用户名: 密码: 验证码:
调控食管鳞癌细胞CAR的表达对溶瘤腺病毒H101抗癌作用影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     我国食管癌的发病率居全世界之首,由于食管癌本身具有进展快、侵袭性强等特点,大多数患者被发现时已处于中晚期,传统手术加化疗、放疗的治疗方案效果不佳,需要进一步寻找新的治疗方法。H101病毒是以人类C组5型腺病毒(adenovirus, Ad)为基础,利用基因重组技术得到的一种删除了E1B-55KD和E3区片段的溶瘤腺病毒,使病毒相对选择性的在肿瘤细胞中复制。在临床试验中联合化疗,H101已经取得了令人鼓舞的疗效。但是,临床试验表明作为单一制剂疗效不理想,并且在不同肿瘤中使用效果存在显著差异。
     单独应用H101效果不佳和肿瘤细胞表达柯萨奇-腺病毒受体(coxsackievirus-. adenovirus receptor, CAR)水平密切相关。以5型Ad为基础构建的H101病毒有效感染肿瘤细胞,需要通过细胞表面CAR受体黏附和通过整合素家族的整合素αvβ3和αvβ5的内化。肿瘤细胞表面CAR作为腺病毒感染的第一受体完成病毒-细胞的识别,CAR表达水平决定了靶细胞对腺病毒(adenovirus, Ad)的感染效率。研究显示许多肿瘤细胞如卵巢癌、肺癌、乳腺癌及膀胱癌等CAR的表达降低甚至缺乏。
     有资料表明CAR表达转录调控是通过乙酰化修饰重塑核小体调节进行的,组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitor, HDACi)通过抑制组蛋白去乙酰化酶(histone deacetylase, HDACs)的活性来提高CAR基因的表达,从而使肿瘤细胞表面CAR受体表达增加,但是HDACi通过何种信号通路影响哪些分子从而改变细胞中CAR基因的转录、翻译,至今尚未见报道。曲古菌素A(trichostatin A, TSA)是一种强大的组蛋白去乙酰化酶抑制剂,研究发现TSA能使一些肿瘤细胞如乳腺癌、肺癌、卵巢癌中CAR表达上调表达,对食管鳞癌CAR的表达的影响未见报道。
     目前关于食管鳞癌细胞CAR的表达情况及其与溶瘤腺病毒H101的抗癌效果的关系并不清楚,本研究首先以食管鳞癌(esophageal squamous cell carcinoma, ESCC)细胞系EC9706、EC1为研究对象,分析食管鳞癌细胞EC9706、EC1中CAR的表达情况以及H101病毒对二者的抗肿瘤效应,然后利用TSA来干扰肿瘤细胞CAR的表达,观察食管鳞癌细胞表面CAR表达变化后溶肿瘤腺病毒的抗肿瘤效果,并探索其通过影响MAPK/ERK1/2信号通路对CAR表达影响的机制,同时探讨TSA对溶瘤腺病毒H101抗食管鳞癌ECl细胞裸鼠移植瘤的作用影响,为进一步提高H101临床治疗食管癌效果奠定基础。
     第一部分CAR在食管鳞癌细胞中的表达及对H101病毒的抗肿瘤效果的研究
     方法
     采用RT-PCR检测Hela、EC9706、EC1细胞系CAR mRNA水平;间接免疫荧光标记流式细胞术检测细胞表面CAR的表达阳性率;采用免疫细胞化学法检测、免疫荧光法和Western Blotting检测细胞CAR蛋白表达;以MOI=1 H101分别感染细胞株细胞后,以TCDI50的方法检测48小时测后病毒的增殖倍数,通过病毒增殖实验检测H101病毒在细胞的增殖倍数,采用MTS实验检测H101对肿瘤细胞增殖抑制作用。
     结果1.食管鳞癌细胞EC9706、EC1细胞的CAR mRNA相对表达量分别为0.98±0.07、0.75±0.07,明显低于阳性对照细胞Hela细胞CAR mRNA相对表达量1.73±0.08(P<0.01)。
     2.流式细胞术检测三株细胞CAR的表达,EC9706、EC1细胞表面CAR表达阳性率分别为21.00±2.00%和9.67±3.05%,明显低于Hela的CAR表达阳性率74.67±9.45%(P<0.01),并且EC1细胞表面CAR表达明显低于EC9706细胞CAR表达(P<0.05)。
     3.免疫细胞化学结果显示,在三株细胞的细胞膜上均有棕黄色颗粒,和阳性对照Hela细胞相比,食管鳞癌EC9706、EC1细胞CAR的表达明显弱于Hela细胞。免疫荧光细胞化学检测结果EC9706、EC1细胞表面绿色荧光颗粒明显弱于Hela细胞。Western blotting结果显示,EC9706、EC1细胞CAR蛋白相对表达量为明显低于Hela细胞(P<0.01)。
     4.H101在EC9706、EC1细胞中的增殖倍数分别为538.33±69.23和240.55±19.59,明显低于Hela细胞中的增殖倍数1825±256.72(P<0.05)
     5.MTS实验检测H101对肿瘤细胞增殖抑制作用,H101对EC9706、EC1细胞增殖抑制作用明显弱于对Hela细胞抑制作用(P<0.05)。
     第二部分TSA对食管鳞癌CAR表达的影响及其机制的研究一、TSA对食管鳞癌EC9706、EC1细胞后生物学特性的影响
     方法
     0.1,0.3,0.5,1.0,3.0μmol/L TSA作用EC9706、EC1细胞,用MTS细胞毒性实验检测TSA对细胞增殖抑制作用;0.3,0.5,1.0μmol/L TSA作用EC9706、EC1细胞,用流式细胞术检测对细胞周期、细胞凋亡的影响;同时用Westernblotting检测TSA处理EC9706、EC1细胞后p21WAF1/CIP1、Bax、Bcl-2表达的变化。
     结果
     1.细胞增殖实验显示,0.5μmol/l以上浓度TSA可引起EC1细胞增殖抑制而1.0μmol/L TSA以上才可抑制以EC9706细胞的增殖。
     2. 0.3μmol/LTSA和0.5μmol/L TSA组EC9706细胞周期与对照组相比,无明显变化(P>0.05)。1.0μmol/L TSA组G0/G1期细胞百分比显著增加,同时S期细胞显著减少,与对照组相比有显著差异(P<0.05); 0.3μmol/L TSA处理EC1细胞后细胞周期与对照组相比,无明显变化(P>0.05)。随TSA浓度增加,G0/G1期EC1细胞百分比逐渐增大,而S期细胞百分比降低,且呈浓度依赖关系(P<0.05)。
     3. 1.0μmol/L TSA作用于EC9706细胞后细胞凋亡率明显增加(P<0.05);0.5μmol/L TSA以上随着TSA浓度升高,细胞凋亡率显著增加升高(P<0.05)。
     4. 1.0μmol/L TSA作用EC9706细胞后P21 WAF1/CIP1蛋白、Bax蛋白表达明显增加,而Bcl-2蛋白表达明显减少(P<0.05);EC1细胞0.5μmol/L TSA以上浓度作用后P21 WAF1/CIP1蛋白、Bax蛋白表达明显增加,而Bcl-2蛋白表达明显减少(P<0.05,图2.1.10)。
     二、TSA上调食管鳞癌细胞CAR表达增强H101病毒抗肿瘤效应
     方法
     以0.3,0.5,1.0μmol/L TSA作用EC9706、EC1细胞48h,采用RT-PCR检测CAR mRNA的表达;间接免疫荧光标记流式细胞术检测细胞表面CAR的表达阳性率;采用免疫细胞化学法检测和免疫荧光法检、Western Blotting检测细胞CAR蛋白表达;以MOI=1 H101分别0.3μmol/L TSA处理的EC1细胞后,以TCDI50的方法检测48小时测后病毒的增殖倍数,采用MTS实验检测H1O1对0.3μmol/L TSA处理48h的EC1细胞后对细胞增殖抑制作用。
     结果
     1. 0.3,0.5,1.0μmol/L TSA作用EC9706细胞CAR mRNA相对表达量分别为0.71±0.09、0.91±0.03和1.13±0.05,较对照组(0.53±0.04)明显增加(P<0.05); 0.3,0.5,1.0μmol/L TSA作用EC1细胞RT-PCR检测CAR mRNA相对表达量分别为0.67±0.03、0.77±0.03和0.89±0.06,较对照组(0.47±0.03)明显增加(P<0.05)。
     2. 0.3,0.5,1.0μmol/L TSA作用EC9706细胞,间接免疫荧光标记流式细胞术检测细胞表面CAR的表达阳性率分别为29.00±0.55%、32.36±1.02%和52.48±1.25%,较对照组(19.57±1.39%)明显增加(P<0.05);0.3,0.5,1.0μmol/LTSA作用EC1细胞CAR的表达阳性率分别为19.02±0.35%、27.77±0.65%和40.63±1.06%,较对照组(9.58±0.89%)明显增加(P<0.05)。
     3.免疫细胞化学法检测、免疫荧光法和Western Blotting检测EC9706和EC1细胞,CAR蛋白表达以剂量依赖方式增加(P<0.05)。
     4. 0.3μmol/L TSA作用EC1细胞后H101的增殖倍数为527.46±11.70,较对照组260.75±9.64明显增加(P<0.05)。
     5.H101病毒的不同滴度对0.3μmol/L TSA组作用的EC1细胞增殖抑制作用明显高于对照组(P<0.05)。
     三、TSA上调食管鳞癌细胞CAR表达机制的探讨
     方法
     1. Western blotting检测1.0μmol/L TSA作用1h、6h、12h、24h、48 h后EC1、EC9706 p-ERK和CAR的表达,分析p-ERK和CAR的相关性;
     2.为了研究TSA可以通过MAPK/ERK1/2信号通路影响HDAC4的磷酸化水平,1.0μmol/L TSA分别作用EC1和EC9706细胞48h,用免疫共沉淀检测p-ERK1/2和HDAC4的相互作用,免疫共沉淀产物用Western blotting检测1.0μmol/L作用EC1和EC970后引起的和HDAC4作用ERK1/2的磷酸化水平的变化
     3.为了研究TSA引起组蛋白H4乙酰化水平的改变对CAR基因启动子活性的影响,1.0μmol/L TSA分别作用ECl和EC9706细胞48h,应用乙酰化组蛋白H4抗体进行染色质免疫共沉淀,根据Gene bank中CAR启动子基因序列设计上、下游引物,通过PCR.扩增鉴定乙酰化组蛋白H4和CAR启动子之间的相互作用,Western blotting检测共沉淀产物中,和CAR启动子结合的组蛋白H4乙酰化水平的变化。
     结果
     1.TSA以时间依赖方式上调食管鳞癌细胞CAR的表达和抑制ERK1/2磷酸化,采用Pearson法双因素相关分析显示,1.0μmol/L TSA作用于食管鳞癌细胞引起CAR表达水平增加和p-ERK水平呈显著负相关(P<0.01)。
     2.免疫共沉淀反应结果显示1.0μmol/L TSA处理组和对照组食管鳞癌细胞中p-ERK1/2均和HDAC4之间均存在相互作用。但是1.0μmol/L TSA处理细胞后和HDAC4作用的p-ERK1/2水平较对照组降低(P<0.05)。
     3.以乙酰化的组蛋白H4进行CHIP反应,PCR扩增产物经1.5%琼脂糖凝胶电泳,显示在180bp左右有清晰的特异条带,与设计目的基因片段一致。说明乙酰化组蛋白H4和CAR基因启动子之间的相互作用,证明了乙酰化的组蛋白H4和CAR基因启动子之间存在相互作用;1.0μmol/L TSA作用于食管鳞癌细胞后,和CAR基因启动子的作用的乙酰化组蛋白H4水平较未处理组明显升高(P<0.05)。
     第三部分TSA对溶瘤腺病毒H101抗食管鳞癌EC1细胞裸鼠移植瘤的作用影响
     方法
     每只裸鼠皮下注射6×106食管鳞癌细胞EC1,建立食管鳞癌EC1细胞皮下移植瘤模型,分为(1)PBS对照组,以PBS代替药物瘤内注射;(2)TSA组,0.3μmol/L的TSA 200μl瘤内注射,每3d一次;(3)H101组,在TSA组第二次注射后24h后,每只裸鼠瘤内注射1.0×109IU/100μl H101;(4) H101+TSA组,0.3μmol/L的TSA200μl瘤内注射,每3d一次,第二次注射TSA后24h后,每只裸鼠瘤内注射1.0×109IU/100μl H101,治疗3w后处死裸鼠,观察肿瘤体积的变化,测定各组裸鼠皮下移植瘤平均瘤重及抑瘤率;用免疫组化和Western blotting检测各组移植瘤组织CAR的变化。
     结果
     1. H101+TSA组和PBS对照组、TSA组、H101组相比裸鼠移植瘤体积、移植瘤重量均明显减少(P<0.05); H101+TSA组对肿瘤生长抑制率为80.32%,明显高于TSA组(2.18%)和H101组(28.42%)。
     2.免疫组化和Western blotting检测EC1细胞裸鼠移植瘤组织CAR的表达,TSA组和TSA+H101组CAR蛋白的表达明显高于对照组和H101组(P<0.05),说明移植瘤瘤内注射TSA可提高移植瘤组织的CAR水平。
     结论
     1.食管鳞癌细胞系EC9706和ECl细胞CAR的表达水平明显低于宫颈癌Hela细胞表面CAR的表达;食管鳞癌细胞低表达CAR,影响H101病毒溶瘤效果。
     2.TSA上调食管鳞癌细胞CAR的表达从而提高H101病毒抗肿瘤效应。
     3.TSA通过抑制MAPK/ERK1/2信号通路,导致HDAC4的活性降低,使得组蛋白H4乙酰化水平提高,激活CAR基因启动子而增加CAR表达。
     4.TSA通过提高CAR的表达增强H101病毒对食管鳞癌EC1细胞裸鼠移植瘤的抗肿瘤效果。
The morbidity of the esophageal carcinoma (EC) of our country occupies the first place in whole world. EC is an intractable disease and curative surgical operation is often difficult for aged and extended cases. Another characteristic of EC is its high mortality, although the patients can get radical excision by surgical intervention operation and comprehensive treatments, most of the patients still die of metastatic dieases. New approaches are urgently needed for better EC. H101 is based on human species C adenovirus serotype 5 (Ad5), utilize genetic recombinant technique to delete the E1B-55KD and E3 fragment which can make the virus replicate relative selectivity in the tumor cells only. H101 have been clinically examined for feasibility. Although there are some promising early clinical results, single-agent efficacy has been mostly unimpressive.
     Concurrently, it has become apparent that a major determinant of gene transfer efficacy with adenovirus (Ad) is expression of its primary receptor, Coxsackievirus and adenovirus receptor (CAR), on target cells. To infect tumor cells efficiently, H101 requires CAR for attachment and av integrin for internalization. However, it has become evident that CAR expression is often low on various types of advanced clinical tumors including ovarian, lung, breast, bladder, and others.
     It was reported that histone deacetylase inhibitor (HDACi) induced enhancing the levels of CAR on some tumor cell surface via accumulation of hyperacetylated nucleosome core histonesand results in transcriptional activation of genes. However, it is not clear about signaling pathway that HDACi induces the expression of CAR on tuomr cells. Trichostatin A (TSA) is one of the most promising HDACi that can increase the levels of CAR on some tumor cells such as breast, lung, ovarian and others. But it is not reported that TSA influences on the expression of CAR on EC cells.
     In this study, firstly, to detect the expression of CAR on esophageal squamous cell carcinoma (ESCC) cell lines, EC9706 and EC1, and analyze the relationship between CAR and the anti-tumor activity of oncolytic adenovirus H101. Secondly, to investigate TSA to increase the expression of CAR and the influence on the anti-tumor activity of H101, to study the mechanism of increased CAR gene expression through the MAPK/ERK1/2 signaling pathway induced with TSA. Thirdly, to detect the role of the expression of CAR induced with TSA to the anti-EC1 activity of oncolytic adenovirus H101 in transplanted tumors of nude mice.
     PartⅠ:Detecting the expression of CAR on ESCC cell lines and analyzing the relationship between CAR and the anti-tumor activity of oncolytic adenovirus H101.
     Methods
     1. The expression of CAR mRNA in two ESCC cells lines (EC9706 and EC1) and the control positive cells, Hela cells were investigated with reverse transcription-polymerase chain reaction (RT-PCR).
     2. The positive rate of CAR expression in two ESCC cells lines (EC1, EC9706) and the control positive cells were analyzed by flow-cytometry.
     3. The expression of CAR protein in ESCC cells lines and Hela cells were detected with immunocytochemistry, immunofluorescence and western blotting.
     4. The reproductive activity of H101 in ESCC cells lines and Hela cells were detected with multiplication experiment and finally investigated the killing effect of H101 via cytotoxic experiment (MTS assay).
     Results
     1. The CAR mRNA expression level of EC9706 cells, EC1 cells and Hela cells were 0.98±0.07 and 0.75±0.07,1.73±0.08. The CAR mRNA expression of ESCC cells were obviously low compared with control cells'(P<0.01).
     2. The positive rate of CAR expression of EC9706 cells, EC1 cells and Hela cells were 21.00±2.00%,67±3.05% and 74.67±9.45%. The positive rate of CAR expression in two ESCC cells line was significantly low than the control cells detected with FCM (P<0.01).
     3. The result of immunocytochemistry, Immunofluorescence and Western blotting indicated that the expression of CAR protein in ESCC cells lines decreased, especially in EC1 cells (P<0.05).
     4. The reproductive multiple of H101 EC9706 cells, EC1 cells and Hela cells were 538.33±69.23,240.55±19.59 and 1825±256.72. The reproductive multiple of H101 was obviously low in two ESCC cells compared with Hela cells (P<0.05); and the cytotoxic activity of H101 in two ESCC cells was more weak than in controls'.
     PartⅡ:Influence on the CAR expression on ESCC cells and mechanism of increased CAR induced by TSA
     ChapterⅠBiological characteristic affects on ESCC cells induced with TSA
     Methods
     1. ESCC cells in logarithmic growth phase were treated at the dosage of 0.1,0.3, 0.5,1.0,3.0μmol/L TSA and treated with DMSO (0.25%) for 24 h, then the effects of TSA on cell proliferations were assessed by MTS.
     2. After treatment with TSA at the dosage of 0.3,0.5,1.0μmol/L for 24 h, cell cycle distributions and apoptosis were detected by flow cytometric assay(FCM), and the expression of p21 WAF1/CIP1, Bax and Bcl-2 protein in ESCC cells lines were detected with Western blotting.
     Results
     1. TSA inhibited the growth of human EC9706 above the dosage of 1.0μmol/L, while TSA inhibited the growth of EC1 above the dosage of 0.5μmol/L TSA. In comparison with the control group, the proportion of EC9706 cells in G1/G0 phase was increased (P<0.05), while the proportion of cells in S phase was decreased (P<0.05) induced by 1.0μmol/L TSA; The proportion of EC1 cells in G1/G0 phase was increased (P<0.05), while the proportion of cells in S phase was decreased (P<0.05) induced by 0.5 and 1.0μmol/L TSA.
     2. The apoptosis rate of EC9706 cells induced with 1.0μmol/L TSA was significant increase compared with the control group's (P<0.05); The apoptosis rate of EC1 cells induced with 0.5μmol/L TSA was significant increase compared with the control group's (P<0.05).
     3. The P21 WAF1/CIP1 and Bax protein expression of EC9706 cells was significantly increased, while Bcl-2 expression significantly decreased compared with the control group after treatment with 1.0μmol/L TSA; The P21 WAF1/CIP1 and Bax protein expression of EC1 cells in trial groups (0.5μmol/L, 1.0μmol/L) was significantly increased, while Bcl-2 expression significantly decreased compared with the control group.
     Chapter 2 Modulation of coxsackie-adenovirus receptor expression for increased the anti-tumor activity of oncolytic adenovirus H101.
     Methods
     1. ESCC cells were treated 0.3,0.5,1.0μmol/L TSA for 48h, the expression of CAR mRNA on EC9706. cells and EC 1 cells were investigated with RT-PCR.
     2. The positive rate of CAR expression evoked by different concentrations of TSA on EC9706 cells and EC1 cells were analyzed by flow-cytometry.
     3. After treated with different concentrations of TSA, the expression of CAR protein on EC9706 cells and EC1 cells were detected with immunocytochemistry, immuno-fluorescence and Western blotting.
     4. The reproductive activity of H101 in EC1 cells induced by 0.3μmol/L TSA was detected with multiplication experiment and finally investigated the killing effect of H101 via cytotoxic experiment (MTS assay).
     Results
     1. The CAR mRNA expression level of EC9706 cell trial groups (0.3μmol/L, 0.5μmol/L, 1.0μmol/L) were 0.71±0.09,0.91±0.03 and 1.13±0.05, and control group was 0.53±0.04. There was significant increase between trial groups and control group (P<0.05); The CAR mRNA expression level of EC1 cell trial groups (0.3μmol/L,0.5μmol/L, 1.0μmol/L) were 0.67±0.03,0.77±0.0 and 0.89±0.06, and control group was 0.47±0.03. There was significant increase between trial groups and control group (P<0.05).
     2. The positive rate of CAR expression of EC9706 cell trial groups (0.3μmol/L, 0.5μmol/L,1.0μmol/L) were 29.00±0.55%,32.36±1.02% and 52.48±1.25%, and control group was 19.57±1.39%. There was significant increase between trial groups and control group (P<0.05); The positive rate of CAR expression of EC1 cell trial groups (0.3μmol/L,0.5μmol/L, 1.0μmol/L) were 19.02±0.35%、 27.77±0.65% and 40.63±1.06%, and control group was 9.58±0.89%. There was significant increase between trial groups and control group (P<0.05).
     3. The expression of CAR protein in ESCC cells induced by different concentrations of TSA was increased with treatment of 0.3,0.5,1.0μmol/LTSA for 48h, which was a concentration-dependent manner (P<0.05).
     4. The reproductive multiple of EC1 cells induced with 0.3μmol/LTSA and control group cells were 527.46±11.70 and 260.75±9.64. The reproductive multiple of H101 was obviously higher in 0.3μmol/L TSA group compared with control group cells'(P<0.05).
     5. The cytotoxic activity of H101 was more powerful in EC1 cells induced by 0.3μmol/L TSA compared with control group cells'(P<0.05).
     Chapter 3 Mechanism of up-regulating the expression of CAR on ESCC cells induced by TSA
     Methods
     1. The ESCC cells were respectively exposed by 1.0μmol/L TSA for 0,1,6,12,24, 48h, the expression of CAR and phosphorylation of MAPK/ERK1/2 were investigated with Western blotting. The correlation between the activity of phosphorylation of ERK and the expression was analyzed.
     2. In order to identify the effect on association with HDAC4 and ERK1/2 phosphorylating, HDAC4 antibody was used to CO-immunoprecipition to analyze the activation between HDAC4 and ERK1/2 phosphorylation induced by 1.0μmol/LTSA in ESCC cells.
     3. Based on the CAR promoter gene sequence reported by GenBank, use DNASIS、OLIGO software to design a pair of primer for the CAR promoter full length genome. Chromatin immunoprecipitation (CHIP) assay was done to detect the effect of TSA on the level of acetylated histone H4 at the CAR promoter region.
     Results
     1. Western blotting results showed that the expression of CAR protein increased and the level of phosphorylation of MAPK/ERK1/2 decreased in a time dependent manner. There were significant negative correlations between the activities of p-ERK and the expression of CAR (P<0.01).
     2. The CO-immunoprecipition results showed that phosphorylation of ERK1/2 are associated with HDAC4 both in ESCC cells induced by TSA and the controls, but the level of phosphorylation of ERK1/2 in ESCC cells treated by TSA significantly decreased.
     3. Chromatin immunoprecipitation results showed that acetylated histone H4 were associated with CAR gene promoter and an increased histone H4 acetylation in the CAR promoter gene induced with TSA was detected, which are due to the suppression of histone deacetylase activity and promote the CAR gene expression.
     PartⅢ:The effect of oncolytic adenovirus H101 under the condition of CAR gene up-regulation on ESCC transplanted subcutaneously in nude mice
     Methods
     1. EC1 cells were injected into the left flank area of BALB/c nude mice aged 5 weeks old. Once tumors reached 100-200 mm3, mice were treated in the following, TSA only, H101 only and H101 combination with TSA. TSA was intratumorally injected every three day for 3 week. For determining the effect of H101, a single dose of 1.0×109 IU/100μl H101 was given intratumorally 24 hours after the second injection of TSA. The respective control groups received corresponding PBS injection.
     2. The mice weight and tumor volume were detected following the treatment. The nude mice were sacrificed until the 5th weekend and removed the tumor masses. Immunohistochemistry and Western blotting were adopted to analyze the expression of CAR.
     Results
     1. Animal experiment suggested that the average tumor volume and weight of H101 combination with TSA group were smaller than the TSA group and H101 group, transplanted growth tumor inhibition of transplanted tumor of H101 combination with TSA group was much better than the other three groups (P<0.05).
     2. Immunocytochemistry and Western blotting results indicated that the expression of CAR on transplanted tumor of TSA group and H101 combination with TSA group significantly increased compared with the other groups(P<0.05), and had no obviously difference between the TSA group and H101 combination with TSA group(P>0.05).
     Conclusions
     1. The expression of CAR protein in ESCC cells lines is down-regulatedand compared with Hela cells. The anti-tumor activity of oncolytic adenovirus H101 is related to the expression of CAR on tumor cells. There were significanttly positive correlations between the CAR expression on tumor cells and the anti-tumor activity of oncolytic adenovirus H101.
     2. TSA can increase the expression of CAR on human ESCC cells and can increase the anti-tumor activity of oncolytic adenovirus H101 to ESCC cells through enhancing the expression of CAR.
     3. The mechanisms maybe involve the interruption of ERK/MAPK pathway. Protein kinase activity ERK1/2 is present in a protein complex with HDAC4, TSA can inhibits the level of phosphorylation of ERK1/2 and decrease the activity of HDAC4 to up-regulate the acetylation level of histone H4 associated with CAR gene promoter.
     4. Up-regulation the expression of CAR on ESCC tissues of nude mice induced by TSA can enhance the anti-tumor activity of oncolytic adenovirus H101, which may be become a novel therapeutic strategies of esophageal carcinoma.
引文
[1]Li J, Werner E, Hergenhahn M, et al. Expression profiling of human hepatoma cells reveals global repression of genes involved in cell proliferation, growth, and apoptosis upon infection with parvovirus H-1 [J]. J Virol,2005,79(4):2274~2286
    [2]Bischoff J R, Kirn D H, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells[J]. Science,1996,274(5286):373~376
    [3]Sauthoff H, Pipiya T, Heitner S, et al. Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. [J]. Hum Gene Ther,2002,13(15):1859~1871
    [4]Sova P, Ren X W, Ni S, et al. A tumor-targeted and conditionally replicating oncolytic Adenovirus vector expressing TRAIL for treatment of liver metastases[J]. Mol Ther,2004, 9(4):496~509
    [5]Ko D, Hawkins L, Yu D C. Development of transcriptionally regulated oncolytic adenoviruses[J]. Oncogene,2005,24(52):7763~7774
    [6]夏忠军,常建华,谢伟敏等.基因工程腺病毒H101瘤内注射联合化疗治疗头颈部及食管鳞的期临床研究[J].癌症,2004,vol.23(12):1666-1670
    [7]Wang Y, Hallden G, Hill R, et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models[J]. Nat Biotechnol,2003,21(11):1328~1335
    [8]Seidman M A, Hogan S M, Wendland R L, et al. Variation in adenovirus receptor expression And adenovirus vector-mediated transgene expression at defined stages of the cell cycle[J]. Mol Ther,2001,4(1):13~21
    [9]Pandha H S, Stockwin L H, Eaton J, et al. Coxsackie B and adenovirus receptor, integrin and Major histocompatibility complex class I expression in human prostate cancer cell lines:implications for gene therapy strategies [J]. Prostate Cancer Prostatic Dis,2003,6(1): 6~11
    [10]Siemens D R, Crist S, Austin J C, et al. Comparison of viral vectors: gene transfer efficiency and tissue specificity in a bladder cancer model [J]. J Urol,2003,170(3): 979~984
    [11]Bergelson J M, Cunningham J A, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 [J]. Science,1997,275(5304):1320~1323
    [12]Sachs M D, Rauen K A, Ramamurthy M, et al. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer[J]. Urology,2002,60(3):531~536
    [13]Bauerschmitz G J, Barker S D,Hemminki A. Adenoviral gene therapy for cancer:from vectors to targeted and replication competent agents (review)[J]. Int J Oncol,2002,21(6): 1161~1174
    [14]Miller C R, Buchsbaum D J, Reynolds P N, et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection:targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer[J]. Cancer Res,1998, 58(24):5738~5748
    [15]Berridge M V, Tan A S, McCoy K D, et al. CD95 (Fas/Apo-1)-induced apoptosis results in loss of glucose transporter function[J]. J Immunol,1996,156(11):4092~4099
    [16]Excoffon K J, Hruska-Hageman A, Klotz M, et al. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth[J]. J Cell Sci,2004,117(Pt 19):4401~4409
    [17]Xie Y, Zhao W, Wang W, et al. Identification of a human LNX protein containing multiple PDZ domains[J]. Biochem Genet,2001,39(3-4):117~126
    [18]Tomko R P, Johansson C B, Totrov M, et al. Expression of the adenovirus receptor and its interaction with the fiber knob[J]. Exp Cell Res,2000,255(1):47~55.
    [19]Bowles N E, Ni J, Kearney D L, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. evidence of adenovirus as a common cause of myocarditis in children and adults[J]. J Am Coll Cardiol,2003,42(3):466~472
    [20]Abdolazimi Y, Mojarrad M, Pedram M, et al. Analysis of the expression of coxsackievirus and adenovirus receptor in five colon cancer cell lines[J]. World J Gastroenterol,2007, 13(47):6365~6369
    [21]Wang Y, Thorne S, Hannock J, et al. A novel assay to assess primary human cancer infectibility by replication-selective oncolytic adenoviruses[J]. Clin Cancer Res,2005, 11(1):351~360
    [22]Fuxe J, Liu L, Malin S, et al. Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts[J]. Int J Cancer,2003,103(6):723~729
    [23]Yamashita M, Ino A, Kawabata K, et al. Expression of coxsackie and adenovirus receptor reduces the lung metastatic potential of murine tumor cells[J]. Int J Cancer,2007,121(8): 1690~1696
    [24]Cascallo M, Capella G, Mazo A, et al. Ras-dependent oncolysis with an adenovirus VAI mutant[J]. Cancer Res,2003,63(17):5544~5550
    [25]Nettelbeck D M, Jerome V, Muller R. Gene therapy: designer promoters for tumour targeting [J]. Trends Genet,2000,16(4):174~181.
    [26]Lin E, Nemunaitis J. Oncolytic viral therapies [J]. Cancer Gene Ther,2004,11(10): 643~664
    [27]Hemminki A, Kanerva A, Liu B, et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression[J]. Cancer Res,2003,63(4):847~ 853
    [28]Kitazono M, Goldsmith M E, Aikou T, et al. Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228[J]. Cancer Res, 2001,61(17):6328~6330
    [29]Shayakhmetov D M, Li Z Y, Ni S, et al. Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases[J]. Cancer Res,2002, 62(4):1063~1068
    [30]李永强,胡晓桦,张力等.P14ARF、突变型p53基因表达与H101治疗头颈部鳞癌疗效的关系[J].广西医科大学学报,2006,vol.23(3):444-446
    [31]Ries S J, Brandts C H, Chung A S, et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant d11520 (ONYX-015) [J]. Nat Med,2000,6(10): 1128~1133
    [1]Suomalainen M, Nakano M Y, Boucke K, et al. Adenovirus-activated PKA and p38/ MAPK pathways boost microtubule-mediated nuclear targeting of virus[J]. Embo J,2001, 20(6):1310~1319
    [2]Li E, Stupack D, Klemke R, et al. Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase[J]. J Virol,1998,72(3):2055~2061
    [3]Li E, Stupack D, Bokoch G M, et al. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases[J]. J Virol,1998,72(11):8806~8812
    [4]Mariadason J M. HDACs and HDAC inhibitors in colon cancer[J]. Epigenetics,2008,3(1): 28~37
    [5]Kang M R, Kang J S, Han S B, et al. A novel delta-lactam-based histone deacetylase inhibitor, KBH-A42, induces cell cycle arrest and apoptosis in colon cancer cells[J]. Biochem Pharmacol,2009,78(5):486~494
    [6]Li G C, Zhang X, Pan T J, et al. Histone deacetylase inhibitor trichostatin A inhibits the growth of bladder cancer cells through induction of p21WAF1 and G1 cell cycle arrest [J]. Int J Urol.2006,13(5):581-586
    [7]Roy S, Packman K, Jeffrey R, et al. Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells[J]. Cell Death Differ,2005,12(5):482~491
    [8]Hu E, Dul E, Sung C M, et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases[J]. J Pharmacol Exp Ther,2003,307(2):720~728
    [9]Kutko M C, Glick R D, Butler L M, et al. Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro[J]. Clin Cancer Res,2003, 9(15):5749-5755
    [10]He L Z, Tolentino T, Grayson P, et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia[J]. J Clin Invest,2001, 108(9):1321~1330
    [11]Nakagawa M, Oda Y, Eguchi T, et al. Expression profile of class I histone deacetylases in human cancer tissues[J]. Oncol Rep,2007,18(4):769~774
    [12]Wilson A J, Byun D S, Popova N, et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer[J]. J Biol Chem,2006,281(19):13548~13558
    [13]Zhu W G, Otterson G A. The interaction of histone deacetylase inhibitors and DNAmethyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anticancer Agents,2003,3(3):187~199
    [14]Butler L M, Zhou X, Xu W S, et al. The histone deacetylase inhibitor SAHA arrests cancercell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin [J]. Proc Natl Acad Sci U S A,2002,99(18):11700~11705
    [15]Marks P, Rifkind R A, Richon V M, et al. Histone deacetylases and cancer: causes and therapies[J]. Nat Rev Cancer,2001,1(3):194~202
    [16]Marks P A, Richon V M, Miller T, et al. Histone deacetylase inhibitors[J]. Adv Cancer Res, 2004,91:137~168
    [17]Malinen M, Saramaki A, Ropponen A, et al. Distinct HDACs regulate the transcriptional Response of human cyclin-dependent kinase inhibitor genes to Trichostatin A and 1alpha, 25-dihydroxyvitamin D3[J]. Nucleic Acids Res,2008,36(1):121~132
    [18]Suzuki T, Yokozaki H, Kuniyasu H, et al. Effect of trichostatin A on cell growth and expression of cell cycle- and apoptosis-related molecules in human gastric and oral carcinoma cell lines[J]. Int J Cancer,2000,88(6):992~997
    [19]Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway[J]. Nat Med,2005, 11(1):71~76
    [20]Zhao L Y, Niu Y, Santiago A, et al. An EBF3-mediated transcriptional program that induces cell cycle arrest and apoptosis[J]. Cancer Res,2006,66(19):9445~9452
    [21]Woo H J, Lee S J, Choi B T, et al. Induction of apoptosis and inhibition of telomerase activity by trichostatin A, a histone deacetylase inhibitor, in human leukemic U937 cells[J]. Exp Mol Pathol,2007,82(1):77~84
    [22]Subramanian C, Opipari A W, Bian X, et al. Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors[J]. Proc Natl Acad Sci U S A,2005, 102(13):4842-4847
    [23]Anders M, Vieth M, Rocken C, et al. Loss of the coxsackie and adenovirus receptor contributes to gastric cancer progression[J]. Br J Cancer,2009,100(2):352~359
    [24]Segura-Pacheco B, Avalos B, Rangel E, et al. HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo[J]. Genet Vaccines Ther,2007,5:1~10
    [25]Sasaki Y, Negishi H, Idogawa M, et al. Histone deacetylase inhibitor FK228 enhances adenovirus-mediated p53 family gene therapy in cancer models[J]. Mol Cancer Ther,2008, 7(4):779~787
    [26]Marchion D C, Bicaku E, Daud A I, et al. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins[J]. Cancer Res,2005,65(9):3815~3822
    [27]Zhang W W. Development and application of adenoviral vectors for gene therapy of cancer [J]. Cancer Gene Ther,1999,6(2):113~138
    [28][28] O'Riordan C R, Song A, Lanciotti J. Strategies to adapt adenoviral vectors for targeted delivery[J]. Methods Mol Med,2003,76(89~112
    [29]Noureddini S C, Curiel D T. Genetic targeting strategies for adenovirus [J]. Mol Pharm, 2005,2(5):341~347
    [30]Cabrera G, Porvasnik S L, DiCorleto P E, et al. Intra-arterial adenoviral mediated tumor transfection in a novel model of cancer gene therapy[J]. Mol Cancer,2006,5(32):1~9
    [31]Zurakowski R, Wodarz D. Model-driven approaches for in vitro combination therapy using ONYX-015 replicating oncolytic adenovirus[J]. J Theor Biol,2007,245(1):1~8
    [32]Zhang N H, Song L B, Wu X J, et al. Proteasome inhibitor MG-132 modifies coxsackie and adenovirus receptor expression in colon cancer cell line lovo[J]. Cell Cycle,2008,7(7): 925~933
    [33]Kitazono M, Goldsmith M E, Aikou T, et al. Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228[J]. Cancer Res, 2001,61(17):6328~6330
    [34]Hemminki A, Kanerva A, Liu B, et al. Modulation of coxsackie-adenovirus receptor Expression for increased adenoviral transgene expression[J]. Cancer Res,2003,63(4): 847~853
    [35]Pong R C, Roark R, Ou J Y, et al. Mechanism of increased coxsackie and adenovirus receptor gene expression and adenovirus uptake by phytoestrogen and histone deacetylase inhibitor in human bladder cancer cells and the potential clinical application[J]. Cancer Res, 2006,66(17):8822~8828
    [36]Fan S, Maguire C A, Ramirez S H, et al. Valproic acid enhances gene expression from viral gene transfer vectors[J]. J Virol Methods,2005,125(1):23~33.
    [37]Ma G, Kawamura K, Li Q, et al. Cytotoxicity of adenoviruses expressing the wild-type p53 gene to esophageal carcinoma cells is linked with the CAR expression level and indirectly with the endogenous p53 status. Cancer Gene Ther,2009,16(11):832~840
    [38]Boyle G M, Martyn A C, Parsons P G. Histone deacetylase inhibitors and malignant melanoma[J]. Pigment Cell Res,2005,18(3):160~166
    [39]Postigo A, Ferrer P E. Viral inhibitors reveal overlapping themes in regulation of cell death and innate immunity[J]. Microbes Infect,2009,11(13):1071~1078
    [40]Hay S, Kannourakis G. A time to kill: viral manipulation of the cell death program[J]. J Gen Virol,2002,83(Pt 7):1547~1564
    [41]Boldt S, Weidle U H, Kolch W. The kinase domain of MEKK1 induces apoptosis by dysregulation of MAP kinase pathways[J]. Exp Cell Res,2003,283(1):80~90
    [42]Gysin S, Lee S H, Dean N M, et al. Pharmacologic inhibition of RAF-->MEK-->ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1[J]. Cancer Res,2005,65(11):4870~4880
    [43]McCubrey J A, Steelman L S, Chappell W H, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance[J]. Biochim Biophys Acta,2007, 1773(8):1263~1284
    [44]Chen Y, Lu Q, Schneeberger E E, et al. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells[J]. Mol Biol Cell,2000,11(3):849~862
    [45]Endo K, Ueda T, Ueyama J, et al. Immunoreactive E-cadherin, alpha-catenin, beta-catenin, and gamma-catenin proteins in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, and patients'survival [J]. Hum Pathol,2000,31(5):558~565
    [46]Hoover K B, Liao S Y, Bryant P J. Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity[J]. Am J Pathol, 1998,153(6):1767~1773
    [47]Anders M, Christian C, McMahon M, et al. Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells[J]. Cancer Res,2003,63(9):2088~2095
    [48]Tatebe H, Shimizu M, Shirakami Y, et al. Acyclic retinoid synergises with valproic acid to inhibit growth in human hepatocellular carcinoma cells[J]. Cancer Lett,2009,285(2): 210~217
    [49]Strahl B D, Allis C D. The language of covalent histone modifications[J]. Nature,2000, 403(6765):41~45
    [50]Cress W D, Seto E. Histone deacetylases, transcriptional control, and cancer[J]. J Cell Physiol,2000,184(1):1-16.
    [51]Zhou X, Richon V M, Wang A H, et al. Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras[J]. Proc Natl Acad Sci U S A,2000,97(26):14329~14333.
    [52]Korf U, Wiemann S. Protein microarrays as a discovery tool for studying protein-protein interactions[J]. Expert Rev Proteomics,2005,2(1):13~26.
    [1]Kirn D, Martuza R L, Zwiebel J. Replication-selective virotherapy for cancer:Biological principles, risk management and future directions[J]. Nat Med,2001,7(7):781~787
    [2]Hawkins L K, Lemoine N R, Kirn D. Oncolytic biotherapy: a novel therapeutic plafform[J]. Lancet Oncol,2002,3(1):17~26
    [3]Chu R L, Post D E, Khuri F R, et al. Use of replicating oncolytic adenoviruses in combination therapy for cancer[J]. Clin Cancer Res,2004,10(16):5299~5312
    [4]Sauthoff H, Hu J, Maca C, et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors:virus persists and spreads systemically at late time points[J]. Hum Gene Ther,2003,14(5):425~433
    [5]Shuster S, Frost G I, Csoka A B, et al. Hyaluronidase reduces human breast cancer xenografts in SCID mice[J]. Int J Cancer,2002,102(2):192~197
    [6]Vasey P A, Shulman L N, Campos S, et al. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (d11520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer[J]. J Clin Oncol, 2002,20(6):1562~1569
    [7]Ferreira T B, Ferreira A L, Carrondo M J, et al. Two different serum-free media and osmolality effect upon human 293 cell growth and adenovirus production[J]. Biotechnol Lett.2005,27(22):1809~1813
    [8]Jardon M, Gamier A. pH, pCO2, and temperature effect on R-adenovirus production [J]. Biotechnol Prog,2003,19(1):202~208
    [9]Henry O, Dormond E, Perrier M, et al. Insights into adenoviral vector production kinetics in acoustic filterbased perfusion cultures[J]. Biotechnol Bioeng,2004,86(7):765~774
    [10]Kim M, Zinn K R, Barnett B G, et al. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by alow level of primary adenovirus receptors on tumour cells [J]. Eur J Cancer,2002,38(14):1917~1926
    [11]Kamen A, Henry O. Development and optimization of an adenovirus production process[J]. J Gen Med,2004,6 Suppl 1:S184~192
    [12]Eikenes L, Bruland O S, Brekken C, et al. Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts[J].Cancer Res,2004,64(14):4768~4773
    [13]Simpson M A. Concurrent expression of hyaluronan biosynthetic and processing enzymes promotes growth and vascularization of prostate tumors in mice[J]. Am J Pathol,2006, 169(1):247~257
    [14]Victor R, Chauzy C, Girard N, et al. Human breast-cancer metastasis formation in a nude-mouse model:studies of hyaluronidase, hyaluronan and hyaluronan-binding sites in metastatic cells[J]. Int J Cancer,1999,82(1):77~83
    [15]Boucher R C, Knowles M R, Johnson L G, et al. Gene therapy for cystic fibrosis using E1-deleted adenovirus:a phase I trial in the nasal cavity[J]. Hum Gene Ther,1994,5(5): 615~639
    [16]Todo T, Rabkin S D, Sundaresan P, et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus[J]. Hum Gene Ther,1999,10(17):2741~2755
    [17]Hallden G, Hill R, Wang Y, et al. Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy[J]. Mol Ther,2003,8(3): 412~424
    [18]Sandor V, Bakke S, Robey R W,et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms[J]. Clin Cancer Res,2002,8(3):718~728
    [19]Seidman M A, Hogan S M, Wendland R L, et al. Variation in adenovirus receptor expression and adenovirus vector-mediated transgene expression at defined stages of the cell cycle[J]. Mol Ther,2001,4(1):13~21
    [20]Ritchie D, Piekarz R L, Blombery P, et al. Reactivation of DNA viruses in association with histone deacetylase inhibitor therapy:a case series report[J]. Haematologica,2009,94(11): 1618~1622
    [1]Tomko R P, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses[J]. Proc Natl Acad Sci U S A,1997,94(7):3352~3356
    [2]He Y, Chipman P R, Howitt J, et al. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor[J]. Nat Struct Biol,2001,8(10):874~878
    [3]Bergelson J M, Cunningham J A, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5[J]. Science,1997,275(5304):1320~1323
    [4]Chehadeh W, Bouzidi A, Alm G, et al. Human antibodies isolated from plasma by affinity chromatography increase the coxsackievirus B4-induced synthesis of interferon-alpha by human peripheral blood mononuclear cells in vitro[J]. J Gen Virol,2001,82(Pt 8): 1899~1907
    [5]Thoelen I, Magnusson C, Tagerud S, et al.Identification of alternative splice products encoded by the human coxsackie-adenovirus receptor gene. Biochem Biophys Res Commun,2001,287(1):216~222.
    [6]Thoelen I, Keyaerts E, Lindberg M, et al. Characterization of a cDNA encoding the bovine coxsackie and adenovirus receptor. Biochem Biophys Res Commun,2001,288(4): 805~808
    [7]Chen J W, Ghosh R, Finberg R W, et al. Structure and chromosomal localization of the murine coxsackievirus and adenovirus receptor gene[J]. DNA Cell Biol,2003,22(4): 253~259
    [8]Pong R C, Lai Y J, Chen H, et al. Epigenetic regulation of coxsackie and adenovirus receptor (CAR) gene promoter in urogenital cancer cells[J]. Cancer Res,2003;63(24): 8680~8686
    [9]Bergelson J M, Krithivas A, Celi L, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses[J]. J Virol,1998,72(1):415~419
    [10]Fechner H, Noutsias M, Tschoepe C, et al. Induction of coxsackievirus-adenovirus-receptor expression during myocardial tissue formation and remodeling: identification of a cell-to-cell contact-dependent regulatory mechanism[J]. Circulation,2003,107(6):876~882
    [11]Dorner A, Xiong D, Couch K, et al. Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection[J]. J Biol Chem,2004,279(18):18497~18503
    [12]Carson S D. Coxsackievirus and adenovirus receptor (CAR) is modified and shed in membrane vesicles[J]. Biochemistry,2004,43(25):8136~8142
    [13]Bernal R M, Sharma S, Gardner B K, et al. Soluble coxsackievirus adenovirus receptor is a putative inhibitor of adenoviral gene transfer in the tumor milieu[J]. Clin Cancer Res,2002, 8(6):1915~1923
    [14]Xie Y, Zhao W, Wang W, et al. Identification of a human LNX protein containing multiple PDZ domains[J]. Biochem Genet,2001,39(3-4):117~126
    [15]Bewley M C, Springer K, Zhang Y B, et al. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR[J]. Science,1999,286(5444): 1579~1583
    [16]van Raaij M J, Chouin E, van der Zandt H, et al. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution[J]. Structure,2000,8(11): 1147~1155
    [17]Honda T, Saitoh H, Masuko M, et al. The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain[J]. Brain Res Mol Brain Res,2000, 77(1):19~28
    [18]Cohen C J, Shieh J T, Pickles R J, et al. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction [J]. Proc Natl Acad Sci U S A,2001,98(26): 15191~15196
    [19]Okegawa T, Pong R C, Li Y, et al. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer:a functional analysis of car protein structure[J]. Cancer Res,2001,61(17):6592~6600
    [20]Atkins A R, Osborne M J, Lashuel H A, et al. Association between the first two immunoglobulin-like domains of the neural cell adhesion molecule N-CAM[J]. FEBS Lett, 1999,451(2):162~168
    [21]Kostrewa D, Brockhaus M, D'Arcy A, et al. X-ray structure of junctional adhesion molecule:structural basis for homophilic adhesion via a novel dimerization motif[J]. Embo J,2001,20(16):4391~4398
    [22]Noutsias M, Fechner H, de Jonge H, et al. Human coxsackie-adenovirus receptor is colocalized with integrins alpha(v)beta(3) and alpha(v)beta(5) on the cardiomyocyte sarcolemma and upregulated in dilated cardiomyopathy:implications for cardiotropic viral infections[J]. Circulation,2001,104(3):275~280
    [23]Petrella J, Cohen C J, Gaetz J, et al. A zebrafish coxsackievirus and adenovirus receptor homologue interacts with coxsackie B virus and adenovirus[J]. J Virol,2002,76(20): 10503~10506
    [24]Xu R, Crowell R L. Expression and distribution of the receptors for coxsackievirus B3 during fetal development of the Balb/c mouse and of their brain cells in culture[J]. Virus Res,1996,46(1-2):157~170
    [25]Hotta Y, Honda T, Naito M, et al. Developmental distribution of coxsackie virus and adenovirus receptor localized in the nervous system[J]. Brain Res Dev Brain Res,2003, 143(1):1~13
    [26]Feuer R, Mena I, Pagarigan R R, et al. Coxsackievirus B3 and the neonatal CNS:the roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease[J]. Am J Pathol,2003,163(4):1379~1393
    [27]Nalbantoglu J, Pari G, Karpati G, et al. Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells[J]. Hum Gene Ther,1999, 10(6):1009~1019
    [28]Ito M, Kodama M, Masuko M, et al. Expression of coxsackievirus and adenovirus receptor inhearts of rats with experimental autoimmune myocarditis[J]. Circ Res,2000,86(3): 275~280
    [29]Kashimura T, Kodama M, Hotta Y, et al. Spatiotemporal changes of coxsackievirus and adenovirus receptor in rat hearts during postnatal development and in cultured cardiomyocytes of neonatal rat[J]. Virchows Arch,2004,444(3):283~292
    [30]Seidman M A, Hogan S M, Wendland R L, et al. Variation in adenovirus receptor expression and adenovirus vector-mediated transgene expression at defined stages of the cell cycle[J]. Mol Ther,2001,4(1):13~21
    [31]Tomko R P, Johansson C B, Totrov M, et al. Expression of the adenovirus receptor and its interaction with the fiber knob[J]. Exp Cell Res,2000,255(1):47~55
    [32]Johansson C B, Momma S, Clarke D L, et al. Identification of a neural stem cell in the adult mammalian central nervous system[J]. Cell,1999,96(1):25~34
    [33]Bowles N E, Ni J, Kearney D L, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. evidence of adenovirus as a common cause of myocarditis in children and adults[J]. J Am Coll Cardiol,2003,42(3):466~472
    [34]Fechner H, Haack A, Wang H, et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther,1999,6(9):1520~1535
    [35]Walters R W, Freimuth P, Moninger T O, et al. Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape[J]. Cell,2002,110(6):789~799
    [36]Freimuth P, Springer K, Berard C, et al. Coxsackievirus and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus type 2 and fiber knob from adenovirus type 12[J]. J Virol,1999,73(2):1392~1398
    [37]Russell W C. Update on adenovirus and its vectors[J]. J Gen Virol,2000,81(Pt 11): 2573-2604
    [38]Staehelin L A. Further observations on the fine structure of freeze-cleaved tight junctions [J]. J Cell Sci,1973,13(3):763~786
    [39]Sasaki H, Matsui C, Furuse K, et al. Dynamic behavior of paired claudin strands within apposing plasma membranes[J]. Proc Natl Acad Sci U S A,2003,100(7):3971~3976
    [40]Morita K, Furuse M, Fujimoto K, et al. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands [J]. Proc Natl Acad Sci USA,1999,96(2):511~516
    [41]Fujimoto K. Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes[J]. J Cell Sci,1995,108 (Pt 11)(3443~3449
    [42]Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction[J]. Semin Cell Dev Biol,2000,11(4):315~324
    [43]Itoh M, Furuse M, Morita K, et al. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins[J]. J Cell Biol, 1999,147(6):1351~1363
    [44]Fanning A S, Jameson B J, Jesaitis L A, et al. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton[J]. J Biol Chem,1998,273(45):29745~29753
    [45]Toyofuku T, Yabuki M, Otsu K, et al. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes[J]. J Biol Chem,1998,273(21):12725~12731
    [46]Bazzoni G, Martinez-Estrada O M, Orsenigo F, et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin[J]. J Biol Chem, 2000,275(27):20520~20526
    [47]Fanning A S, Ma T Y, Anderson J M.. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1[J]. Faseb J,2002,16(13):1835~1837
    [48]Ebnet K, Schulz C U, Meyer Zu Brickwedde M K, et al. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1[J]. J Biol Chem,2000, 275(36):27979~27988
    [49]Jones J, Krag S S, Betenbaugh M J. Controlling N-linked glycan site occupancy[J]. Biochim Biophys Acta,2005,1726(2):121~137
    [50]Mitra N, Sinha S, Ramya T N, et al. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function[J]. Trends Biochem Sci,2006,31(3):156~163
    [51]Dube D H, Bertozzi C R. Glycans in cancer and inflammation--potential for therapeutics anddiagnostics[J]. Nat Rev Drug Discov,2005,4(6):477~488
    [52]Ohtsubo K, Marth J D. Glycosylation in cellular mechanisms of health and disease[J]. Cell, 2006,126(5):855~867.
    [53]Samulski R J, Chang L S, Shenk T. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression[J]. J Virol,1989,63(9): 3822~3828.
    [54]Chen C C, Baylor M, Bass D M. Murine intestinal mucins inhibit rotavirus infection. Gastroenterology,1993,105(1):84~92
    [55]Hanna S L, Pierson T C, Sanchez M D, et al. N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity[J]. J Virol,2005,79(21): 13262~13274
    [56]Bruning A, Runnebaum I B. The coxsackie adenovirus receptor inhibits cancer cell migration[J]. Exp Cell Res,2004,298(2):624~631
    [57]Seiradake E, Lortat-Jacob H, Billet O, et al. Structural and mutational analysis of human Ad37 and canine adenovirus 2 fiber heads in complex with the Dl domain of coxsackie and adenovirus receptor[J]. J Biol Chem,2006,281(44):33704~33716
    [58]Excoffon K J, Hruska-Hageman A, Klotz M, et al. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth[J]. J Cell Sci,2004,117(Pt 19):4401~4409
    [59]Persson R, Wohlfart C, Svensson U, et al. Virus-receptor interaction in the adenovirus system: characterization of the positive cooperative binding of virions on HeLa cells [J]. J Virol,1985,54(1):92~97
    [60]Bowles N E, Javier Fuentes-Garcia F, Makar K A, et al. Analysis of the coxsackievirus B-adenovirus receptor gene in patients with myocarditis or dilated cardiomyopathy[J]. Mol Genet Metab,2002,77(3):257~259
    [61]Fuxe J, Liu L, Malin S, et al. Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts[J]. Int J Cancer,2003,103(6):723~729
    [62]Sachs M D, Rauen K A, Ramamurthy M, et al. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer[J]. Urology,2002,60(3):531~536
    [63]Yamashita M, Ino A, Kawabata K, et al. Expression of coxsackie and adenovirus receptor reduces the lung metastatic potential of murine tumor cells[J]. Int J Cancer,2007,121(8): 1690~1696
    [64]Timar J. Problems of tumor progression:doubts or hopes at the turn of the Millennium? [J]. Orv Hetil,2000,141(17):891~899
    [65]Cavallaro U, Christofori G. Multitasking in tumor progression: signaling functions of cell adhesion molecules[J]. Ann N Y Acad Sci,2004,1014(58~66
    [66]Syrigos K N, Deonarain D M, Karayiannakis A, et al. Epithelial mucin expression in bladder cancer: correlation with pathological and clinical parameters[J]. Urol Res,2000, 28(4):241~245
    [67]Syrigos K N, Katirtzoglou N, Kotteas E, et al. Adhesion molecules in lung cancer: implications in the pathogenesis and management[J]. Curr Pharm Des,2008,14(22):2173~ 2183
    [68]Ashbourne Excoffon K J, Moninger T, Zabner J. The coxsackie B virus and adenovirus receptor resides in a distinct membrane microdomain[J]. J Virol,2003,77(4):2559~2567
    [69]Jiang S, Jacobs A, Laue T M, et al. Solution structure of the coxsackievirus and adenovirus receptor domain 1. Biochemistry,2004,43(7):1847~1853
    [70]Yeh P, Perricaudet M. Advances in adenoviral vectors: from genetic engineering to their biology[J]. Faseb J,1997,11(8):615~623
    [71]Bruder J T, Appiah A, Kirkman W M, et al. Improved production of adenovirus vectors expressing apoptotic transgenes[J]. Hum Gene Ther,2000,11(1):139~149
    [72]Kitazono M, Goldsmith M E, Aikou T, et al. Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228 [J]. Cancer Res, 2001,61(17):6328~6330
    [73]Hemminki A, Kanerva A, Liu B, et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression [J]. Cancer Res,2003,63(4): 847-853
    [74]Anders M, Christian C, McMahon M, et al. Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells[J]. Cancer Res,2003,63(9):2088~2095
    [75]O'Riordan C R, Lachapelle A, Delgado C, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo[J]. Hum Gene Ther,1999,10(8):1349~1358
    [76]Douglas J T, Rogers B E, Rosenfeld M E, et al. Targeted gene delivery by tropism-modified adenoviral vectors[J].Nat Biotechnol,1996,14(11):1574~1578
    [77]Goldman C K, Rogers B E, Douglas J T, et al. Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor[J]. Cancer Res,1997,57(8):1447~1451
    [78]Haisma H J, Pinedo H M, Rijswijk A, et al. Tumor-specific gene transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM[J]. Gene Ther,1999,6(8): 1469~1474
    [79]Watkins S J, Mesyanzhinov V V, Kurochkina L P, et al. The 'adenobody' approach to viral targeting: specific and enhanced adenoviral gene delivery[J]. Gene Ther,1997,4(10): 1004~1012
    [80]Dmitriev I, Kashentseva E, Rogers B E, et al. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells[J]. J Virol,2000,74(15): 6875~6884
    [81]Sebestyen Z, de Vrij J, Magnusson M, et al. An oncolytic adenovirus redirected with a tumor-specific T-cell receptor[J]. Cancer Res,2007,67(23):11309~11316
    [82]Xia D, Henry L J, Gerard R D, et al. Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution[J]. Structure,1994,2(12):1259~1270
    [83]Omori N, Mizuguchi H, Ohsawa K, et al. Modification of a fiber protein in an adenovirus vector improves in vitro gene transfer efficiency to the mouse microglial cell line[J]. Neurosci Lett,2002,324(2):145~148

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700