用户名: 密码: 验证码:
红壤坡面与黄土坡面土壤侵蚀过程对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原是我国土壤侵蚀最严重的地区,红壤丘陵地区的土壤侵蚀严重程度仅次于黄土高原。目前黄土区的坡面土壤侵蚀过程与机理研究较深入,而红壤丘陵区坡面土壤侵蚀过程与机理研究较薄弱,且相同降雨和地形条件下红壤和黄土坡面土壤侵蚀过程的对比研究还鲜见报道。本文通过室内人工模拟降雨试验,对比研究相同降雨和地形条件下红壤和黄土坡面土壤侵蚀过程的差异性,研究结果将加深对坡面土壤侵蚀过程的理解,并为红壤丘陵区土壤侵蚀防治提供理论支持。主要研究结论如下:
     1)红壤坡面和黄土坡面产流率随着坡度的增加基本呈减小趋势,随雨强的增大而增大,雨强对红壤坡面和黄土坡面产流率的影响一直处于主导地位,坡度对产流率的影响在很大程度上被雨强所掩盖;相同坡度和降雨条件下,红壤坡面平均产流率大于黄土坡面平均产流率。除雨强100mm/h坡度20°试验条件外,其余试验条件下红壤坡面总径流量均大于黄土坡面,在1.02~2.53倍之间。红壤坡面和黄土坡面径流量与雨强和坡度的关系呈线性相关,红壤坡面径流量与雨强和坡度的拟合方程为:R1=-18.84+4.90I-2.75S,R2=0.95;黄土坡面径流量与雨强和坡度的拟合方程为:R2=-218.83+6.52I-3.45S,R2=0.83。
     2)相同降雨强度下红壤坡面和黄土坡面侵蚀产沙率都随坡度的增加而增大,红壤坡面侵蚀产沙在50mm/h雨强下,在20°附近存在临界坡度,黄土坡面侵蚀产沙在75和100mm/h雨强下,在25°附近存在临界坡度;红壤坡面和黄土坡面侵蚀产沙率均随降雨强度的增加而增大。红壤坡面侵蚀以片蚀为主,在5°和25°时,主要受雨强影响,10°到20°之间雨强和坡度共同对红壤坡面侵蚀产生作用;黄土坡面侵蚀过程可明显分为三个阶段,在5°到20°之间,主要受雨强影响,20°到25°之间雨强和坡度共同对黄土坡面侵蚀产生作用,30°时,雨强对坡面侵蚀产沙的作用占主导地位。不同雨强和坡度的组合,对红壤坡面和黄土坡面侵蚀产沙的影响不同,雨强50和100 mm/h下、坡度小于10°和雨强为75 mm/h、坡度小于20°时,雨强和坡度对红壤坡面侵蚀的综合影响大于对黄土坡面,雨强为50和100mm/h、坡度大于10°和雨强为75mm/h、坡度大于20°时,情况正好相反;雨强为75 mm/h、坡度5°时红壤坡面与黄土坡面侵蚀量差异最大,红壤坡面侵蚀量是黄土坡面的11.5倍。红壤坡面和黄土坡面侵蚀量与雨强和坡度的关系呈线性相关,红壤坡面侵蚀量与雨强和坡度的拟合方程为:Ms1=-35.24+0.58I+0.798S,R2=0.87;黄土坡面侵蚀量与雨强和坡度的拟合方程为:Ms2=-72.03+0.772I+2.463S,R2=0.73。
     3)红壤坡面和黄土坡面产流时间都是随坡度和雨强的增大而缩短。在相同坡度和雨强条件下,红壤坡面产流时间早于黄土坡面,且在雨强和坡度较小时,两者产流时间差异较大;随雨强和坡度的增加,其差异性减小。
     4)细沟侵蚀对土壤坡面侵蚀有重要贡献,红壤坡面和黄土坡面细沟侵蚀量与总侵蚀量具有同步性;细沟侵蚀量占坡面总侵蚀量的比例随地面坡度的增加而增大。在试验设计条件下,红壤坡面细沟侵蚀量占坡面总侵蚀量的平均值为14.7%~80.7%,黄土坡面细沟侵蚀量占坡面总侵蚀量的10.0%~88.7%。
The Loess Plateau is one of the most severe soil erosion regions in China, and the severity of soil erosion in Red soil hilly region is just next to the Loess Plateau. Current research on hillslope soil erosion processes and mechanism are relatively deep, but research on soil erosion processes and mechanism in Red soil hilly region is relatively weak. Moreover, comparative study of hillslope soil erosion processes between Red soil and Loess under the same rainfall density and terrain little has been reported. Difference of hillslope soil erosion processes between Red soil and Loess under the same rainfall and terrain were comparatively studied by using research methods of indoor simulated rainfall. The research results are beneficial to deepen the understanding of soil erosion, and provide theoretical basis for soil erosion prevention. The main results were as follows:
     1)The runoff rate of Red soil and Loess hillslopes showed an decreasing trend with an increase of slope, however it showed an increasing trend with an increase of rainfall intensity. The effect of rainfall intensity on runoff rate of Red soil and Loess always occupied the leading position. To a great extent, the effect of slope gradient on runoff rate of red soil and loess was concealed by rainfall intensity. Under the same slope gradient and rainfall intensity, the average runoff rate of red soil hillslope was greater than that of loessial hillslope. Runoff discharge of red soil was 1.02~2.53 times higher than that of loessial hillslope except 75mm/h of rainfall intensity and 20°of slope gradient. The results showed a good linear relationship between runoff discharge of red soil and rainfall intensity, slope gradient.The fitting equation of red soil is that R1=-18.84+4.90I-2.75S, R2=0.95. The fitting equation of loess is that R2=-218.83+ 6.52I-3.45S, R2=0.83.
     2) Under the same rainfall intensity, sediment yield rate of red soil and loess increased with an increase of slope gradient. The critical slope for t sediment yield of red soil was about 20°under 50 mm/h of rainfall intensity, but the critical slope for t sediment yield rate of loess was about 25°under 75 mm/h and 100 mm/h of rainfall intensity.Sediment yield rate of red soil and loess increased with an increase of rainfall intensity. Sheet erosion was the main erosion pattern in red soil hillslope. Sediment yield was mainly affected by rainfall intensity at 5°of and 25°of slope gradient and influenced by rainfall intensity and slope gradient between 10°and 20°of slope gradient.Soil erosion processes on loessial hillslope was evidently divided into three stages. Rainfall intensity was the key factor to sediment yield rate between 5°of slope gradient and 20°of slope gradient. Rainfall intensity and slope gradient together played a role to sediment yield rate between 20°of slope gradient and 25°of slope gradient. Rainfall intensity played dominant role at 30°of slope gradient. Effect of different combination of rainfall intensity and slope gradient on sediment yield of red soil and loess was different. Under 50 and 100 mm/h of rainfall intensity, the combined effects to red earth slope was greater than on the loess slopes when the slope gradient was lower than 10°. The trend was opposite on other conditions. The variance of erosion amount between red soil and loess slopes was the most obvious on the condition of rainfall intensity of 75mm/h and 5°of slope gradient, and sediment yield rate of red soil was 11.5 times higher than that of loess.The results showed a good linear relationship between sediment yield of red soil and rainfall intensity, slope gradient. The fitting equation of red soil is that Ms1=-35.24+0.58I+0.798S, R2=0.87. The fitting equation of loess is that Ms2=-72.03+0.772I+ 2.463S, R2=0.73.
     3) The time to initiation of runoff were shortened with an increase of slope gradient and rainfall intensity on red soil hillslope and loessial hillslope. On the condition of same slope gradient and rainfall intensity.The time to initiation of runoff on red soil hillslope was earlier than that on loessial hillslope, and there was a great difference between them when slope gradient and rainfall intensity were small. The difference decreased with slope gradient and rainfall intensity increased.
     4) The rill erosion had an important contribution to the soil erosion .The rill sediment yield of red soil and loess had a synchronism with total sediment delivery. The proportion of rill sediment yield for the total sediment delivery increased with an increase of slope gradient. On the experimental design condition, the rill sediment yield of red soil accounted for 14.7~80.7% of the total sediment delivery; the rill sediment yield of loess slopes accounted for 10.0~88.7% of the total sediment delivery.
引文
[1]史德明,周伏健,徐朋.我国南方土壤侵蚀动态与水土保持发展趋势[J].福建水土保持, 1993 , (3) : 9~13.
    [2]赵其国.红壤物质循环及其调控[M].科学出版社,2002.:1~7.
    [3]史德明.土壤侵蚀对生态环境的影响及防治对策[J].水土保持学报, 1991, 5(3): 1-8.
    [4]唐克丽,陈永宗.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社, 1990.
    [5]朱显谟.黄土高原的形成与整治对策[J].水土保持通报, 1991, 11(1): 1-8.
    [6]郑粉莉,王占礼,杨勤科.土壤侵蚀学科发展战略[J].水土保持研究, 2004, 11(4): 1-10.
    [7]刘秉正,吴发启.土壤侵蚀[M].陕西西安:陕西人民出版社, 1996.
    [8]黄秉维.谈黄河中游水土保持问题[J].中国水土保持, 1988, (1): 12-15.
    [9]黄秉维.陕甘黄土区域土壤侵蚀的因素和方式[J].地理学报, 1955, 19(2): 163-186.
    [10]龚时旸.黄河流域黄土高原土壤侵蚀的特点[J].中国水土保持, 1988, (9): 8-10.
    [11]蒋德麒,辛树帜.中国水土保持概论[M].北京:农业出版社, 1982.
    [12]吴钦孝,赵鸿雁.黄土高原水土保持目标及对策[J].水土保持研究, 1999, 6(2): 76-80.
    [13]夏卫兵.具有中国特色的水土保持科学体系浅述[J].水土保持通报, 1989, 9(4): 30-35.
    [14]陈永宗.黄土高原土壤侵蚀规律研究工作回顾[J].地理研究, 1987, 6(1): 76~85.
    [15]中国科学院黄土高原综合科学考察队.中国黄土高原地区耕地坡度分级数据集[M].北京:海洋出版社, 1990.
    [16]唐克丽,陈永宗.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社, 1990.
    [17]杨勤业,袁宝印.黄土高原地区自然环境及其演变[M].北京:科学出版社, 1991.
    [18]唐克丽,史德明.土壤侵蚀研究回顾与展望[J].土壤学报, 1989, 26(3): 226~233.
    [19]刘元保,朱显谟,周佩华.黄土高原坡面沟蚀的类型及其发生发展规律[J].中国科学院水利部西北水土保持研究所集刊(第7集), 1998,(7): 7-18.
    [20]朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报, 1981, 1(3): 1-9.
    [21]王万忠.黄土地区降雨特性与土壤流失关系的研究[J].水土保持通报, 1984, 4(2): 58-62.
    [22]杨明义,田均良.应用^ 137Cs研究小流域泥沙来源[J].土壤侵蚀与水土保持学报, 1999, 5(3): 49-53.
    [23]蔡强国.坡面侵蚀产沙模型的研究[J].地理研究, 1988, 7(4): 94-101.
    [24]唐政洪,蔡强国.我国主要土壤侵蚀产沙模型研究评述[J].山地学报, 2002, 20(4): 466-475.
    [25]汤立群.流域产沙模型的研究[J].水科学进展, 1996, 7(1): 47-53.
    [26]郑粉莉,唐克丽.坡耕地细沟侵蚀影响因素的研究[J].土壤学报, 1989, 26(2): 109-116.
    [27]江忠善,刘志.降雨因素和坡度对溅蚀影响的研究[J].水土保持学报, 1989, 3(2): 29-35.
    [28]陈浩.降雨特征和上坡来水对产沙的综合影响[J].水土保持学报, 1992, 6(2): 17-23.
    [29]江忠善,刘志,贾志伟.地形因素与坡地水土流失关系的研究[J].中国科学院水利部西北水土保持研究所集刊-黄土高原试验区土壤侵蚀和综合治理减沙效益研究专集, 1990, (12): 1-8.
    [30]陆兆熊,蔡强国,朱同新.黄土丘陵沟壑区土壤侵蚀过程研究[J].中国水土保持, 1991, (11):19-22.
    [31]江忠善,王志强.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报, 1996, 2(1): 1-9.
    [32]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀的发生、发展和防治途经的探讨[J].水土保持学报, 1987, 1(1): 36-48.
    [33]肖培青,郑粉莉.黄土坡面侵蚀垂直分带性及其侵蚀产沙研究进展[J].水土保持研究, 2002, (1): 46-48.
    [34]肖培青,郑粉莉.上方汇水汇沙对坡面侵蚀过程的影响[J].水土保持学报, 2003, 17(3): 25-27.
    [35]郑粉莉.黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究[J].土壤学报, 1998, 35(1): 95-101.
    [36]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报, 1998, 53(5): 422-428.
    [37]孔亚平,张科利.黄土坡面侵蚀产沙沿程变化的模拟试验研究[J].泥沙研究, 2003, (1): 33-38.
    [38]郑粉莉,武敏,张玉斌等.黄土陡坡裸露坡耕地浅沟发育过程研究[J].地理科学, 2006, 26(4): 438-442.
    [39]郑粉莉,高学田.坡面汇流汇沙与侵蚀--搬运--沉积过程[J].土壤学报, 2004, 41(1): 134-139.
    [40]李占斌,鲁克新.黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报, 2002, 16(2): 5-7.
    [41]胡世雄,靳长兴.坡面流与坡面侵蚀动力过程研究的最新进展[J].地理研究, 1998, 17(3): 326-335.
    [42]张晴雯,雷廷武.细沟侵蚀动力过程极限沟长试验研究[J].农业工程学报, 2002, 18(2): 32-35.
    [43]胡世雄,靳长兴.坡面流与坡面侵蚀动力方程的最新进展[J].地理研究, 1998, 17(3): 326-335.
    [44]王文龙,雷阿林,李占斌等.黄土丘陵区薄层水流侵蚀动力机制实验研究[J].水利学报, 2003, (9): 66-70.
    [45]郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持, 1989, (8): 23-24.
    [46]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报, 1999, 54(4): 347-356.
    [47]王协康,方铎.坡面侵蚀临界坡度的研究[J].四川水力发电, 2000, 19(2): 11-13.
    [48]邵学军,王远航,胡慧武.坡面细沟流侵蚀临界条件研究[J].水土保持学报, 2004, 18(2): 1-4.
    [49]雷阿林,唐克丽.黄土坡面细沟侵蚀的动力条件[J].土壤侵蚀与水土保持学报, 1998, 4(3): 39-43.
    [50]张科利,秋吉康宏.坡面细沟侵蚀发生的临界水力条件研究[J].土壤侵蚀与水土保持学报, 1998, 4(1): 41-46.
    [51] Foster GR. Modeling the erosion process [J]. In: C. Thuan eds. Hydrological Modeling of Small Waershed: ASAE press, 1982, 168~182.
    [52] Wischemier W.H. Smith D D. Rainfall energy and its relationship to soil Loess[J]. Trans Am Geophys Union,1958, 39:285~291.
    [53] Julian P.Y. The soil erosion on the hillslope. The Fourth International Symposium on River Sedimentation, Beijing, 1989.
    [54] Nearing M A and Bradford J M. Single waterdrop splash detachment and mechanical properties of soils[J]. Soil. Sci. Soc. Am. J., 1985, 49: 547~552.
    [55]李占斌.黄土地区坡地系统暴雨侵蚀试验及小流域产沙模型研究[D].陕西机械学院,1996.
    [56]赵晓光.黄土源区坡面水蚀过程[J].水土保持学报, 2000(3):122~124.
    [57]王贵平,曾伯庆,陆兆熊等.晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究,细沟间侵蚀[J].中国水土保持,1992,5:15~18.
    [58] Laws J O. Recent studies in raindrops and erosion[J]. Aric. Eng., 1940, 21: 431~433.
    [59] Laws J O., Parsons D A. The relationship of raindrop size to intensity[J]. Trans. Am. Geography. Union, 1943, 22: 452~459.
    [60] Laws J O. Measurement of fall~velocity of waterdrop and raindrop[J]. Trans. of the American Geophysical Union, 1947, 22: 709~720.
    [61]江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究[J].中国水土保持,1983(,3):32~36.
    [62]牟金泽.雨滴速度计算公式[J].中国水土保持,1983,(3):40~41.
    [63] Wischmeier W H and Smith D D. A universal soil Loess equation to guide conservation farm planning[J]. Trans. 7th International Cong. Soil Sci. 1960, I: 418~425.
    [64]周佩华,窦葆璋,孙清芳.降雨能量的研究初报[J].水土保持通报, 1981,1(1):51~60.
    [65]蔡强国.降雨特性对溅蚀影响的初步试验研究[J].中国水土保持, 1986, (6):41~42.
    [66]江忠善,刘志,贾志伟.降雨因素和坡度对溅蚀影响的研究[J].水土保持学报, 1989, 3(2):29~35.
    [67]高学田,包忠谟.降雨特性和土壤结构对溅蚀的影响[J].水土保持学报, 2001, 15(3):24~26, 47.
    [68]吴普特.动力水蚀实验研究[M].西安:陕西科学技术出版社, 1997.
    [69] Palmer R S. The influence of a thin water layer on waterdrop impact force[A]. Inter. Assoc. Hydro. Pub., 1963, (65):141~148.
    [70] Gilley J E and Finkner S C. Effect of water depth on soil detachment caused by raindrop impact[A]. Paper In Am, Soc. Agricultural Engineering, 1984, No. 84, 2587.
    [71]陆兆熊,蔡强国.黄土的表土结皮强度和溅蚀试验研究[A].山西省水土保持研究所、中国科学院国家计划委员会地理研究所和加拿大多伦从大学地理系.晋西黄土高原土壤侵蚀规律实验研究文集[C].北京:水利电力出版社,1990,58~67.
    [72]蔡强国,吴淑安,陈浩等.坡耕地表土结皮对降雨径流和侵蚀产沙过程的影响[A].山西省水土保持研究所、中国科学院国家计划委员会地理研究所和加拿大多伦从大学地理系.晋西黄土高原土壤侵蚀规律实验研究文集[C].北京:水利电力出版社,1990,48~57.
    [73] Al~Durach M M and Bradford J M. New methods of studying soil detachment due to waterdrop impact[J]. Soil Sci. Soc. Am. J., 1981, 45(5): 949~952.
    [74]Al~Durrach M M and Bradford J M. Parameters for describing soil detachment due to single waterdrop impact[J]. Soil. Sci. Soc. Am. J., 1982, 46(4): 836~840.
    [75]蔡强国,陈浩降雨特性对溅蚀影响试验的研究[[J].中国水土保持.1986 (6): 24~28.
    [76] Ellison W D. soil erosion studies~Part I [J].: Agric Eng, 1947, 28:145~146.
    [77] Ellison W D. Ellison O T. Soil erosion studies part VII [J]: Soil transportation by surface flow: Agric Eng, 1947, 28: 442~444.
    [78] Foster G R, et al. Estimating erosion and sediment yield on field sized areas [J]. Trans ASAE, 1981, 24.
    [79] Meyer L D, Harmton W C. How row sideslop length and steepness affect sidesslop erosion[J]. Trans ASAE,1989, 24(1):472~475.
    [80] Guy B T, Dickison W T, Rudra R P.Therolesofrain fall and runoff in the sediment transport capacity ofinterrill[J]. Transations of the ASAE,1987, 30:1378~1386.
    [81]王玉宽等.黄土高原坡面降雨产流过程的试验分析[[J].水土保持学报.1991. 5 (2): 25~31.
    [82]姚文艺.坡面流阻力规律试验研究[[J].泥沙研究,1996 (1): 74~81.
    [83]郑粉莉,高学田.坡面土壤侵蚀过程研究进展[J].地理科学, 2003, 3(2): 230-235.
    [84] Meyer L D, Foster G R and Romkens M J M. Source of soil eroded by water from upland slopes[A]. In: Present and Prospective Technology for Prediction Sediment Yield and Sources[C], 1975, 177~189. Proc, Sediment Yield Workshop, USDA Sedimentation Lab., Oxford, MS. Agric. Res. Service ARS~S~40.
    [85] Savat J and Ploey J De. Sheetwash and rill development by surface flow[A]. R.B. Eryan and A. Yair(eds.) Badland Geomorphology and Piping[M], Geobooks, Norwich, 113~126.
    [86] Rauws G and Govers G. Hydraulic and soil mechanical aspects of rill generation on agricultural soils[J]. J. of Soil Sciences (UK),1988,39:111~124.
    [87]陆兆熊,Merz W.应用盐液示踪技术测定表面流速[A].见:中国科学院国家计划委员会地理研究所、加拿大多伦从大学地理系和山西省水土保持研究所.晋西黄土高原土壤侵蚀管理与地理信息系统应用研究[C].北京:科学出版社,1992.
    [88]蔡强国.坡面细沟发生临界条件研究[J].泥沙研究, 1998,(1):52~59
    [89]张科利.坡面土壤侵蚀机理及其侵蚀过程模拟的基础研究,清华大学博士后研究工作报告, 1998.
    [90] Foster G R, Huggins L F and Meyer, LD. A laboratory study of rill hydraulics: I. Velocity relationships[J]. Trans. of ASAE, 1984, 27: 790~796.
    [91] Foster G R, Huggins L F and Meyer L D. A laboratory study of rill hydraulics: II. Shear stress relationships[J]. Trans. of ASAE, 1984, 27: 797~804.
    [92] Gilley JE, Kittwitz E R and Simanton J R. Hydraulic characteristics of rills[J]. Trans. of the ASAE, 1990, 33: 1900~1906.
    [93] Abrahams A D, Gang L, Parsons A J. Rill hydraulics on a semiarid hillslope, Southern Arizona[J]. Earth Surface Processes and Landforms, 1996, 21: 35~47.
    [94] Merritl F. The identification of four stages during micro~rill development [J]. Earth Surface Proc. Land,1984,19: 492~496.
    [95] Elliot W J, Laflen J M. A process~based rill erosion model [J]. Trans. of the ASAE,1993, 36: 65~72.
    [96] Foster G R. Modeling the erosion process [A]. In: Hydrologic Modeling of small watershed [M]. Ed. C.T. Haan,1982, 297~360.
    [97] Nearing M A., Foster G R and Lane L J. A process~based soil erosion model for USDA~water erosion prediction project technology [J]. Trans. of ASAE, 1989, 32(5): 1587~1593.
    [98] Young R A and Onstad GA. The effect of soil characteristics on erosion and nutrient Loess[A]. IAHS, Publication, 1982, (137): 105~113.
    [99]朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报,1981,1(3)~1982,2(3).
    [100] Vanliew N M, Santon K E. Slope steepness and incorporated residue effect on rill erosion[J]. Trans. of the ASAE, 1983, 26(6): 1736~1743.
    [101] Meyer L D, Foster G R and Nikolov S. Effect of flow rate and canopy on rill erosion[J]. Trans. of the ASAE, 1975, 18(5): 905~911.
    [102]陈永宗.黄河中游丘陵地区坡地的发育[A].地理集刊(10)[C].北京:科学出版社,1976,35~51.
    [103]赖奕卡.坡面土壤侵蚀影响因子研究进展[J].亚热带水土保持, 2008,20 (1):12~16.
    [104]田光进,张增祥,赵晓丽,等.中国耕地土壤侵蚀空间分布特征及生态背景[J].生态学报, 2002, 22 (1): 10~16.
    [105]关君蔚.水土保持原理[M].中国林业出版社, 1996
    [106]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报, 1996, 16(5): 1~20.
    [107]左长清,胡根华,张华明.红壤坡地水土流失规律研究[J].水土保持学报, 2003, 17 (6): 89~91.
    [108] WishmeierW H., Smith D. D, Predicting rainfall erosionLoesses: A guide to conservation planning [J]. Agric. Handb, 1978: 537.
    [109]李甚悟,李君莲.降雨及土壤湿度对水土流失的影响[J].土壤学报, 1992, 29(1): 94~103.
    [110]吴擢溪.杉木幼林地水土流失与降雨特性关系研究[J].福建林学院学报, 1996, 16(4): 304~309.
    [111]魏天兴.黄土残塬沟壑区降雨侵蚀分析[J].水土保持学报, 2001, 15 (4): 47~50.
    [112]阮伏水,周伏建.花岗岩不同土地利用类型坡地产流和入渗特征[J].土壤侵蚀与水土保持学报, 1996, 2(3): 1~7.
    [113]吴从林,张平仓.三峡库区王家桥小流域土壤侵蚀因子初步研究[J].长江流域资源与环境, 2002, 11 (2): 165~170.
    [114] Ekern P. C. Problems of raindrop impact erosion [J].AgricEng, 1953, 34: 23~25.
    [115] WischmeierW.H, Smith D.D. Rainfall energy and its rela~tionship to soil Loess[J].TransAm GeophysUnion, 1958, 39: 285~291.
    [116]金雁海,柴建华,朱智红,等.内蒙古黄土丘陵区次降雨条件下坡面土壤侵蚀影响因子研究[J].水土保持研究, 2006, 13(6): 192~194.
    [117]王万忠.黄土地区降雨侵蚀力R指标的研究[J].中国水土保持, 1987(12): 34~38.
    [118]吴素业.安徽大别山区降雨侵蚀力指标的研究[J].中国水土保持, 1992(2): 32~33.
    [119]吴普特.动力水试验研究[M].西安:陕西科学技术出版社, 1997.
    [120]吴普特,周佩华.黄土坡面薄层水流侵蚀试验研究[J].土壤侵蚀与水土保持学报, 1996 2(1):40~45.
    [121]谢小立,王凯荣.红壤坡地雨水地表径流及其侵蚀[J].农业环境科学学报, 2004, 23 (5): 839~845.
    [122]杨一松,王兆骞,陈欣,等.南方红壤坡地不同利用模式的水土保持及生态效益研究[J].水土保持学报, 2004, 18(5): 83~87.
    [123] Hudson N. Soil Conservation [M]. London:B T Batsford Ltd. 1986,233~256.
    [124]陈发扬.不同坡度对土壤冲刷量影响试验[J].中国水土保持, 1985 2: 18~19.
    [125]张宪奎等.黑龙江省土壤流失方程的研究[J],水土保持通报, 1992 12 (4): 1~9, 184.
    [126]赵晓光,吴发启,刘秉正等.再论土壤侵蚀的坡度界限[J].水士保持研究, 1999. 6 (2): 42~46.
    [127]孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究[J].水土保持学报, 2001, 15(2): 17~24.
    [128]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社, 1988.
    [129] Wischmeier W. H., Mannering J. V. Relation of soilprop~erties to its erodibility [J]. Soil Science Society ofAmerican Proceedings, 1969, 33: 131~137.
    [130] Kirby M, Modelling the interactions between soil surface properties and water erosion.Catena, 2002, 46:89~102.
    [131]李勇,朱显谟.黄土高原土壤抗冲性机理初步研究[J].科学通报, 1990, 35(5): 390~39.
    [132]张兴昌,刘国彬,刘文兆.不同土壤颗粒组成在水蚀过程中的流失规律[J].西北农业学报, 2000,9(3): 55~58.
    [133]李朝霞,王天巍,史志华,等.降雨过程中红壤表土结构变化与侵蚀产沙关系[J].水土保持学报, 2005, 19(1): 1~4.
    [134] Y. Le Bissonnais, B. Renaux, H. Delouche. Interactions between soil properties andmoisture content in crust formation, run~off and interill erosion from tillde Loesss [J]. CATENA, 1995, 25: 33~46.
    [135] Bernard B, EricR. Aggregate stability as an indicatorofsoilsusceptibility to runoff and erosion: validation at several levels [J]. Catena, 2002, 47: 133~149.
    [136]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].西北林学院学报, 1989, 4(1): 80~86.
    [137]罗伟祥,白立强,宋西德,等.不同覆盖度林地和草地的径流量与冲刷量[J].水土保持学报, 1990, 4 (1): 30~34.
    [138]林素兰,黄毅,曹忠杰,等.辽西黄土丘陵区坡耕地土壤侵蚀研究[J].水土保持研究, 2002, 9(1): 14~16.
    [139]夏青,何丙辉.土壤物理特性对水力侵蚀的影响[J].水土保持应用技术, 2006(5): 12~15.
    [140]杨艳生等.江西兴国土壤渗透性的研究[J].水土保持通报,1982 6: 33~39, 24.
    [141]王夏晖等.黄土高原几种主要土壤的物理性质研究[J].水土保持学报,2000 14 (4): 100~103.
    [142] R.P.C Morgan. Soil Erosion and Conservation [J]. Longman Science & Technical. John Wiley & Sons. New York, 1995.
    [143]周佩华,刘炳武,王占礼等黄土高原土壤侵蚀特点与植被对土壤侵蚀影响的研究[J].水土保持通报,1991, 11 (5): 26~31.
    [144]赵鸿雁,吴钦孝.黄土高原天然山杨林地产流产沙研究[J].水土保持研究.1996, 3(4): 26~31.
    [145]罗伟祥,白立强等.不同覆盖度林地的径流量与冲刷量[J].水土保持学报.1990, 4(1): 30~35.
    [146]王秋生.植被控制土壤侵蚀的数学模型及其应用.水土保持学报[J]. 1991, 5 (4) : 68~72.
    [147]董容万,朱兴平等.定西黄土丘陵沟壑区土壤侵蚀规律研究[J].水土保持通报.1998,18(3):l~15.
    [148]韦洪波,李锐,杨勤科.我国植被水土保持功能研究进展[J].植物生态学报,2001, 26 (4),489~496.
    [149]侯喜禄,自岗权,曹清玉.黄土丘陵区森林保持水土效益及其机理研究[J].水土保持研究.1996, 3(2):98~103.
    [150] Cerda A. Parent material and vegetation affected soil erosion in Easter Spain[J]. Soil Sci. Soc.Am.J.1999, 63:362~368.
    [151]李寅生.关于林草地减沙效益计算研究[J],中国水土保持,1995(2).9~10
    [152]王库.红壤丘陵区不同土地利用方式下的土壤侵蚀特征[J].西南农业大学学报(自然科学版), 2006, 28(5).
    [153]杨武德,等红壤坡地不同土地利用方式土壤侵蚀的时空分布规律研究[J]应用生态学报, 1998, 9(2):155~158 .
    [154]黄欠如,等.丘陵红壤不同生态类型土壤侵蚀研究[J].江西农业学报, 1998,10(3):7~12.
    [155]马海艳,王根绪,程国栋等.黑河中游山前平原区土地利用变化对土壤侵蚀的影响[J],水土保持学报, 2005,19(3):88~92.
    [156]符素华,段淑怀,李永贵等.北京山区土地利用对土壤侵蚀的影响[J].自然科学进展, 2002,12(1):108~112.
    [157]张学雷,龚子同.人为诱导下中国的土壤退化问题[J].生态环境,2003,12(3):317~321.
    [158]查轩,唐克丽,张科利等,植被对土壤特性及土壤侵蚀的影响研究[J],水土保持学报,1992,(2:56~58.
    [159]周伟,白中科,袁春等.东露天煤矿区采矿对土地利用和土壤侵蚀的影响预测[J].农业工程学报, 2007,23(3):55~60.
    [160]佟伟力.我国水土保持生态建设的特点和目标,中国水利[J], 2001,6:22~23.
    [161]刘青泉,陈力,李家春.坡度对坡面土壤侵蚀的影响分析[J].应用数学和力学2001, 22(5):449~457.
    [162]郑粉莉.黄土坡面土壤侵蚀过程与模拟[M],西安,陕西人民出版社2000,37~38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700