差异地貌特征的基础上,重点选择青藏高原东缘岷江水系流域、青藏高原东北缘贵德—循化盆地地区为分析对象,通过系统提取了岷江水系流域相关流域地貌参数(如亚流域盆地面积,周长,沟谷总长度和分支比)和河流纵剖面形态等定量参数,以及贵德—循化盆地地区更新世古地貌形态和剥蚀量的分布形式等研究,最终得到如下结论和认识:
     (1) 青藏高原东缘与东北缘的地貌具有显著的差异性。在高原东缘地区,龙门山—岷山构造带与四川盆地之间构成显著的地形陡变带,造山带内部表现为高坡度,高地形起伏,岷江和嘉陵江两大基岩水系侵蚀下切作用明显,沟谷地形波长小。而青藏高原东北缘地区主要表现为地形高程呈逐渐递减的趋势,没有明显的地形陡变边界,总体为低坡度,低地形起伏,剖面反映地形波长较高原东缘地区变长,地貌上以宽缓的新生代盆地广泛分布为典型特征。
     (2) 岷江亚流域盆地典型参数特征指示了岷江水系两侧晚新生代构造活动的差异性,反映并印证了岷江断裂东西两侧晚新生代以来的不均衡抬升。晚新生代以来岷山构造带的快速隆起以及龙门山构造带内部差异活动是造成岷江水系东侧各支流发育程度低,东西两侧亚流域差异地貌特征形成的主要原因。岷江流域盆地内部区域地形起伏发育特征表明,岷山—龙门山构造带与四川盆地之间的差异隆升导致了持续递增的河流势能差,因此也就形成现今由北向南地形起伏逐渐增大的特征。微观来看,局部盆地地区后期地表剥蚀与沉积过程“削高填低”的作用控制了整个流域盆地内部局部低起伏地貌特征。
     (3) 通过对青藏高原东北缘贵德—循化盆地地区更新世古地貌形态的恢复以及剥蚀量定量分析研究,详细总结归纳了关键技术及方法,并建立了相关工作流程。
     (4) 以恢复的古地貌面为基础,对宏观尺度的古地貌形态(盆岭格局)和剥蚀量分布以及微观尺度典型地区(如湟水河)进行了分析和讨论,特别是有关湟水河河道变迁和河流下切(剥蚀)量分析为高原东北缘的垂向构造变形提供了一定的资料补充。湟水河河道更新世以来向南变迁可以作为课题组关于青藏高原东北缘第三纪时期隆升扩展以及变形过程研究(早第三纪西宁期西秦岭隆升—新第三纪贵德期祁连山隆升—更新世祁连山再次持续隆升)有力的支持。以剥蚀量为基础,本文得到青藏高原东北缘更新世以来的隆升速率可能比高原主体地区相对要小的认识。
In recent years, researches on plateau uplift and orogenic evolvement focused on the evidence of surfacial process. All the studies have been becoming semi-quantitive and quantitive. And the key target of these studies is the carrier, i.e. landform, which recorded the crustal deformation and climate changes during geological time. In addition, the river drainage patterns and their implications for the plateau uplift and climate changing also have attracted more and more attentions than ever. Meanwhile, spatial analysis and applications of digital elevation model (DEM) were widely utilized in quantitive geomorphological researches, such as topographic analysis, paleosurface reconstruction and incision (erosion) analysis.Cenozoic India-Asia collision makes the higher and inboard flat Tibetan Plateau. But unlike the northern and southern margins, the eastern and northeastern ones are very disperse and irregular. Based on the discussions on different geomorphic characteristics between the eastern and northeastern margins, the Minjiang drainage basin (east Tibetan Plateau) and the Guide-Xunhua Basins (northeast Tibetan Plateau) are focused for this study. According to the extraction and processing of correlative geomorphic parameters (such as subbasin area, perimeter, channel length and bifurcation ratio) and longitudinal profile within the Minjiang drainage basin, and Pleistocene paleosurface reconstruction and incision pattern analysis, this paper draws the following ultimate conclusions:(1) Obviously different geomorphic features are determined between eastern and northeastern plateau margins. In eastern margin, the Longmenshan-Minshan tectonic belt and Sichuan Basin together build up the typical escarpment and higher slope and relief within these orogens are also remarkable. And elevation profiles across the orogenic ranges indicate shorter wavelength and higher frequency of the elevation variability. Comparably, the geomorphic features of northeastern margin show lower slope and relief, and longer wavelength and lower altitude changing frequency. Cenozoic basins widely dominate this geomorphic unit.(2) Typical drainage parameters determined within the Minjiang drainage basin
    are indicative for the different late Cenozoic tectonic activities between two flanks of the Minjiang River, and implying the differential late Cenozoic uplift history between two plates of the Minjiang Fault. The contrary geomorphic characteristics of eastern subbasins and western ones result from quick uplift of the Minshan and inner Longmenshan. Additionally, the macroscale regular variety and microscale anomaly of local relief within the Minjiang drainage basin are indicating the continuous increasing fluvial potential energy resulted from Minshan and Longmenshan uplift versus the Sichuan Basin, and delivering and discharging of sedimentation within local basins that build low relief landform.(3) Based on the Pleistocene paleosurface reconstruction and incision history analysis, some key techniques and methods are well documented and summarized, and correlative processing procedures are constructed.(4) According to the analysis on paleosurface, macroscale landform pattern (such as basin and range distribution) and microscale typical area (such as Huangshuihe river channel change) are analyzed and discussed, especially the studies on Huangshuihe river channel change and river incision provide new insights for the uplift and growth history of the northeastern margin of the Tibetan Plateau. Channel change of the Huangshuihe river might be indicative of the late Pleistocene uplift of the Qilian ranges. And this paper also comes to some cognition of lower uplift rate within Guide-Xunhua Basin comparing with the inner plateau.
引文
[1] Abbott L D, Silver E A, Anderson R S, et al., Measurement of tectonic surface uplift rate in a young collisional mountain belt. Nature, 1997,385:501~507.
    [2] Adiyaman (?), Chorowicz J, Kse O. Relationships between volcanic patterns and neotectonics in Eastern Anatolia from analysis of satellite images and DEM. Journal of Volcanology and Geothermal Research, 1998,85:17-32
    [3] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian Monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times. Nature, 2001, 411:62-66
    [4] Argand E. La tectonique de I' Asie. International geological congress, 13~(th), Brussels, Reports. 1924, 1:170~372
    [5] Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia. Geophysical Research Letters, 1993,20:895~898
    [6] Barazangi M, Ni J. Velocities and propagation characteristics of Pn beneath the Himalayan arc and Tibet plateau: possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology, 1982,10:179~185
    [7] Bielecki A E, Mueller K J. Origin of terraced hillslopes on active folds in the southern San Joaquin Valley, California. Geomorphology, 2002,42:131-152
    [8] Bishop M P, Shroder J F, Sloan V F, et al. Remote sensing and GIS technology for studying lithospheric processes in a mountain environment. Geocarto International, 1998,13(4):75-87
    [9] Burbank D W. Characteristic size of relief. Nature, 1992,359:483~484
    [10] Burbank D W, Anderson R S. Tectonic Geomorphology, Massachusetts: Blackwell Science, 2002,1~274
    [11] Burchfiel B C, Chen Z, Liu Y et al. Tectonics of the Longmen Shan and adjacent regions. International Geological Review, 1995,37:661~735
    [12] Chen S F, Wilson C J L, Deng Q D et al. Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen Mountains, northeastern Tibetan Plateau. Journal of Geophysical Research. 1994, 99(12):24025~24038
    [13] Chen S F, Wilson C J L. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern margin of the Tibetan Plateau. Journal of Structural Geology, 1996,18(4):413~430
    [14] Chen W P, Molnar P. Constrains on the seismic wave velocity structure beneath the Tibetan Plateau and their tectonic implications. Journal of Geophysical Research, 1981,86:5937~5962
    [15] Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 2000, 28(8):703~706
    [16] Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift, tectonics, and erosion of Eastern Tibet from large-scale drainage patterns. Tectonics, 2004,23,TC1006, doi:10.1029/ 2002TC001402
    [17] Coleman M. Evidence for Tibetan uplift before 14 Ma ago from a new minimum age for
    east-west extension. Nature, 1995,374:49~52
    [18] Deffontaines B, Lee J C, Angelier J, et al. New geomorphic data on the active Taiwan orogen: A multisource approach. Journal of Geophysical Research, 1994, 99(B10):20243~ 20266
    [19] Densmore A L, Li Yong, Ellis M A, et al. Active tectonic and erosional unloading at the eastern margin of the Tibetan Plateau. Journal of Mountain Sciences, 2005,2(2):146~154
    [20] Dewey J F, Burke K C A. Variscan and Precambrian basement reactivation: Products of continental collision. Journal of Geology, 1973,81:683~692
    [21] Dhont D., Chorowicz J, Yucrur T, et al. Polyphased block tectonics along the North Anatolian Fault in the Tosya basin area(Turkey). Tectonophysics, 1998,299:213-227
    [22] England P, Houseman G A. Finite strain calculations of continental deformation: Comparison with the India-Asia collision. Journal of Geophysical Research, 1986,91:3664~3667
    [23] England P, Molnar P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990,18:1173-1177
    [24] England P, Molnar P. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 1990,344:140-142
    [25] England P, Molnar P. Active deformation of Asia: From kinematics to dynamatics. Science, 1997,278:647-650
    [26] ESRI. Using ArcGIS Spatial Analyst. 2003,1-232
    [27] Fang X M, Garzione C, Van der Voo R, et al. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 2003,210:545-560
    [28] Fang X M, Yan M, Van der Voo R, et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin,Qinghai Province, China. Geological Society of American Bulletin, 2005, 117(9-10):1208~1225
    [29] Favalli M, Innocenti F, Pareschi M T, et al. The DEM of Mt. Etna: geomorphological and structural implications. Geodinamica Acata, 1999,12(5):279-290
    [30] Fielding E J, Tsacks B, Barazangi M et al. How flat is Tibet? Geology, 1994, 22:163-167
    [31] Fielding E J. Morphotectonic evolution of the Himalayas and Tibetan Plateau. In Summerfield M.A. ed. Geomorphology and Global Tectonics. London: John Wiley & Sons Press, Ltd. 2000. 201-222
    [32] Formento-Trigilio M L, Burbank D W, Andrew N, et al. River response to an active fold-thrust belt in a convergent margin setting, North Island, New Zealand. Geomorphology, 2002,49:125-152
    [33] Fu B H, Awata Y S, Du J G et al. Late Quaternary systematic stream offsets caused by repeated large seismic events along the Kunlun fault, northern Tibet. Geomorphology, 2005,71(3~4):278~292
    [34] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science, 1992,255:1663-1670
    [35] Holt W E, Chamot-Rooke N, Le Pichon, et al. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning Systerm observations. Journal of Geophysical Research, 2000,105(B8): 19185-19209
    [36] International Commission on Stratigraphy (ICS). International Stratigraphic Chart. 2004.
    [37] Johansson M. Analysis of digital elevation data for palaeosurfaces in southwestern Sweden. Geomorphology, 1999, 26: 279-295
    [38] Kidd W S F, Molnar P. Quaternary and active faulting observed on the 1985 Academia Sinica-Royal Society geotraverse of Tibet. Philosophy Transaction of Royal Society of London, Ser. A, 1988,327:337-363
    [39] Kidner D B, Smith D H. Advances in the data compression of digital elevation models. Computers & Geosciences, 2003,29:985-1002
    [40] King R W, Shen F, Burchfiel B C et al. Geodetic measurement of crustal motion in southwest China. Geology, 1997,25:179-182
    [41] Kirby E, Reiners P W, Krol M A et al. Late Cenozoic evolution of eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics, 2002, 21(1): 1-20
    [42] Kirby E, Whipple K X , Burchfiel B C et al. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau. Geological Society of American Bulletin, 2000,112(3):375~393
    [43] Kirby E, Whipple K, Tang W et al. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research, 2003, 108(B4):2217-2223
    [44] Kirby E, Whipple K. Quantifying differential rock-uplift rates via stream profile analysis. Geology, 2001, 29(5):415~418
    [45] Kuhni A, Pfiffher O A. The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250-m DEM. Geomorphology, 2001,41:285-307
    [46] Lane S N, Westaway R M, Hicks D M. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms, 2003,28:249-271
    [47] Lin A, Yang Z, Sun Z et al. How and when did the Yellow River develop its square bend? Geology, 2001, 29(10): 951-954
    [48] Mattauer M. Intracontinental subduction, crust mantle decollement and crustal stacking wedge in the Himalaya and other collision belts. Journal of Geological Society of London, Special publication, 1986,19:37-50
    [49] Mccullagh P. Modem Concepts in Geomorphology, London: Oxford Uninversity Press. 1978.1-128
    [50] McMillan M E, Paul H L, Wing S L. History and causes of post-Laramide relief in the Rocky
     Mountain orogenic plateau. Geological Society of American Bulletin, 2006, 118(3-4):393~405
    [51] McMillan M E. Basin Fill, Erosion Surface and Tilted Markers: Evidence of Late Cenozoic Tectonic Uplift of the Rocky Mountain Orogenic Plateau. Doctor Thesis. University of Wyoming, 2003:1-118
    [52] Metivier J, Armijo R, Tapponnier P. Northeastward growth of the Tibetan Plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi corridor basin, China. Tectonics, 1998,17(6):823~842
    [53] Meyer B, Tapponnier P, Bourjot L, et al. Crustal thicking in Gansu-Qinghai, lithospheric matle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 1998,135:1-47
    [54] Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibet plateau, and the Indian Monsoon. Review of Geophisics, 1993,31:357-396
    [55] Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature, 1990,346:29-34
    [56] Molnar P, Lyon-Caen H. Some simple physical aspects of the support, structure, and evolution of mountain belts. Geological society of America, Special paper, 1988, 218:179-207
    [57] Molnar P, Tapponnier P. Active tectonics of Tibet. Journal of Geophysical Research, 1978, 83(B11):5277~5384
    [58] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effect of a continental collision. Science, 1975, 189:419-426
    [59] Mulch A, Chamberlain C P. The rise and growth of Tibet. Nature, 2006,439(9):670~671
    [60] Ni J, Barazangi M. Seismotectonics of the Himalayan collision zone: Geometry of underthrusting of Indian plate beneath the Himalaya. Journal of Geophysical Research, 1984,89:1147-1164
    [61] Ni J, York J E. Cenozoic extension tectonics of the Tibetan plateau. Journal of Geophysical Research, 1978,83:5277-5384
    [62] Paillou P, Gelautz M. Relief reconstruction from SAR stereo pairs: the "optimal gradient" matching method. IEEE transactions on geoscience and remote sensing, 1999,37(4):2099-2107
    [63] Petlzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts and basins during the India-Asia collision: an experimental approach. Journal of Geophysical Research, 1988, 93(B12): 15085-15117
    [64] Powell C M. Continental underplating model for the rise of the Tibetan plateau. Earth Planet Science Letters, 1986,81:79-94
    [65] Rabus B, Eineder M, Roth A et al. The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry &
     Remote Sensing, 2003, 57: 241-262
    [66] Rabus B, Eineder M, Roth A, et al. The shuttle radar topography mission - a new class of digital elevation models acquired by spacebome radar. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57: 241-262
    [67] Raymo M E, Ruddiman,W F. Tectonic forcing of late Cenozoic climate. Nature, 1992,359:117-122
    [68] Rodriguez F, Maire E, Courjault-Rade P, et al. The Black Top Hat function applied to a DEM: A tool to estimate recent incision in a mountainous watershed (Estibere Watershed, Central Pyrenees). Geophysical Research Letters, 2002, 29(6): 91-94
    [69] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006,439(9):677~681
    [70] Royden L H, Burchfiel B C, King R W et al. Surface deformation and lower crustal flow in Eastern Tibet: Science, 1997,276:788-79
    [71] Small E E, Anderson R S. Geomorphically driven late Cenozoic rock uplift in the Sierra Nevada, California. Science, 1995,270: 277-280
    [72] Small E E, Anderson R S. Pleistocene relief production in Laramide mountain ranges, western United States. Geology, 1998, 26: 123-126
    [73] Strahler A N. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of American Bulletin, 1952, 63:1117-1142
    [74] Summerfield M A. Geomorphology and Global Tectonics. London: John Wiley &Sons, Ltd. Press, 2000, 1-367
    [75] Szekely B, Karatson D. DEM-based morphometry as a tool for reconstructing primary volcanic landforms: examples from the Borzsony Mountains, Hungary. Geomorphology, 2004, 63: 25-37
    [76] Szekely B. On the surface of the Eastern Alps-a DEM study. Germany: Universitat Tubingen Press, 2001, 1-157.
    [77] Tapponnier P, Lacassin R, Leloup P H, et al. The Ailao shan-Red river metamorphic best: Tertiary left-lateral shear between Indochina and South China. Nature, 1990, 343:431-437
    [78] Tapponnier P, Molnar P. Active faulting and tectonics in China. Journal of Geophysical Research, 1977,82(20):2905~2930
    [79] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics. Nature, 1976,264(5584):319~324
    [80] Tapponnier P, Peltzer G, LeDain A Y, et al. Propagating extrusion tectonic in Asia: New insights from simple experiments with plasticine. Geology, 1982,10:611-616
    [81] Tapponnier P, Xu Z Q, Roger E, et al. Oblique stepwise rise and growth of the Tibetan Plateau. Science, 2001, 294(23): 1671-1677
    [82] United States Geological Survey. Shuttle Radar Topography Mission documentation: SRTM Topo. http://edcftp.cr.usgs.gov/pub/data/srtm/Documentation/SRTMJTopo.txt. 2003
    [83] Wallis S, Tsujimori T, Aoya M et al. Cenozoic and Mesozoic metamorphism in the Longmenshan orogen: implications for geodynamic models of eastern Tibet. Geology, 2003, 31(9):745~748
    [84] Whipple K X, Hankcock G S, Anderson R S. River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Geological Society of American Bulletin, 2000, 112(3):490~503
    [85] Whipple K X. Bedrock rivers and the geomorphology of active orogens. Annual Reviews of Earth Planetary Sciences. 2004,32:151~185
    [86] Zhang P, Burchfiel B C, Molnar P, et al. Late Cenozoic tectonic evolution of southern Ningxia, northeastern margin of Tibetan Plateau. Geological Society of American Bulletin, 1990, 102:1484~1498
    [87] Zhang P, Molnar P, Burehfiel B C, et al. Rate, amount, and style of late Cenozoic deformation of southern Ningxia, northeastem margin of Tibetan Plateau. Tectonics, 1991,10:1110~1129
    [88] Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001,410:892~897
    [89] Zhang P, Shen Z, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning systerm data. Geology, 2004,32(9):809~812
    [90] Zhang Y Q, Vergely P, Mercier J. Active faulting in and along the Qinling Range (China) inferred from sPoT imagery analysis and extrusion tectonics of South China. Teetonophysics, 1995,243(1~2):69~95
    [91] Zhao W J, Dave A. Injection of Indian crust into Tibetan low crust: A temperature-dependent viscous model. Tectonics, 1987,6(4):505~514
    [92] Zhao W J, Morgan W J. Uplift of the Tibetan Plateau. Tectonics, 1985,4(4):359~369
    [93] Zomer R, Ustin S, Ives J. Using satellite remote sensing for DEM extraction in complex mountainous terrain: landscape analysis of Makalu Barun National Park of eastern Nepal. Intemational Journal of Remote Sensing, 2002,23(1): 125-143
    [94] http://www.gongyi.gov.cn/infobuild/new/content.asp?id=929&id_type=135
    [95] 常承法,郑锡澜.中国西藏南部珠穆朗玛地区地质构造特征及其青藏高原东西向诸山系形成的探讨.中国科学(D辑),1973,2:190~201
    [96] 陈社发,邓起东,赵小麟,等.龙门山及其邻区的构造和地震活动性及动力学.地震地质,1994,16(4):389~403
    [97] 陈社发,邓起东,赵小麟,等.龙门山中段推覆构造带及相关构造的演化历史和变形机制(二).地震地质,1994,16(4):413~421
    [98] 陈社发,邓起东,赵小麟,等.龙门山中段推覆构造带及相关构造的演化历史和变形机制(一).地震地质,1994,16(4):404~412
    [99] 程绍平,邓起东,李传友,等.流水下切的动力学机制、物理侵蚀过程和影响因素:评述 和展望.第四纪研究,2004,24(4):421~429
    [100] 邓起东,张培震,冉勇康,等.中国活动构造基本特征.中国科学(D辑),2002,32(12):1020~1030
    [101] 丁林,钟大赉,潘裕生,等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,1995,40(16):1479~1500
    [102] 樊光明,张智勇,顾延生,等.祁连山东南缘第四纪以来的隆升作用及动力学分析.地球科学—中国地质大学学报,2003,28(4):389~394
    [103] 方小敏,宋春晖,高军平,等.青藏高原东北缘晚新生代哺乳动物化石的磁性地层学.科学通报,2003,47(23):1824~1828
    [104] 郭安林,张国伟,译.构造地质学和大地构造学的新航程.西北大学地质学系,2003,1-56
    [105] 国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带.北京:地震出版社.1990
    [106] 黄长生,李长安,唐小明,等.湟水河流域不对称地貌与青藏高原—祁连山隆升.江西地质.1998,12(4):251~256
    [107] 李春峰,贺群禄,赵国光.东昆仑活动断裂带东段全新世滑动速率研究.地震地质,2004,26(4):676~687
    [108] 李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑),1996,26:316~322
    [109] 李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381~391
    [110] 李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569~1574
    [111] 李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式的探讨.中国科学(D辑),1979,6:608~616
    [112] 李廷栋.青藏高原隆升的过程机制.地球学报,1995,1:1~9
    [113] 李勇,Densmore A L,周荣军,等.青藏高原东缘龙门山晚新生代剥蚀厚度与弹性挠曲模拟.地质学报,2005,79(5):608~615
    [114] 李勇,曹叔尤,周荣军,等.晚新生代岷江下蚀速率及其对青藏高原东缘山脉隆升机制和形成时限的定量约束.地质学报,2005,79(1):28~37
    [115] 李勇,侯中健,司光影,等.青藏高原东缘新生代构造层序与构造事件.中国地质,2002,29(1):30~36
    [116] 李勇,孙爱珍.龙门山造山带构造地层学研究.地层学杂志,2000,24(3):201~206
    [117] 李勇,曾允孚.龙门山前陆盆地充填序列.成都理工学院学报,1994,21(3):46~55
    [118] 李勇,周荣军,Densmore A L,等.青藏高原东缘龙门山晚新生代走滑—逆冲作用的地貌标志.第四纪研究,2006,26(1):40~51
    [119] 刘百篪.青藏高原的新生代重要地质事件与构造演化.见:中国地震学研究进展-纪念谢毓寿教授八十寿辰.北京:地震出版社.1998,299~307
    [120] 刘百篪,刘小凤,袁道阳,等.黄河中上游阶地对青藏高原东北部第四纪构造活动的反映.地震地质,2003,25(1):133~145
    [121] 刘光勋.东昆仑活动断裂带及其强震活动.中国地震,1996,12(2):119~126
    [122] 刘静,丁林,曾令森,等.青藏高原典型地区的地貌量化分析—兼对高原“夷平面”的讨论.地学前缘.2006.待刊.
    [123] 刘少峰,王陶,张会平,等.数字高程模型在地表过程研究中的应用.地学前缘.2005,12(1):303-309
    [124] 鹿化煜,安芷生,王晓勇,等.最近14 Ma青藏高原东北缘阶段性隆升的地貌证据.中国科学(D辑),2004,34(9):855~864
    [125] 马寅生,施炜,张岳桥,等.东昆仑活动断裂带玛曲段活动特征及其东延.地质通报,2005,24(1):30~35
    [126] 聂军胜,宋春晖,方小敏,等.贵德盆地黄河出现的古地磁年代及其意义.海洋地质与第四纪地质,2003,23(2):59~64
    [127] 潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论.兰州大学学报(自然科学版),2000,36(3):100~111
    [128] 潘保田.贵德盆地地貌演化与黄河上游发育研究.干旱区地理,1994,17(3):43~49
    [129] 潘保田.黄河发育与青藏高原隆起问题.兰州大学.博士论文,1991
    [130] 青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带.北京:地震出版社.1999
    [131] 施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999,54(1):10~21
    [132] 施雅风,刘东生.希夏邦马峰地区科学考察报告.科学通报,1964,10:928~938
    [133] 四川省地质矿产局.1:200000漳腊幅区域地质调查报告.1978
    [134] 四川省地质矿产局.1:50000弓嘎岭幅、黄胜关幅、漳腊幅区域地质调查报告.1990
    [135] 宋春晖,方小敏,高军平,等.青藏高原东北部贵德盆地新生代沉积演化与构造隆升.沉积学报,2001,19(4):498~506
    [136] 宋春晖,方小敏,李吉均,等.青藏高原东北部贵德盆地上新世沉积环境分析及其意义.第四纪研究,2003,23(1):92~102
    [137] 汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究—以在黄土丘陵沟壑区的实验为例.水土保持通报,2001,21(1):53~56
    [138] 唐荣昌,文德华,黄祖智,等.松潘—龙门山地区主要活动断裂带第四纪活动特征.中国地震,1991,7(3):64~71
    [139] 唐文清,刘宇平,陈智梁,等.岷山隆起边界断裂构造活动初步研究.沉积与特提斯地 质,2004,24(4):31~34
    [140] 王二七,张旗.青海拉脊山:一个多阶段抬升的构造窗.地质科学,2000,35(4):493~500
    [141] 向宏发,虢顺民,张秉良,等.六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征.地震地质,1998,20(4):321~327
    [142] 徐仁,陶君容,孙湘君,等.希夏邦马峰高山栎化石层的发现及其植物学和地质学上的意义.植物学报,1973,15(1):103~119
    [143] 许志琴,侯立玮,王宗秀,等.中国松潘-甘孜造山带的造山过程.北京:地质出版社.1992
    [144] 许志琴,杨经绥,姜枚,等.大陆俯冲及青藏高原周缘造山带的崛起.地学前缘,1999,6(3):139~152
    [145] 薛祥熙,李文厚,刘林玉.渭河北迁与秦岭抬升.西北大学学报(自然科学版),2002,32(5):451~454
    [146] 杨达源,吴胜光,王云飞.黄河上游的阶地与水系变迁.地理科学,1996,16(2)137~143
    [147] 杨农,张岳桥,孟晖,等.川西高原岷江上游河流阶地初步研究.地质力学学报,2003,9(4):363~370
    [148] 袁道阳,张培震,刘百篪,等.青藏高原东北缘晚第四纪活动构造的几何图像与构造转换.地质学报,2003,78(2):270~278
    [149] 袁道阳.青藏高原东北缘晚新生代以来的构造变形特征与时空演化.中国地震局地质研究所.博士论文,2003
    [150] 袁道阳,张培震,刘百篪,等.青藏高原东北缘晚第四纪活动构造的几何图像与构造转换.地质学报;2004,78(2):270~278
    [151] 张会平.岷江断裂带新生代构造活动特征研究.中国地质科学院硕士学位论文.2003
    [152] 张会平,刘少峰.利用DEM进行地形高程剖面分析的新方法.地学前缘,2004,11(3):326
    [153] 张培震,王敏,甘卫军,等.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约.地学前缘,2003,10(特刊):81~92
    [154] 张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场.地学前缘,2002,9(2):442~450
    [155] 张培震,郑德文,尹功明,等.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究,2006,26(1):5~13
    [156] 张勇.黄土高原地面坡谱研究.西北大学:硕士论文.2003
    [157] 张岳桥,马寅生,杨农,等.西秦岭地区东昆仑-秦岭断裂系晚新生代左旋走滑历史及其向东扩展.地球学报,2005,26(1):1~8
    [158] 张岳桥,杨农,陈文,等.中国东西部地貌边界带晚新生代构造变形历史与青藏高原隆升过程初步研究.地学前缘,2003,10(4):599~612
    [159] 张岳桥,杨农,孟晖.岷江上游深切河谷构造地貌特征及其对川西高原隆升的响应.成 都理工大学学报(自然科学版),2005,4(2):331~339
    [160] 赵国光.青藏高原北部的第四纪断层活动.中国地震,1996,12(2):107~118
    [161] 赵小麟,邓起东,陈社发.龙门山逆断裂带中段的构造地貌学研究.地震地质,1994,16(4):422~428
    [162] 赵小麟,邓起东,陈社发.岷山隆起的构造地貌学研究.地震地质,1994,16(4):429~439
    [163] 郑德文.青藏高原东北缘中新生代FT、40Ar/39Ar热年代学研究.中国地震局地质研究所:博士论文.2001.
    [164] 郑德文,张培震,万景林,等.青藏高原东北缘晚新生代构造变形的时序—临夏盆地碎屑颗粒磷灰石裂变径迹记录.中国科学(D辑),2003,33(Suppl.):190~198
    [165] 钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑),1996,26:289~295
    [166] 周荣军,蒲晓虹,何玉林,等.四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系.地震地质,2000,22(3):285~294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700