用户名: 密码: 验证码:
城市框架内的碳足迹量化方法及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以自上而下视角,在城市框架内对城市、部门、行业、企业和产品等多个对象展开碳足迹量化方法研究,主要从概念内涵、计算方法和研究案例等3个方面对不同的碳足迹量化方法进行分析和总结,建立起一套自上而下、在城市框架内开展的碳足迹量化和影响因素研究的逻辑体系,以期推动国内碳足迹理论和实践的发展,为城市应对气候变化、系统推进节能减排工作奠定科学理论基础。同时,对高碳行业的碳排放强度及能源消费碳足迹进行了因素分解研究,并进行了实证分析。
     本论文提出的以调研为基础、基于能源消耗的城镇碳足迹量化方法综合采用了IPCC的计算方法和GHG Protocol的“范围”划分概念,计算结果与其它城市的碳足迹结果具有较高的可比性。通过对小榄镇的碳排放结果进行数据分析,发现控制外购电力消耗、降低制造业、居民生活、以及电力、燃气及水的生产和供应业等3个部门的碳排放,是小榄镇低碳决策的关键。最后,为促进小榄镇低碳经济的发展,本论文还提出了4个策略方针。
     运用排放因子法,计算出广州市规模以上工业2006-2011年的碳排放量和碳排放强度。根据计算结果,从行业碳排放总量上确定出高排放行业,从行业碳排放强度上确定出高碳行业。然后运用因素分解法,对高碳行业碳排放强度变化中的结构份额和效率份额进行了测算,发现高碳行业碳排放强度的下降主要由效率份额贡献,结构份额总体上主要起抑制作用。
     从能源结构、能源排放强度、能源强度、经济增长、人口规模等5方面考虑,利用LMDI方法对影响工业行业能源消费碳足迹的因素进行分解,并选取纺织业作为研究对象进行实证分析。研究结果表明,经济增长效应是纺织业碳排放降低的主要抑止因素,而能源强度效应对于减少碳排放量具有重要意义,是纺织业碳排放降低的主要拉动因素。
     应用工业碳足迹的评估模型,并选取典型纺织品作为研究对象,对工业产品在工业生产加工阶段的碳足迹进行量化方法研究。研究结果表明:1000千克全涤纶印花布和全棉染色布的工业碳足迹分别为9245.32千克CO2e和8007.26千克CO2e;染缸工艺为两种产品主要生产线上碳排放最高的阶段;热电联产机组的原煤消耗为纺织品工业碳足迹的主要源头;不能忽视主要生产线外的公共部分碳排放。
     以纺织品工业碳足迹的主要排放源(火电机组)中典型碳排放环节——烟气脱硫(FGD)工艺——为研究对象,运用生命周期评价(LCA)方法,综合比较和评价了循环流化床烟气脱硫(CFB-FGD)口石灰石湿法烟气脱硫(WFGD)技术的全生命周期过程的环境性能,研究结果表明,在节约能源消耗、应对气候变化、以及综合的环境性能上WFGD技术具有优势,而在节约资源消耗上CFB-FGD的性能技术则更为优异。此外,可通过提高脱硫副产品的利用率,减轻脱硫技术对环境性能的整体影响。
In this thesis, carbon footprint quantitative methods for cities, sectors, industries,enterprises and products were researched within the urban framework, from a top-downperspective. Different carbon footprint quantitative methods were analyzed and summarizedin areas of concept discrimination and definition, calculation methods and case studies, atop-down research system on quantitative methods and influencing factors of carbon footprintwithin the urban framework were established, in order to promote the development of carbonfootprint theory and practice, and provide scientific reference for cities to respond to globalclimate changes and promote energy saving and emission reduction. Meanwhile, carbonintensity and carbon footprint of high carbon intensity industries were studied by using thefactor decomposition method and some empirical analysis.
     In this paper, a survey-based, energy-related quantitative method of carbon footprint fortowns was presented, which combined the calculation method of IPCC Guidelines and the“scope” concept of GHG Protocol. It can provide higher consistency with other cities’ carbonfootprint results. According to analysis for the carbon emission data of Xiaolan, it is the cruxof low-carbon policy-making to control purchased electricity consumption and reduce carbonemissions from the “manufacturing”,“residents”, power, gas&water production and supply”sectors. Finally, four strategic policy approaches to facilitate the development of low-carboneconomy in Xiaolan were proposed.
     The “emission factor” method from IPCC Guidelines was used to calculate the quantityand intensity of carbon emissions from industrial sectors above designated size in Guangzhoufrom2006to2011. According to the results, high carbon emission industries were classifiedby the quantity of carbon emissions, and high carbon intensity industries were classified bythe level of carbon intensity. Then, the structure share and efficiency share of the changes ofthe carbon emission intensity of high carbon intensity industries were calculated by using thefactor decomposition method. The results showed that the decline trend of the carbonemission intensity was mainly caused by efficiency, while structure played an inhibitoryeffect.
     The decomposition model of carbon footprint caused by energy consumption of Guangzhou’s industries was built with the LMDI method and the influencing factorsincluding energy structure, energy emission intensity, energy intensity, economic growth andpopulation size were analyzed with the model. The textile industry was selected as the objectand then studied by an empirical analysis. Results showed that the economic growth effectwas the main inhibiting factor for the decrease of carbon emissions of Guangzhou’s textileindustry while the energy intensity effect was meaningful and the main pull factors for thedecrease of carbon emissions.
     An industrial carbon footprint assessment model was used to calculate carbon footprintsof industrial products during producing and processing stage. The typical textiles wereselected as the study object. The findings indicated that the carbon footprints of1000kg100%polyester calico and100%cotton dyed fabric were9245.32kg CO2e and8007.26kg CO2e,respectively; in the main production line, the dyeing machines emit the highest carbonemission; the combined heat and power generation (CHP) unit was the main source ofindustrial carbon footprints of two textiles; the part from public responsible carbon emissionsshould not be ignored.
     The typical carbon emissions process of the main carbon emission source (Thermalpower unit) resulting in industrial carbon footprint of textile, flue gas desulfurization (FGD)process, was researched. Life cycle assessment (LCA) method was used to compare andassess the circulating fluidized bed flue gas desulfurization (CFB-FGD) and wet limestoneflue gas desulfurization (WFGD) technologies, comprehensively. The results showed that theWFGD technology had the advantages in energy saving, response to climate change andcomprehensive environmental performance, while the CFB-FGD technology had superiorperformance in terms of resource conservation. Furthermore, comprehensive environmentalimpact of FGD technologies can be decreased by increasing the utilization rate of FGDby-products.
引文
[1]石龙宇,崔胜辉.气候变化对城市生态系统的影响研究进展[J].环境科学与技术,2010,33(6E):193-197.
    [2]付加锋,耿涌,刘竹,等.中国低碳试点省份经济增长与碳排放关系研究[J].资源科学,33(4):620-625.
    [3]丁丁,杨秀.我国低碳发展试点工作进展分析及政策建议[J].经济研究参考,2013,43:92-96.
    [4]耿涌,董会娟,郗凤明,等.应对气候变化的碳足迹研究综述[J].中国人口资源与环境,2010,20(010):6-12.
    [5]计军平,马晓明.碳足迹的概念和核算方法研究进展[J].生态经济,2011,(4):76-80.
    [6]车卫红.我国工业碳源和能源碳源排碳量估算研究[D];北京:北京林业大学,2010.
    [7]董雪,柯水发.国内外碳足迹计算方法,评估标准及研究进展[A].陈建成,田明华,肖忠优.绿色经济与林业发展论——第六届中国林业技术经济理论与实践论坛论文集[C].北京:中国林业出版社,2012:89-96.
    [8]Wackernagel M, Rees W E. Our ecological footprint: reducing human impact on the earth [M]. New Society Publishers,2013.
    [9]WBCSD, WRI. The Greenhouse Gas Protocol:A Corporate Accounting and Reporting Standards (REVISED EDITION)[M/OL]. http://www.ghgprotocol.org/files/ghgp/public/ghg-protocol-revised.pdf,2004.
    [10]马倩倩,卢宝荣,张清文.碳足迹评价及其在造纸行业的应用[J].中国造纸,2012,30(11):64-69.
    [11]Wiedmann T, Minx J. A definition of carbon footprint'[J]. Ecological economics research trends,2007,(2):55-65.
    [12]Padgett J P, Steinemann A C, Clarke J H, et al. A comparison of carbon calculators [J]. Environmental Impact Assessment Review,2008,28(2):106-115.
    [13]Kitzes J, Galli A, Bagliani M, et al. A research agenda for improving national Ecological Footprint accounts [J]. Ecological Economics,2009,68(7):1991-2007.
    [14]Hammond G. Time to give due weight to the'carbon footprint' issue [J]. Nature,2007, 445(7125):256.
    [15]ISO.14040Environmental management-life cycle assessment-principles and framework [M]. London: British Standards Institution.2006.
    [16]董雪旺.国内外碳足迹研究进展述评[J].浙江工商大学学报,2013,1(2):67-75.
    [17]ISO.14044:environmental management—life cycle assessment—requirements and guidelines [J]. International Organization for Standardization,2006.
    [18]ISO.14064-1:2006-Greenhouse gases-Part1:Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals [M]. International Organization For Standardization,2006.
    [19]ISO.14064-2:2006. Greenhouse Gases—Part2. Specification with Guidance at the Project Level for Quantification, Monitoring and Reporting of Greenhouse Gas Emission Reductions or Removal Enhancements [M]. International Organization for Standardization, Geneva, Switzerland,2006.
    [20]ISO.14064-3:2006. Greenhouse Gases. Part3. Specification With Guidance for the Validation and Verification of Greenhouse Gas Assertions [M]. International Organization for Standardization, Geneva, Switzerland,2006.
    [21]ISO. ISO14065:Greenhouse gases—requirements for greenhouse gas validation and verification bodies for use in accreditation or other forms of recognition [M]. International Organization for Standardization,2007.
    [22]ISO. ISO14067:carbon footprint of products [M]. International Organization for Standardization,2013.
    [23]IPCC. IPCC Guidelines for National Greenhouse Gas Inventories [M/OL]. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html,2006.
    [24]PAS B.2050:2011Specification for the assessment of the life cycle greenhouse gas emissions of goods and services [M]. British Standards Institution,2011.
    [25]WBCSD, WRI. The GHG Protocol for Project Accounting [M/OL]. http://www.ghgprotocol.org/files/ghgp/ghg project protocol.pdf,2005.
    [26]Protocol G. Corporate value chain (Scope3) accounting and reporting standard [J]. World Resources Institute and World Business Council for Sustainable Development, USA,2011,
    [27]Protocol G G. Product life cycle accounting and reporting standard [J]. World Business Council for Sustainable Development and World Resource Institute,2011.
    [28]ICLEI. International Local Government GHG Emissions Analysis Protocol (IEAP)(Version1.0)[M/OL]. http://carbonn.org/fileadmin/user upload/carbonn/Standards/IEAP October2010color.pdf,2009.
    [29]UNEP, UN-HABITAT, Bank W. Draft International Standard for Determining Greenhouse Gas Emissions for Cities [J]. United Nations Environment Programme,2010.
    [30]李晴,唐立娜,石龙宇.城市温室气体排放清单编制研究进展[J].生态学报,2013,33(2):367-373.
    [31]Baldasano J M, Soriano C, Boada L s. Emission inventory for greenhouse gases in the City of Barcelona,1987-1996[J]. Atmospheric Environment,1999,33(23):3765-3775.
    [32]Gupta R. Oxford Climate Change Action Plan [J]. Oxford Institute for Sustainable Development Submitted to Oxford City Council,2005.
    [33]Jacobson M Z. Enhancement of local air pollution by urban CO2domes [J]. Environmental science&technology,2010,44(7):2497-2502.
    [34]Hoornweg D, Sugar L, Gomez C L T. Cities and greenhouse gas emissions:moving forward [J]. Environment and Urbanization,2011,23(1):207-227.
    [35]Dickinson J, Desai R. Inventory of New York City greenhouse gas emissions [M/OL]. http://www.nyc.gov/html/planyc2030/downloads/pdf/greenhousegas2009.pdf,2009.
    [36]Dickinson J, Desai R. Inventory of New York City Greenhouse Gas Emissions [M/OL]. http://www.nvc.gov/html/om/pdf/2010/pr412-10report.pdf,2010.
    [37]ICF-International. Greenhouse Gases and Air Pollutants in the City of Toronto-Towards a Harmonized Strategy for Reducing Emission [M/OL].
    http://wwwl.toronto.ca/staticfiles/city of toronto/toronto atmospheric fund/files/pdf/ghginv entory iun07.pdf,2007.
    [38]Lemon M, Foley P, Gary F. Greenhouse Gas Inventory for the City of Bloomington, Indiana Footprint, Projections, and Recommendations [M/OL].
    http://bloomington.in.gov/media/media/application/pdf/5047.pdf,2009.
    [39]Ramaswami A, Janson B, Hillman T, et al. Greenhouse Gas Inventory for the City and County of Denver [M/OL]. http://www.greenprintdenver.org/docs/Denver GHG Inventory Report.pdf,2007.
    [40]Li Q, Guo R, Li F, et al. Integrated inventory-based carbon accounting for energy-induced emissions in Chongming eco-island of Shanghai, China [J]. Energy Policy,2012,49:173-181.
    [41]袁晓辉,顾朝林.北京城市温室气体排放清单基础研究[J].城市环境与城市生态,2011,24(001):5-8.
    [42]蔡博峰.中国城市温室气体清单研究[J].中国人口资源与环境,2012,22(1):21-27.
    [43]蔡博峰,刘春兰,陈操操.城市温室气体清单研究[M].化学工业出版社,2009.
    [44]Li L, Chen C, Xie S, et al. Energy demand and carbon emissions under different development scenarios for Shanghai, China [J]. Energy Policy,2010,38(9):4797-4807.
    [45]Sugar L, Kennedy C, Leman E. Greenhouse gas emissions from Chinese cities [J]. Journal of Industrial Ecology,2012,16(4):552-563.
    [46]Feng Y Y, Zhang L X. Scenario analysis of urban energy saving and carbon abatement policies:A case study of Beijing city, China [J]. Procedia Environmental Sciences,2012,13:632-644.
    [47]Leung D, Lee Y. Greenhouse gas emissions in Hong Kong [J]. Atmospheric environment,2000,34(26):4487-4498.
    [48]Lin J, Cao B, Cui S, et al. Evaluating the effectiveness of urban energy conservation and GHG mitigation measures:The case of Xiamen city, China [J]. Energy Policy,2010,38(9):5123-5132.
    [49]Xi F, Geng Y, Chen X, et al. Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China [J]. Energy Policy,2011,39(10):5999-6010.
    [50]Liu C-M, Liou M-L, Yeh S-C, et al. Target-aimed versus wishful-thinking in designing efficient GHG reduction strategies for a metropolitan city: Taipei [J]. Energy Policy,2009,37(2):400-406.
    [51]Liu L, Zhang B, Bi J, et al. The greenhouse gas mitigation of industrial parks in China: A case study of Suzhou Industrial Park [J]. Energy Policy,2012,46:301-307.
    [52]杨建新,徐成,王如松.产品生命周期评价方法及应用[M].北京:气象出版社,2002.
    [53]马骕.棉织品的生命周期评价[J].中国环保产业,2007,(2):22-25.
    [54]李静,王艳丽,周美华,等.棉织品的生命周期影响评价[J].纺织导报,2010,(2):20-23.
    [55]董艳红,钱竞芳,薛文良.棉纺织品碳足迹的研究[J].上海纺织科技,2012,(4):1-2.
    [56]赵年花.涤纶纺织品的碳足迹评估与低碳措施[D];东华大学,2012.
    [57]郝淑丽.服装产业全生命周期低碳模式探究[J].纺织导报,2012,(2):16-18.
    [58]吕小妮.服装生产环节碳足迹[J].山东纺织科技,2014,(1):29-32.
    [59]卢安.基于LCA的服装产品碳足迹评价研究[J].纺织导报,2013,(2):15-18.
    [60]Laurent A, Olsen S I, Hauschild M Z. Carbon footprint as environmental performance indicator for the manufacturing industry [J]. CIRP Annals-Manufacturing Technology,2010,59(1):37-40.
    [61]代方舟,吴迪,王丹寅,等.工业过程的碳足迹评价与应用初探[J].2011,(10):29-33.
    [62]Andrews S L D. A classification of carbon footprint methods used by companies [D]; Massachusetts Institute of Technology, Engineering Systems Division,2009.
    [63]刘正权,陈璐.低碳产品和服务评价技术标准及碳标签发展现状[J].中国建材科技,2010,(2):69-78.
    [64]孙庆智,王丽华,刘秀巍,等.碳足迹与纺织工业[J].纺织导报,2011,(3):15-8.
    [65]张莉,陈云.低碳经济与纺织可持续发展(三)——公司碳足迹核算与管理[J].印染,2011,37(002):40-42.
    [66]李昕,吴雄英,丁雪梅.纺织服装工业碳足迹核算中的若干问题[J].印染,2013,(12):35-38.
    [67]王来力,丁雪梅,吴雄英.纺织产品碳足迹研究进展[J].纺织学报,2013,34(6):113-119.
    [68]国涓,刘长信.中国工业部门的碳排放:影响因素及减排潜力[J].资源科学,2011,33(9):1630-1640.
    [69]Ang B W, Zhang F. A survey of index decomposition analysis in energy and environmental studies [J]. Energy,2000,25(12):1149-1176.
    [70]郭朝先.中国碳排放因素分解:基于LMDI分解技术[J].中国人口资源与环境, 2011,20(12):4-9.
    [71]Ang B. Decomposition analysis for policymaking in energy::which is the preferred method?[J]. Energy policy,2004,32(9):1131-1139.
    [72]Ang B W. The LMDI approach to decomposition analysis:a practical guide [J]. Energy policy,2005,33(7):867-871.
    [73]Torvanger A. Manufacturing sector carbon dioxide emissions in nine OECD countries,1973-87:A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities and international structure [J]. Energy Economics,1991,13(3):168-186.
    [74]Shrestha R M, Timilsina G R. Factors affecting CO2intensities of power sector in Asia: A Divisia decomposition analysis [J]. Energy Economics,1996,18(4):283-293.
    [75]Ang B, Pandiyan G. Decomposition of energy-induced CO2emissions in manufacturing [J]. Energy Economics,1997,19(3):363-374.
    [76]Ang B, Zhang F, Choi K-H. Factorizing changes in energy and environmental indicators through decomposition [J]. Energy,1998,23(6):489-495.
    [77]申晓敏,武戈.基于LMDI模型的工业碳排放影响因素研究——以无锡市为例[J].生态经济(学术版),2012,(1):269-273.
    [78]史安娜,李淼.基于LMDI的南京市工业经济能源消费碳排放实证分析[J].资源科学,2011,33(10):1890-1896.
    [79]董军,张旭.中国工业部门能耗碳排放分解与低碳策略研究[J].资源科学,2010,32(10):1856-1862.
    [80]潘雄锋,舒涛,徐大伟.中国制造业碳排放强度变动及其因素分解[J].中国人口资源与环境,2011,21(5):101-105.
    [81]刘辉.广东省工业经济能源消费碳排放的LMDI分析[J].五邑大学学报(自然科学版),2013,27(4):50-56.
    [82]白卫国,庄贵阳,朱守先,等.关于中国城市温室气体清单编制四个关键问题的探讨[J].气候变化研究进展ISTIC,2013,9(5):335-340.
    [83]Fong W-K, Matsumoto H, Lun Y-F. Application of System Dynamics model as decision making tool in urban planning process toward stabilizing carbon dioxide emissions from cities [J]. Building and Environment,2009,44(7):1528-1537.
    [84]蔡博峰.中国城市二氧化碳排放研究[J].中国能源,2011,33(6):28-32.
    [85]BP. BP statistical review of world energy,2011[M/OL]. http://www.bp.com/liveassets/bp internet/globalbp/globalbp uk english/reports and publica tions/statistical energy review2011/STAGING/local assets/pdf/statistical review of world_energy_full_report_2011.pdf,2011.
    [86]EIA. International Energy Outlook,2010[M/OL]. http://large.stanford.edu/courses/2010/ph240/riley2/docs/EIA-0484-2010.pdf,2010.
    [87]Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications [J]. Energy Policy,2009,37(11):4208-4219.
    [88]国家发展和改革委员会.中华人民共和国气候变化第二次国家信息通报[M/OL]. http://www.ccchina.gov.cn/archiver/ccchinacn/UpFile/Files/Default/20130218142020138656. pdf,2013
    [89]Bi J, Zhang R, Wang H, et al. The benchmarks of carbon emissions and policy implications for China's cities:Case of Nanjing [J]. Energy Policy,2011,39(9):4785-4794.
    [90]王志宪,吕霄飞.中国小城镇发展概述[J].青岛科技大学学报(社会科学版),2010,26(2):7-10.
    [91]Li R. Statistical Analysis of Securities Comments used by Investors [J]. Advances in Applied Economics and Finance,2012,1(2):115-119.
    [92]GB/T4754,国民经济行业分类[S].北京:2011.
    [93]IPCC. Revised1996IPCC Guidelines for National Greenhouse Gas Inventories [M/OL]. http://www.ipcc-nggip.iges.or.jp/public/gl/invsl.html,1996.
    [94]宋然平,杨抒,孙淼.能源消耗引起的温室气体排放计算工具指南(2.1版)[M/OL]. http://www.ghgprotocol.org/calculation-tools/all-tools,2013.
    [95]国家发展改革委应对气候变化司.省级温室气体清单编制指南(试行)[M].2011.
    [96]GB/T2589,综合能耗计算通则[S].北京:2008.
    [97]Kennedy C A, Ramaswami A, Carney S, et al. Greenhouse gas emission baselines for global cities and metropolitan regions [J]. Cities and climate change:Responding to an urgent agenda,2011,15-54.
    [98]Yang L, Li Y. Low-carbon City in China [J]. Sustainable Cities and Society,2013,9:62-66.
    [99]Dhakal S. Climate change and cities:the making of a climate friendly future [M]. Urban Energy Transition: From Fossil Fuels to Renewable Power. Amsterdam; Elsevier.2008:173-193.
    [100]Yuen B K, Kumssa A, Yuen B K. Climate change and sustainable urban development in Africa and Asia [M]. Springer,2011.
    [101]Ma C, Ju M, Zhang X, et al. Energy consumption and carbon emissions in a coastal city in China [J]. Procedia Environmental Sciences,2011,4:1-9.
    [102]Zhang L, Wang C, Yang Z, et al. Carbon emissions from energy combustion in rural China [J]. Procedia Environmental Sciences,2010,2:980-989.
    [103]ReisingerA P.气候变化2007:综合报告[M]政府间气候变化专门委员会第四次评估报告第一,第二和第三工作组的报告,2007.
    [104]葛晓华,苏旭东,袁进,等.工业领域碳足迹研究进展[J].生态经济,2013,(005):120-125.
    [105]刘凤朝,潘雄锋,徐国泉.基于结构份额与效率份额的中国能源消费强度研究[J].资源科学,2007,29(4):2-6.
    [106]张丽峰.我国产业结构,能源结构和碳排放关系研究[J].干旱区资源与环境,2011,25(5):1-7.
    [107]潘雄锋,舒涛,徐大伟.中国制造业碳排放强度变动及其因素分解[J].中国人口资源与环境,2011,21(5):101-105.
    [108]徐大丰.低碳经济导向下的产业结构调整策略研究——基于上海产业关联的实证研究[J].华东经济管理,2010,(10):6-9.
    [109]刘畅,孔宪丽,高铁梅.中国工业行业能源消耗强度变动及影响因素的实证分析[J].资源科学,2008,30(9):1290-1299.
    [110]滕玉华,刘长进.外商直接投资的R&D溢出与中国区域能源效率[J].中国人口资源与环境,2010,20(8):142-147.
    [111]石敏俊,周晟吕.低碳技术发展对中国实现减排目标的作用[J].管理评论,2010,22(6):48-53.
    [112]朱玲玲.中国工业分行业碳排放影响因素研究[D].哈尔滨:哈尔滨工业大学,2013.
    [113]Albrecht J, Francois D, Schoors K. A Shapley decomposition of carbon emissions without residuals [J]. Energy Policy,2002,30(9):727-736.
    [114]刘东.节能监测技术服务体系建设与节能监察执法及新标准规范实务操作全书[M].北京:环境出版社,2009.
    [115]张莉,陈云.低碳经济与纺织可持续发展(四)——产品碳足迹核算与生命周期评估[J].印染,2011,37(003):38-41.
    [116]刘玫,陈亮.温室气体管理的标准化——国际最新动态及中国进展[J].中国标准化,2009,(10):12-13.
    [117]夏明.碳足迹评价标准及其在服装领域的应用研究[D].北京:北京服装学院,2012.
    [118]宋然平,朱晶晶,侯萍,等.准确核算每一吨排放:企业外购电力温室气体排放因子解析[M/OL]. http://www.wri.org.cn/files/wri/documents/analysis of emission factors for purchased elect ricity in china2013.pdf,2013.
    [119]袁丽铭.基于生命周期法和情景分析法的保定市电力碳排放研究[D].北京:华北电力大学,2012.
    [120]陈启鑫,康重庆,夏清.碳捕集电厂的运行机制研究与调峰效益分析[J].中国电机工程学报,2010,30(7):22-28.
    [121]刘韵,师华定,曾贤刚.基于全生命周期评价的电力企业碳足迹评估——以山西省吕梁市某燃煤电厂为例[J].资源科学,2011,33(4):653-658.
    [122]汤蕴琳.低碳排放燃煤电厂的开发和未来趋势[J].电力建设,2010,28(10):1-6.
    [123]夏德建,任玉珑,史乐峰.中国煤电能源链的生命周期碳排放系数计量[J].统计研究,2010,27(8):82-89.
    [124]许世森,郜时旺.燃煤电厂二氧化碳捕集,利用与封存技术[J].上海节能,2009,9):8-13.
    [125]段建中,杨静.湿法脱硫与碳排放[J].热力发电,2011,40(8):83-84.
    [126]Wang H, Nakata T. Analysis of the market penetration of clean coal technologies and its impacts in China's electricity sector [J]. Energy Policy,2009,37(1):338-351.
    [127]国家发展和改革委员会.能源发展“十一五”规划[M/OL]. http://www.ccchina.gov.cn/WebSite/CCChina/UpFile/File186.pdf,2007.
    [128]国家环境保护总局,国家发展和改革委员会,国家环境保护“十一五”规划[M/OL]. 2007, http://www.zhb.gov.cn/plan/hjgh/sywgh/gjsywgh/.
    [129]Yu F, Chen J, Sun F, et al. Trend of technology innovation in China's coal-fired electricity industry under resource and environmental constraints [J]. Energy Policy,2011,39(3):1586-1599.
    [130]Moss S. Circulating Fluid Bed Scrubbers Bridge the Gap Between Dry and Wet Scrubbers [J]. Power,2010,154(7):46-51。
    [131]Hou B, Qi H, You C, et al. Dry desulfurization in a circulating fluidized bed (CFB)with chain reactions at moderate temperatures [J]. Energy&fuels,2005,19(1):73-78.
    [132]Zhang J, You C, Zhao S, et al. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization [J]. Environmental science&technology,2008,42(5):1705-1710.
    [133]Zhang J, Zhao S, You C, et al. Rapid hydration preparation of calcium-based sorbent made from lime and fly ash [J]. Industrial&engineering chemistry research,2007,46(16):5340-5345.
    [134]Ma X, Kaneko T, Tashimo T, et al. Use of limestone for SO2removal from flue gas in the semidry FGD process with a powder-particle spouted bed [J]. Chemical Engineering Science,2000,55(20):4643-4652.
    [135]Kikkawa H, Nakamoto T, Morishita M, et al. New wet FGD process using granular limestone [J]. Industrial&engineering chemistry research,2002,41(12):3028-3036.
    [136]Xiao B, Suo C, Yan X. Comparing Chinese clean coal power generation technologies with life cycle inventory [J]. Energy Procedia,2011,5:2195-200.
    [137]Sampattagul S, Kato S, Kiatsiriroat T, et al. Life cycle analytical tools and externalities of the flue gas desulphurization system in Thailand [J]. Chiang Mai University Journal,2005,4(1):1-17.
    [138]Xu R, Hou F. Integrating LCA and LCC study of FGD system at a thermal power plant in China [J]. Journal of Software,2010,5(12):1425-1433.
    [139]Liang Z, Ma X, Lin H, et al. The energy consumption and environmental impacts of SCR technology in China [J]. Applied Energy,2011,88(4):1120-1129.
    [140]平艳斌.珠江电厂石灰石湿法烟气脱硫系统GGH改造及优化运行研究[D].广州;华南理工大学,2011.
    [141]林春源.山西榆社电厂2×300MW机组烟气循环流化床干法脱硫装置[C].北京:第二届中国国际脱硫脱硝技术与设备展览会暨技术研讨会论文集,2006.
    [142]Feng C, Ma X Q. The energy consumption and environmental impacts of a color TV set in China [J]. Journal of cleaner production,2009,17(1):13-25.
    [143]ISO.14041Environment management-life cycle assessment-goal and scope definition and inventory analysis [M]. London: British Standards Institution.1998.
    [144]He B, Chen C. Energy ecological efficiency of coal fired plant in China [J]. Energy conversion and management,2002,43(18):2553-2567.
    [145]Feng C, Gao X, Tang Y, et al. Comparative life cycle environmental assessment of flue gas desulphurization technologies in China [J]. Journal of Cleaner Production,2013,68:81-92
    [146]Council T N S. Limestone Quarrying and Processing:A Life-Cycle Inventory [M/OL]. http://www.naturalstonecouncil.org/content/file/LCI%20Reports/Limestone LCIv1October2008.pdf,2010-04-26.
    [147]Sagastume Gutierrez A, Van Caneghem J, Cogollos Martinez J B, et al. Evaluation of the environmental performance of lime production in Cuba [J]. Journal of Cleaner Production,2012,31:126-136.
    [148]王红.燃煤电厂烟气脱硫工艺生命周期评估[D].杭州;浙江大学,2012.
    [149]杨建新,刘炳江.中国钢材生命周期清单分析[J].环境科学学报,2002,22(4):519-522.
    [150]邹治平,马晓茜,赵增立,等.水力发电工程的生命周期分析[J].水力发电,2004,30(4):53-55.
    [151]ACAA. Coal Combustion Product (CCP) production&use survey report [M/OL]. http://www.acaa-usa.org/associations/8003/files/Final2011CCPSurvey.pdf,2011.
    [152]Gutierrez Ortiz F, Vidal F, Ollero P, et al. Pilot-plant technical assessment of wet flue gas desulfurization using limestone [J]. Industrial&engineering chemistry research,2006,45(4):1466-1477.
    [153]高苑辉.沙角A厂5号机组烟气脱硫技术及经济性分析[J].湖南电力,2001,21(3):40-42.
    [154]陈嫒,李强.燃煤机组烟气脱硫系统应用[J].云南电力技术,2007,21(3):40-42.
    [155]田贺忠,郝吉明,赵喆,等.燃煤电厂烟气脱硫石膏综合利用途径及潜力分析[J].中国电力,2006,39(2):64-69.
    [156]Yang J-x, Nielsen P H. Chinese life cycle impact assessment factors [J]. Journal of Environmental Sciences,2001,13(2):205-209.
    [157]Hauschild M Z, Alting L. Environmental assessment of products:Volume2:Scientific background [M]. Springer,1997.
    [158]Belke A, Dobnik F, Dreger C. Energy consumption and economic growth: New insights into the cointegration relationship [J]. Energy Economics,2011,33(5):782-789.
    [159]Shaari M, Hussain N, Ismail M. Relationship between Energy Consumption and Economic Growth: Empirical Evidence for Malaysia [J]. Business Systems Review,2012,2(1):17-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700